Blind Deblurring Using a Simplified Sharpness Index

Arthur Leclaire, Lionel Moisan

Scale-Space and Variational Methods in Computer Vision Schloss Seggau, Austria, June 3, 2013

Outline

- Measuring image quality
- Phase coherence and sharpness indices
- 3 Application to blind deblurring

Sharpness

How can we define image quality or sharpness?

- \rightarrow effective resolution
- \rightarrow perceptually correlated
- \rightarrow sensitive to well-known artifacts
- \rightarrow independent of the context

Early works based on ...

- gray-level distribution (variance, kurtosis, entropy...)
- analysis of the Fourier spectrum
- analysis of the local features

No-reference quality measures

- Edges width analysis in [Marziliano et al., 2004].
- Comparison of the edges width to a perceptually-defined threshold called Just Noticeable Blur in [Ferzli, Karam, 2009].
- Metric *Q* of [Zhu, Milanfar, 2010] (singular values of local gradients).
- Sharpness by local phase coherence of a complex wavelet transform in [Wang, Simoncelli, 2003], [Hassen, Wang, Salama, 2010].
- Spectral and spatial sharpness measure S3 in [Vu, Chandler, 2009].
- Sharpness by DFT phase coherence in [Blanchet, Moisan, Rougé, 2008], [Blanchet, Moisan, 2012].

For a much more detailed discussion about image quality assessment, see the recent [Chandler, 2013].

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Outline

Measuring image quality

2 Phase coherence and sharpness indices

- Phase coherence indices GPC, SI, and S
- Properties
- Validation of S as a quality measure

Definitions

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Let $u : \Omega \to \mathbb{R}$ be an image (Ω rectangle of \mathbb{Z}^2). We denote by $\dot{u} : \mathbb{Z}^2 \to \mathbb{R}$ the periodic extension of u. We introduce its periodic total variation

$$\begin{aligned} \mathrm{TV}(u) &= \sum_{\mathbf{x} \in \Omega} |\dot{u}(x_1 + 1, x_2) - \dot{u}(x_1, x_2)| + |\dot{u}(x_1, x_2 + 1) - \dot{u}(x_1, x_2)| \\ &= \|\partial_x \dot{u}\|_1 + \|\partial_y \dot{u}\|_1 \ . \end{aligned}$$

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Discrete Fourier Transform

Let \hat{u} be the Discrete Fourier Transform (DFT) of u. Modulus of $u : |\hat{u}(\xi)|$. Phase of $u : \text{Angle}(\hat{u}(\xi)) \in (-\pi, \pi]$.

House

Lena

Phase of House with modulus of Lena

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Random phase noise

Let $(\psi(\boldsymbol{\xi}))_{\boldsymbol{\xi}\in\hat{\Omega}}$ a random phase function, i.e. the coefficients are independent uniform in $(-\pi,\pi]$ except that $\psi(-\boldsymbol{\xi}) = -\psi(\boldsymbol{\xi})$. Let us introduce the random phase noise

$$m{U}_\psi = \mathrm{DFT}^{-1} \Big(|\hat{m{u}}| \cdot m{e}^{i\psi} \Big) \; .$$

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Global Phase Coherence

Definition (Blanchet, Moisan, Rougé 2008)

The Global Phase Coherence of *u* is defined by

$$\operatorname{GPC}(u) = -\log_{10} \mathbb{P}(\operatorname{TV}(U_{\psi}) \leq \operatorname{TV}(u))$$
.

Numerical approximation is available through Monte-Carlo simulations.

Values of GPC for these patches : A : 206 B : 388 C : 240 D : 2.56

E:0.33

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

From GPC to SI

Instead of U_{ψ} , let us consider the Gaussian field

$$u * W(\mathbf{x}) = \sum_{\mathbf{y} \in \Omega} \dot{u}(\mathbf{x} - \mathbf{y}) W(\mathbf{y})$$

where $\boldsymbol{W} \sim \mathcal{N}\left(0, \frac{1}{|\Omega|}\right)$.

