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1 Introduction
My field of research is enumeration of number fields by increasing discriminant. Let
n≥ 2 be an integer and let Cn denote the set of isomorphism classes of number fields
of degree n. For any positive real number X, let Cn(X) be the set of elements of Cn

whose discriminant has absolute value at most X, and let Nn(X) be its cardinality.
From a theoretical point of view, we are interested in understanding the asymptotic
behaviour of Nn(X) when X→∞; from a practical point of view, we look for efficient
algorithms to describe all elements of Cn(X).

These two problems are easy when n= 2, that is, in the case of quadratic fields.
Indeed, there is a very simple classification of quadratic fields: they are the fields
of the form Q(

p
d) for d ̸= 1 a squarefree integer. Moreover, the discriminant of

Q(
p

d) is equal to d if d is congruent to 1 modulo 4, and to 4d otherwise. From this
it is possible to prove that N2(X) ∼

1
ζ(2)X, and to enumerate C2(X) in optimal time

O(X1+ϵ).
A classical conjecture predicts that for all n ≥ 2, there should exist a constant

cn > 0 such that Nn(X) ∼ cnX. This conjecture remains open for n ≥ 6. Ellenberg
and Venkatesh [16] proved that Nn(X)≫ X

1
2+

1
n2 , and the best upper bound known

in arbitrary degree, due to Lemke Oliver and Thorne [23], is of the form Nn(X)≪
XO(log2 n).

From an algorithmic point of view, it is natural to conjecture that there should
exist a way to enumerate the set Cn(X) using O(X1+ϵ) elementary operations, which
would match the expected size of the output and would therefore be optimal. The
best general algorithm currently known is that of Hunter-Pohst-Martinet [20, 26, 24],
which runs in time O

�

X
n+2

4 +ϵ
�

.
The above questions have been solved in a satisfactory way for n = 3, and

considerable progress has been made for n= 4 and n= 5. I will first describe the case
of cubic fields, which is classical, then I will show how the various pieces generalise
to quartic and quintic fields. Along the way I will present my thesis work. Finally I
will describe new research directions.

2 Cubic fields
Enumeration of cubic fields by increasing discriminant is now a well-understood
subject. The starting point is a remarkable bijection, discovered by Delone and
Faddeev [14], between the set C3 of isomorphism classes of cubic fields and certain
classes of binary cubic forms.
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More precisely, let VZ be the set of binary cubic forms with integer coefficients.
The group GZ = GL2(Z) acts on VZ by composition. Given any element of VZ, its
irreducibility and its discriminant only depend on its class under this action, and
there is a canonical, discriminant-preserving bijection between C3 and the set of
equivalence classes of irreducible forms satisfying certain congruence relations.

To take advantage of this result, it is convenient to have at hand a fundamental
domain D for the action of GZ on the space VR of binary cubic forms with real
coefficients, or at least on the open subset V∗R ⊂ VR of forms of nonzero discriminant.
Such a fundamental domain can be constructed by combining the reduction theories
of Hermite [17, 19] for positive discriminants and Mathews-Berwick [25] for negative
discriminants.

Thanks to this fundamental domain, one obtains a bijection between C3 and
certain irreducible integral points of D, and, for all X ≥ 0, a bijection between C3(X)
and certain irreducible integral points of D(X), where D(X) denotes the set of points
of D whose discriminant has absolute value at most X. It is then natural to try to
estimate N3(X) from the volume of D(X). In this way, Davenport and Heilbronn [12]
could show, building on previous work of Davenport [10, 11], that N3(X)∼

1
3ζ(3)X.

From an algorithmic point of view, enumerating C3(X) amounts to enumerating
all irreducible integral points of D(X). Using this approach, Belabas [1] implemented
an enumeration algorithm for cubic fields which runs in optimal time O(X1+ϵ), and
built a table of all cubic fields having discriminant at most 1011 in absolute value.

The set D(X), which plays an essential role in the study of cubic fields, is defined
by complicated polynomial inequalities. It is useful to approximate it by a slightly
larger domain described by simpler inequalities. Thus Davenport [10, 11] showed
that every element f = ax3+ bx2 y+ cx y2+d y3 of D(X) satisfies a monomial system
of the form:

|a| ≪ X
1
4 , |b| ≪ X

1
4 ,

|ad| ≪ X
1
2 , |bc| ≪ X

1
2 ,

|ac3| ≪ X, |b3d| ≪ X.