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

From GPC to SI

Instead of U_{ψ} , let us consider the Gaussian field

$$u * W(\mathbf{x}) = \sum_{\mathbf{y} \in \Omega} \dot{u}(\mathbf{x} - \mathbf{y})W(\mathbf{y})$$

where $W \sim \mathcal{N}\left(0, \frac{1}{|\Omega|}\right)$. A (reasonable) Gaussian approximation of TV(u * W) yields

$$\mathbb{P}\Big(\mathrm{TV}(u * W) \leq \mathrm{TV}(u)\Big) \simeq \Phi\left(\frac{\mu - \mathrm{TV}(u)}{\sigma}\right)$$

where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_x^{+\infty} e^{-t^2/2} dt$ and...

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

The theorem of [Blanchet, Moisan, 2012]

Theorem (Blanchet-Moisan 2012)

$$\begin{split} \mu &:= \mathbb{E}[\mathrm{TV}(\boldsymbol{u} * \boldsymbol{W})] = (\alpha_x + \alpha_y) \sqrt{\frac{2}{\pi}} \sqrt{|\Omega|} ,\\ \sigma^2 &:= \mathbb{V}\mathrm{ar}(\mathrm{TV}(\boldsymbol{u} * \boldsymbol{W})) \\ &= \frac{2}{\pi} \sum_{\mathbf{z} \in \Omega} \alpha_x^2 \cdot \omega \left(\frac{\Gamma_{xx}(\mathbf{z})}{\alpha_x^2} \right) + 2\alpha_x \alpha_y \cdot \omega \left(\frac{\Gamma_{xy}(\mathbf{z})}{\alpha_x \alpha_y} \right) + \alpha_y^2 \cdot \omega \left(\frac{\Gamma_{yy}(\mathbf{z})}{\alpha_y^2} \right) \end{split}$$

$$\begin{aligned} \alpha_{x} &= \|\partial_{x}\dot{u}\|_{2} \quad \alpha_{y} = \|\partial_{y}\dot{u}\|_{2} \\ \forall t \in [-1, 1], \quad \omega(t) = t \operatorname{Arcsin} t + \sqrt{1 - t^{2}} - 1 \\ \forall \mathbf{x} \in \mathbb{Z}^{2}, \quad \Gamma(\mathbf{z}) = \begin{pmatrix} \Gamma_{xx} & \Gamma_{xy} \\ \Gamma_{yx} & \Gamma_{yy} \end{pmatrix} (\mathbf{z}) = \sum_{\mathbf{y} \in \Omega} \nabla \dot{u}(\mathbf{y}) \cdot \nabla \dot{u}(\mathbf{z} + \mathbf{y})^{T} \end{aligned}$$

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Variance approximation

We have seen that

$$\sigma^{2} = \frac{2}{\pi} \sum_{\mathbf{z} \in \Omega} \alpha_{\mathbf{x}}^{2} \cdot \omega \left(\frac{\Gamma_{\mathbf{x}\mathbf{x}}(\mathbf{z})}{\alpha_{\mathbf{x}}^{2}} \right) + 2\alpha_{\mathbf{x}}\alpha_{\mathbf{y}} \cdot \omega \left(\frac{\Gamma_{\mathbf{x}\mathbf{y}}(\mathbf{z})}{\alpha_{\mathbf{x}}\alpha_{\mathbf{y}}} \right) + \alpha_{\mathbf{y}}^{2} \cdot \omega \left(\frac{\Gamma_{\mathbf{y}\mathbf{y}}(\mathbf{z})}{\alpha_{\mathbf{y}}^{2}} \right)$$

where

$$\forall t \in [-1, 1], \quad \omega(t) = t \operatorname{Arcsin} t + \sqrt{1 - t^2} - 1$$

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Variance approximation

We have seen that

$$\sigma^{2} = \frac{2}{\pi} \sum_{\mathbf{z} \in \Omega} \alpha_{\mathbf{x}}^{2} \cdot \omega \left(\frac{\Gamma_{\mathbf{x}\mathbf{x}}(\mathbf{z})}{\alpha_{\mathbf{x}}^{2}} \right) + 2\alpha_{\mathbf{x}}\alpha_{\mathbf{y}} \cdot \omega \left(\frac{\Gamma_{\mathbf{x}\mathbf{y}}(\mathbf{z})}{\alpha_{\mathbf{x}}\alpha_{\mathbf{y}}} \right) + \alpha_{\mathbf{y}}^{2} \cdot \omega \left(\frac{\Gamma_{\mathbf{y}\mathbf{y}}(\mathbf{z})}{\alpha_{\mathbf{y}}^{2}} \right)$$

where

$$\forall t \in [-1, 1], \quad \omega(t) = t \operatorname{Arcsin} t + \sqrt{1 - t^2} - 1 \approx \frac{t^2}{2}$$

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Variance approximation

We have seen that

$$\sigma^{2} = \frac{2}{\pi} \sum_{\mathbf{z} \in \Omega} \alpha_{\mathbf{x}}^{2} \cdot \omega \left(\frac{\Gamma_{\mathbf{x}\mathbf{x}}(\mathbf{z})}{\alpha_{\mathbf{x}}^{2}} \right) + 2\alpha_{\mathbf{x}}\alpha_{\mathbf{y}} \cdot \omega \left(\frac{\Gamma_{\mathbf{x}\mathbf{y}}(\mathbf{z})}{\alpha_{\mathbf{x}}\alpha_{\mathbf{y}}} \right) + \alpha_{\mathbf{y}}^{2} \cdot \omega \left(\frac{\Gamma_{\mathbf{y}\mathbf{y}}(\mathbf{z})}{\alpha_{\mathbf{y}}^{2}} \right)$$

where

$$\forall t \in [-1, 1], \quad \omega(t) = t \operatorname{Arcsin} t + \sqrt{1 - t^2} - 1 \approx \frac{t^2}{2}$$

Therefore, σ^2 can be approximated by

$$\sigma_{a}^{2} = \frac{1}{\pi} \sum_{\mathbf{z} \in \Omega} \alpha_{x}^{2} \cdot \left(\frac{\Gamma_{xx}(\mathbf{z})}{\alpha_{x}^{2}} \right)^{2} + 2\alpha_{x}\alpha_{y} \cdot \left(\frac{\Gamma_{xy}(\mathbf{z})}{\alpha_{x}\alpha_{y}} \right)^{2} + \alpha_{y}^{2} \cdot \left(\frac{\Gamma_{yy}(\mathbf{z})}{\alpha_{y}^{2}} \right)^{2}$$

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

.

Definition of the Simplified sharpness index S

After simplifications, we have

$$\sigma_a^2 = \frac{1}{\pi} \left(\frac{\|\Gamma_{xx}\|_2^2}{\alpha_x^2} + 2 \cdot \frac{\|\Gamma_{xy}\|_2^2}{\alpha_x \alpha_y} + \frac{\|\Gamma_{yy}\|_2^2}{\alpha_y^2} \right)$$

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Definition of the Simplified sharpness index S

After simplifications, we have

$$\sigma_a^2 = \frac{1}{\pi} \left(\frac{\|\Gamma_{xx}\|_2^2}{\alpha_x^2} + 2 \cdot \frac{\|\Gamma_{xy}\|_2^2}{\alpha_x \alpha_y} + \frac{\|\Gamma_{yy}\|_2^2}{\alpha_y^2} \right)$$

Definition

Replacing σ by σ_a , we obtain the simplified sharpness Index

$$S(u) = -\log_{10}\Phi\left(rac{\mu - \mathrm{TV}(u)}{\sigma_a}
ight)$$

to be compared to

$$\operatorname{SI}(u) = -\log_{10}\Phi\left(\frac{\mu - \operatorname{TV}(u)}{\sigma}\right)$$

.

Phase coherence indices GPC, SI, and *S* **Properties** Validation of *S* as a quality measure

Properties and remarks

•
$$0 \leq \frac{\sigma^2 - \sigma_a^2}{\sigma_a^2} \leq \pi - 3 \approx 0.142$$

- These indices are affine-invariant, e.g. $S(a \cdot u + b) = S(u)$.
- If *U* is a random phase field, then

$$\forall t > 0$$
, $\mathbb{P}(\operatorname{GPC}(U) \ge t) \le 10^{-t}$.