(1)

Every irreducible integral point of D(X) corresponds to a integral solution of (1)
such that a ̸= 0, and it is not difficult to see that the number of such solutions is
O(X log(X)). Moreover, since the system (1) is monomial, its integral solutions can
be enumerated in optimal time. This provides an algorithm to enumerate C3(X) in
time O(X1+ϵ).

Besides the inequalities (1), Davenport also proved, under the same hypotheses,
an additional, non-monomial inequality, which depends on the sign of disc( f ):

c2|bc − 9ad| ≪ X if disc( f )> 0,

c2|bc − ad| ≪ X if disc( f )< 0.
(2)

The number of integral solutions of (1) and (2) such that a ̸= 0 is now O(X).
This can be used to improve the running time of the above algorithm. Let me stress
that further improvements are possible, and that the algorithm of Belabas cannot be
reduced to the ideas presented here.
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3 Bhargava’s bijections
In his thesis [2], Bhargava gave a list of parametrisations of arithmetic objects by
integral orbits of algebraic representations. Two items of this list, which were exten-
sively studied in later articles [4, 6], are concerned with quartic and quintic fields
and are entirely analogous to the bijection of Delone and Faddeev for cubic fields.

Thus, in the case of quartic fields, VZ is the set of pairs of ternary quadratic forms
with integer coefficients. Such a pair can be seen as a map from Z3 to Z2, so that VZ
is naturally endowed with an action of GZ = GL2(Z)× SL3(Z). There is a notion of
irreducibility on VZ, as well as a polynomial, called the discriminant, both of which
are invariant under the action of GZ. In this setting, Bhargava constructed a canonical,
discriminant-preserving bijection between C4 and the set of irreducible equivalence
classes of VZ satisfying certain congruence relations.

The case of quintic fields is similar; VZ is now the set of quadruples of quinary
alternating 2-forms with integer coefficients, on which GZ = GL4(Z)× SL5(Z) acts in
the natural way.

Using these bijections, Bhargava succeeded in proving the conjecture Nn(X)∼ cnX
for n= 4 [5] and n= 5 [7], and gave formulas for the constants involved. The proof is
based on the same geometry-of-numbers principle as that of Davenport and Heilbronn,
but is technically more difficult and among other things involves a continuous family
of fundamental domains.

Let usmention that similar parametrisations and counting techniques later enabled
Bhargava to obtain other spectacular results in arithmetic statistics, especially bounds
on the average rank of elliptic curves over Q [8, 9]. These achievements earned him
the Fields medal in 2014.

In a short article [3], Bhargava emphasised the potential algorithmic applications
of his bijections. In particular, they should allow to enumerate quartic and quintic
fields in time O(X1+ϵ). As will be apparent from the following sections, I was able
to partially realise this goal for n = 4, through a strategy very analogous to that
described above for cubic fields.

4 Reduction theories
To make algorithmic use of Bhargava’s bijections, it is helpful to have at hand a good
reduction theory for the action of GZ on the open subset V∗R ⊂ VR of elements of
nonzero discriminant. In particular, one has to be able to decide efficiently whether a
given element is reduced. The fundamental domains used by Bhargava do not fulfill
this condition and are therefore not very practical.

The idea behind the reduction theories of Hermite and Mathews-Berwick used
in the cubic case is to somehow reduce to Gauss’s reduction of positive definite
binary quadratic forms. Let f be a binary cubic form with real coefficients such
that disc( f ) > 0 (respectively disc( f ) < 0). One attaches to f a positive definite
quadratic form c( f ) = αx2 + βx y + γy2, called its covariant, which depends on f
equivariantly with respect to the action of GL2(Z). Then one defines f to be reduced
if c( f ) belongs to the fundamental domain of Gauss, which is described by the
inequalities 0≤ β≤ α≤ γ.
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Hermite’s covariant turns out to be more natural than Mathews-Berwick’s, and
lends itself to various generalisations and reinterpretations. First it can be extended
to all binary forms f of degree d with complex coefficients which are stable, that is,
whose zeros in P1(C) have multiplicity less than d

2 . In this case, c( f ) is a positive
definite hermitian form, which depends on f equivariantly with respect to the ac-
tions of GL2(C) and of complex conjugation. This construction results from work of
Hermite [17, 18], Julia [21], and more recently Stoll and Cremona [29], who gave a
remarkable geometric interpretation of it.