- We used TV to measure the quantity of oscillations of *u*. Subsequently, these indices will favor images with localized discontinuities.
- Singular points of TV will be singular for SI and S.
- These indices are not convex nor concave.

Phase coherence indices GPC, SI, and *S* **Properties** Validation of *S* as a quality measure

Practical remarks

- SI requires 4 FFTs whereas S requires 1 FFT.
- Dealing with a border-to-border discontinuity : one may take the periodic component of u (see [Moisan, 2011]).
- Dealing with the quantization bias : dequantization by subpixel translation (see [Desolneux, Ladjal, Moisan, Morel, 2002]).

$$T_{(1/2,1/2)}u = \mathrm{DFT}^{-1}(\hat{u}(\xi)e^{-i\langle (\frac{1}{2},\frac{1}{2}),\xi\rangle})$$

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Sensitivity to blur and noise

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Sensitivity to ringing (I)

Let us apply H^1 -regularization to an image u:

$$orall oldsymbol{\xi} \in \Omega, \quad u_{\lambda,
ho}(oldsymbol{\xi}) = \hat{u}(oldsymbol{\xi}) \cdot rac{\hat{\kappa_{
ho}}^*(oldsymbol{\xi})}{|\hat{\kappa_{
ho}}|^2(oldsymbol{\xi}) + \lambda \|oldsymbol{\xi}\|^2} \;,$$

where $\hat{\kappa_{\rho}}(\boldsymbol{\xi}) = \exp(-\pi\rho^2 \|\boldsymbol{\xi}\|^2)$ is the Gaussian blur filter.

If ρ is too large, ringing artifacts appear on the image $u_{\lambda,\rho}$.

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Sensitivity to ringing (II)

Figure: Evolution of $S(u_{0.01,\rho})$ when varying parameter ρ . Original image *u* is "Yale".

Phase coherence indices GPC, SI, and *S* Properties Validation of *S* as a quality measure

Sensitivity to ringing (III)

 $S(u^c_{0.01,0}) = 20.2$ $S(u^c_{0.01,0.7}) = 25.6$ $S(u^c_{0.01,1}) = 16.3$

Figure: Results of H^1 -regularization when varying the regularization parameter ρ . Crops.

General scheme Restriction to kernels with radial unimodal DFT

Outline

- Measuring image quality
- Phase coherence and sharpness indices
- Application to blind deblurring
 - General scheme
 - Restriction to kernels with radial unimodal DFT

Blind deblurring

General scheme Restriction to kernels with radial unimodal DFT

- We want to remove blur from a single image *u*.
- Linear space-invariant blur \Rightarrow convolution by a kernel κ .
- When κ is unknown: blind deconvolution (see e.g. the recent [Levin et al., 2011]).

Stochastic optimization of a sharpness criterion

Goal : find a deconvolution kernel that maximizes

$$F_u(k)=S(k*u).$$

The authors of [Blanchet, Moisan, 2012] suggested the following stochastic optimization scheme.

Algorithm 1

- Begin with $k = \delta_0$
- Repeat N times
 - \triangleright Define k' from a random perturbation of k
 - \triangleright If S(k' * u) > S(k * u) then $k \leftarrow k'$
- Return k and k * u

General scheme Restriction to kernels with radial unimodal DFT

Restriction to kernels with compact support

This scheme can be adapted to different sets of kernels.

 \rightarrow failure cases when F_u is too singular.

Restriction to kernels with radial unimodal DFT (I)

 \rightarrow To avoid these degenerated cases, we suggest to consider kernels with radial DFT :

$$\forall \boldsymbol{\xi} \in \Omega, \quad \hat{k}_r(\boldsymbol{\xi}) = L_r(\|\boldsymbol{\xi}\|) \;,$$

where L_r is the piecewise affine interpolate of

$$r(0) = 1, r(1), r(2), \ldots, r(n_r - 2), r(n_r - 1) = 0$$
.

Restriction to kernels with radial unimodal DFT (I)

 \rightarrow To avoid these degenerated cases, we suggest to consider kernels with radial DFT :

$$\forall \boldsymbol{\xi} \in \Omega, \quad \hat{k}_r(\boldsymbol{\xi}) = L_r(\|\boldsymbol{\xi}\|) \;,$$

where L_r is the piecewise affine interpolate of

$$r(0) = 1, r(1), r(2), \ldots, r(n_r - 2), r(n_r - 1) = 0$$
.