If f has real coefficients, equivariance with respect to complex conjugation shows
that its covariant c( f ) also has real coefficients. By defining f to be reduced if c( f )
is reduced in the sense of Gauss, one obtains a reduction theory for the action of
GL2(Z) on stable binary forms with real coefficients. When restricted to cubic forms of
negative discriminant, this reduction theory is different from that of Mathews-Berwick,
over which it has certain advantages.

A nonzero binary form of degree d with complex coefficients, modulo scaling, can
be identified with a formal sum of d points in P1(C), that is, with a positive zero-cycle
of degree d. Thus the covariant studied by Stoll and Cremona [29] can be seen as an
SL2(C)-equivariant map from the set of stable positive zero-cycles of P1(C) to the set
of positive definite hermitian forms of determinant 1.

Now it turns out that this covariant extends to an SLn(C)-equivariant map from
the set of positive zero-cycles of Pn−1(C) satisfying a certain stability property to the
set of positive definite hermitian forms of determinant 1 in n variables, for all n≥ 2.
This extension is due to Stoll [28]. Unfortunately, his approach is purely formal and
lacks the geometric intuition of Stoll and Cremona [29].

Stoll’s work provides a reduction theory for the action of SLn(Z) on those sta-
ble positive zero-cycles of Pn−1(C) which are invariant under complex conjugation.
Indeed, the covariant of such a zero-cycle has real coefficients; but there exist gener-
alisations of Gauss’s reduction for the action of SLn(Z) on positive definite quadratic
forms in n variables: two such generalisations are the reduction theory of Hermite-
Korkine-Zolotarev and that of Minkowski.

The above yields a reduction theory for the action of GL2(Z)× SL3(Z) on the set
of pairs of ternary quadratic forms with real coefficients and nonzero discriminant,
which appears in Bhargava’s bijection for quartic fields. Indeed, let (F1, F2) be such a
pair. On the one hand, the binary cubic form f (x , y) = det(xF1 + yF2) has nonzero
discriminant; on the other hand, the formal sum Z of the four common zeros of F1

and F2 in P2(C) is stable and invariant under complex conjugation. So one can define
(F1, F2) to be reduced if f and Z are so according to the reduction theories described
previously.

It is very likely that the ideas of Stoll also allow to define a satisfactory reduction
theory in the case of quintic fields, but I am not yet able to describe it in detail.

5 Reduction of positive zero-cycles in the grassman-
nian

As part of my thesis work, I extended Stoll’s covariant to all positive zero-cycles of the
Grassmannian Grn(C), that is, to all formal sums of linear subspaces of Cn, provided
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that a certain stability condition is satisfied. I will briefly summarise my approach,
which takes inspiration from the geometric ideas of Stoll and Cremona [29].

First of all, the set Hn of positive definite hermitian forms of determinant 1
in n variables can be identified with the quotient SU(n)\SLn(C). It is a Hadamard
manifold, that means a complete, simply connected, nonpositively curved Riemannian
manifold. Its boundary at infinity in the sense of Eberlein and O’Neill [15] can be
identified with the flag complex of Cn, and thus contains all linear subspaces of Cn

which are proper, that is neither 0 nor Cn.
Given any proper subspace V of Cn, seen as a point in the boundary at infinity

ofHn, one can introduce the vector field FV onHn whose norm is identically 1 and
which points to V everywhere. It is enlightening to see FV as a force field acting on a
particle lying inHn and attracted to the point V. Then it turns out that this force is
conservative, meaning that it equals the negative of the gradient of a potential energy
EV, which is actually the Busemann function of V, well defined up to an additive
constant.

To every positive zero-cycle Z of Grn(C) one can associate a vector field FZ onHn,
defined as a certain weighted sum of the fields FV attached to the proper components
of Z. Next, one shows that if Z is stable, then FZ vanishes at a unique point, which is
a global minimum of the corresponding potential energy EZ. It is this point which is
defined to be the covariant of Z.

I realised that the above is actually a special case of a very general construction
due to Kempf and Ness [22]. Let G be a connected reductive algebraic group over C,
and let K be a maximal compact subgroup of G and V a finite-dimensional algebraic
representation of G, together with a hermitian norm invariant under K. Given
any nonzero vector v ∈ V, its Kempf-Ness function κv : K\G → R is defined by
κv(g) = log∥g · v∥.