 \rightarrow Besides, the sequence *r* is supposed to be unimodal i.e.

Restriction to kernels with radial unimodal DFT (II)

So we have to maximize

$$\mathcal{F}_{u}: r \mapsto \mathcal{S}(k_{r} \ast u) - \lambda_{1} \operatorname{dist}(r, U) - \lambda_{2} ||r||_{H^{1}},$$

where λ_1 and λ_2 are weighting parameters.

- \rightarrow The unimodality constraint is incorporated through the dist(*r*, *U*) term. *U* is the set of unimodal sequences.
- \rightarrow We also include a regularity term

$$||r||_{H^1}^2 = \sum_{i=0}^{d-2} (r(i+1) - r(i))^2$$
.

Restriction to kernels with radial unimodal DFT (III)

Algorithm 2

- Initialize r with a piecewise-affine profile
- Repeat N times
 - ▷ Pick a random index i
 - \triangleright Draw a random value $\epsilon \in [-a/2, a/2]$
 - $\triangleright \text{ Change } r(i) \text{ in } r(i) + \epsilon$
 - ▷ If $\mathcal{F}_u(r)$ decreases then refuse the change
- Return r, k_r and $k_r * u$

We checked convergence to a non-random profile.

General scheme Restriction to kernels with radial unimodal DFT

Results of blind deblurring (Parrots)

Input, S = 727

Input cropped

Output cropped

Measuring image guality Application to blind deblurring

Restriction to kernels with radial unimodal DFT

Results of blind deblurring (*Capitol*)

Input cropped

A. Leclaire, L. Moisan

Blind Deblurring Using a Simplified Sharpness Index

Comparisons

General scheme Restriction to kernels with radial unimodal DFT

- We will apply the algorithm on $u = \kappa * u_0 + n$ where κ is the Gaussian blur kernel (of std 1) and $n \sim \mathcal{N}(0, I)$.
- It allows us to compute PSNR values with respect to *u*₀.
- It enables computation of the oracle

$$k_0 = \operatorname*{Arg\,min}_{\hat{k} \text{ radial}} \mathbb{E}\left(\|u_0 - k * (\kappa * u_0 + N)\|^2 \right)$$

• We can compare it to the blind deconvolution algorithm of [Levin et al., 2011].

General scheme Restriction to kernels with radial unimodal DFT

Results of blind deblurring (blurred Parrots)

Original u_0 S = 727

Blurred and noisy input uPSNR = 30.5, S = 140

Levin et al. PSNR = 32.7, S = 591

Oracle output PSNR = 36.0, S = 370

 $\begin{array}{l} \textbf{Blind deblurring} \ (\lambda_2 = 0) \\ \textbf{PSNR} = 24.8, \ \textbf{S} = 440 \end{array}$

Blind deblurring ($\lambda_2 = 10$) PSNR = 34.2, S = 394

A. Leclaire, L. Moisan

Blind Deblurring Using a Simplified Sharpness Index

CONCLUSION

- The phase coherence indices GPC, SI and *S* can be used to measure sharpness.
- They favor sharp edges surrounding uniform zones.
- The proposed blind deblurring algorithm is a non-linear technique to select the best linear filtering of the image.
- Perspectives :
 - $\rightarrow\,$ extension to motion blur,
 - \rightarrow include *S* in a purely non-linear deconvolution process.

General scheme Restriction to kernels with radial unimodal DFT

Merci !

THANK YOU FOR YOU ATTENTION !

Acknowledgments

This work has been supported by the French National Research Agency under grant ANR-09-BLAN-0029-01.

General scheme Restriction to kernels with radial unimodal DFT

Results of blind deblurring (Lena)

Input cropped

Output cropped

General scheme Restriction to kernels with radial unimodal DFT

Results of blind deblurring (*blurred Capitol*)

A. Leclaire, L. Moisan

Blind Deblurring Using a Simplified Sharpness Index