One can show that v is stable, which means that the orbital map g 7→ g · v is
proper, if and only if κv has a unique minimum point. The function which maps any
stable element v to the minimum point of κv is clearly G-equivariant. Moreover, the
stability condition for v and the minimum point of κv, if it exists, only depend on the
line Cv. Thus one obtains a covariant P(V)→ K\G, well defined on stable lines. This
provides reduction theories in many contexts.

The connection with my construction is that a positive zero-cycle Z of Grn(C)
can be seen, via the Plücker and the Segré embeddings, as a point in a certain
projective space; then the associated Kempf-Ness function, well defined up to an
additive constant, is none other than EZ. Thus my covariant coincides with that of
Kempf-Ness.

6 Monomial systems
Let us come back to Bhargava’s bijection for quartic fields. We saw how to obtain
a reduction theory for the action of GZ on the open subset V∗R ⊂ VR of elements of
nonzero discriminant. Let D be the corresponding fundamental domain. As in the
cubic case, enumerating C4(X) amounts to enumerating all irreducible integral points
of D(X).

There exists an over-approximation of D(X), defined by monomial inequalities,
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which is also valid for the fundamental domains used by Bhargava, except for the
constants involved, and which appears in his article [5]. I showed that this over-
approximation can be described by 178 inequalities analogous to those of the system
(1).

It would obviously be very painful to estimate the number of solutions of these
inequalities by hand. Fortunately, this can be done systematically using the next
result, which follows from work of de la Bretèche [13].

Theorem 1. Let (αi, j)1≤i≤m
1≤ j≤n

be a family of nonnegative integers, and for any X ≥ 0, let

N(X) be the number of n-tuples of positive integers satisfying the inequalities:

x
α1,1

1 . . . x
α1,n
n ≤ Xα1,1+···+α1,n ,

...
x
αm,1

1 . . . x
αm,n
n ≤ Xαm,1+···+αm,n .

Let C be the convex cone of Rn generated by the m vectors (αi,1, . . . ,αi,n), and:

µ= min
(t1,...,tn)∈C
t1≥1,...,tn≥1

t1 + · · ·+ tn.

For all ϵ > 0, N(X) = O(Xµ+ϵ).

Thanks to this result, I could show that the number of integral points in the
monomial over-approximation of D(X) satisfying certain non-vanishing conditions
which are necessary for irreducibility is O

�

X
5
4+ϵ
�

. This gives an enumeration algorithm
for C4(X) which is faster than the method of Hunter-Pohst-Martinet, whose running
time is O
�

X
3
2+ϵ
�

in degree 4. I implemented this algorithm, and I used it to build a
table of all quartic fields having discriminant at most 109 in absolute value [30].

In the case of quintic fields, a serious difficulty arises. Indeed, applying theorem 1
to the monomial system implicit in Bhargava’s work [7] suggests that the above
strategy would yield an algorithm which would be less efficient than that of Hunter-
Pohst-Martinet, whose running time is now O

�

X
7
4+ϵ
�

.

7 Prospects
My thesis work could be continued in several directions. First, in the case of quartic
fields, there is a way to refine the over-approximation of D(X) with four additional,
non-monomial inequalities, which depend on the signature and are analogous to
the inequalities (2). This could make it possible to improve the running time of
the enumeration algorithm, and maybe to reach the expected optimal complexity
O(X1+ϵ). Part of this strategy has already been completed in the totally real case
[2, 27].

A difficulty of this project is that it will likely be necessary to prove a more general
version of theorem 1 allowing for negative exponents αi, j. This will require checking
that the arguments of de la Bretèche still work in this new setting.

Once the case of quartic fields is well understood, perhaps the quintic case will
seem more within reach. I conjecture that in this case there will a refinement of the
over-approximation of D(X) by 16 non-monomial inequalities.
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On the other hand, questions of enumeration of number fields have a very natural
generalisation, namely enumeration of extensions of a given number field, or even of
an arbitrary global field. A sensible project would be to extend the methods described
in this document to this setting.

I could also pursue my research in reduction theory. Indeed, it seems that the
use of the work of Kempf and Ness [22] in this context is new, and it would be
interesting to make explicit and to compare the different reduction theories which
can be deduced from it, for instance for the action of GLn(Z) on forms of degree d in
n variables with real coefficients.

Finally, I am ready to work on new problems of enumeration of arithmetic objects,
or more generally on new questions in algorithmic number theory.
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