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1. Introduction

Letp,...,pn €2z, ..., z,)=Z[z] without common zeros in C". Hilbert’s N ullstellensatz
ensures that there is D€Z" and polynomials g, ..., q,, € Z[z] such that for every z €C”

(1.1) 0=p(2)q(D)+...+p, (2 q (2).

The explicit resolution of the Bezout equation (1.1) consists in giving an algorithm
to find such polynomials ¢q,, ..., g,,. One such algorithm is due to G. Hermann [18] and
Seidenberg [33]; another one, very effective, has been developed by Buchberger [12].
Masser-Wiistholz [28] used Hermann’s method to estimate the degree and the size of
the polynomials g;, and the size of . Denote by h(P) the logarithmic size of a
polynomial PEZ[z], i.e., A(P)=the logarithm of the modulus of the coefficient of P of
largest absolute value. They showed that using the Hermann algorithm one could find
d1, ---» @m Satisfying:

(1.2) max(degq) <2(2D)*", D = max(deg p))

), Ag)) <@BD)** ' (h+8Dlog8D), h=max h(p).

(1.3) max(log

Recently, using a combination of methods from elimination theory and several
complex variables, Brownawell [10] has obtained an essentially sharp bound for the
degrees of polynomials g; satisfying (1.1):

(1.4) max(degq) S unD*+uD, u=inf{n, m}.

('Y This research has been supported in part by NSF Grant DMS-8703072 and by the AFOSR-URI Grant
870073.



70 C. A. BERENSTEIN AND A. YGER

Later on, Kollar [22] has succeeded in obtaining an even sharper bound using only
algebraic methods:

(1.5) max(deg ¢) < D*,

with « as 1n (1.4). To be completely correct, the inequalities (1.4) of Brownawell and
(1.5) of Kollar are slightly more precise, we refer to the respective papers for the
details. Later on we will state the precise version of the Nullstellensatz from [22,
Corollary 1.7].

To be able to compare the nature of the algonthmic approach in [12] and the
construction from [10], a word 1s necessary about Brownawell’s polynomials g;. (The
polynomials in (1.5) are obtained by a non-constructive argument.) First one proves
that there exist g€ C[z] satisfying the equation (1.1) with b=1, with degrees bounded
as m (1.4). These gf are obtained as integrals over the whole space C" of some
conveniently constructed kernels. In some sense we whould say the g/ are given by
explicit formulas, but these formulas do not constitute an algorithm. One also obtains
an upper bound for the absolute value of the coefficients of the g This follows from

the effective bounds for the constant ¢, appearing in the Lojasiewicz’ type inequality
110}, {30]

m 1/2
(1.6 (Z wz)ll) > ¢, (14l 7"
j=1

Since the p; have integral coefficients, the existence of g*implies the existence of
DEZ™", q,€Z[z] satisfying (1.1) and (1.4); this is simply linear algebra. Namely, the
equation (1.1) (with b=1) can be written as a system of linear equations with integral
coefticients for the unknown rational coefficients of the g;, once the degree of them has
been estimated. Therefore, we might as well apply this principle with the estimates
(1.5). One could then ask what is the size of DEZ" and of the polynomials g;€ Z[z]
obtained by solving this system of equations. Setting d=D*, and using a lemma of
Masser-Wiistholz ([28], Lemma 1, section 4) one obtains the estimate

-

n+6) rh-l—l " (nﬂﬁ)}
5 ogm-+log{ ", |,

(1.7) max{(log D, h(qj)) < m(

For m=n the order of magnitude of the right hand side of (1.7) 1s essentially

me' D"

nn-(h’Z)

(1.8) (h+log m+n°log D).
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Note that in special cases where a better estimate than (1.4) is possible, then this
same Lefschetz’ principle provides a better bound in (1.7). Such is the case studied by
Macaulay [23], [25], when the polynomials p,, ..., p,, have no common points at infinity.
Then one can find g; satisfying the estimate

(1.9) deg g, < n(D-1).
T'he corresponding estimate for a and h(qg;) is essentially

(1.10) max(log 0, 4(q,))) < mn"D"(h+log m+nlog n+nlog D).

As soon as there Is even a single common point at « for p,, ..., p,,, the estimate (1.9) 1s
false. This is precisely the situation for the example of Masser—Philippon in [10]

(111) pl:Z?’ pZ:zl“Z{;* vy pn-—lzzn~2_zr?-l’ pnzlmznﬁlzf:)“ln

for which the best estimate possible for degg; is D"—D""'. This example shows that
(1.5) 1s practically best possible (cf. [22] for an optimal version).

One of the objectives of this paper is to obtain a better bound than (1.8) for the size
of d and the g;. The idea is to use that the choice of g; is not unique and that by losing a
little bit in the estimate of the degrees of g, x,n’D" instead of D", the size estimate is
basically (1.8) where D" is replaced by D™" (%,, %, absoslute constants), see Theorem
5.1 below.

Our method also depends on complex function theory, except that we have
succeeded in obtaining by this method a solution g, d lying directly in Z[z], Z respec-
tively. Z can be replaced by the ring of integers of any number field. The formulas we
Introduce can also be used to study the question of finding a division formula in Clz] as
we have done elsewhere [7].

The mterest of sharp estimates for the degree and size of the polynomials g,
appearing in the Nullstellensatz lies in applications to Transcendental Number Theory
and Computational Geometry. For the last application, it would seem that the algo-
rithms of Buchberger type can be modified to take into account estimates of degree and
size (see [13]). Purely algebraic methods appear to be able to improve bounds obtained
by analytic methods as well as give insight into the algorithmic questions. Such has
been the case in the period between the two versions of this paper, and we have
certainly profited from the work of Kollar [22]. Ji. Kollar and B. Shiffman {21], and
Philippon [32] that appeared between August 1987 and now. One particularly simple
and tantalizing question which we would like to pose is finding the sharp estimate for
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the number of anithmetical operations needed to decide whether a system of n quadratic
equations (with integral coefficients) in n variables has or does not have a solution in C”
(or in R").

Apart from the intrinsic interest of the result obtained here, we would like to point
out the power of the explicit integral representation formulas of the Henkin type, even
when dealing with problems that are algebraic in nature. Another feature of this paper
1s the crucial role played by multidimensional residues, used as a tool in computations
and not purely as an abstract concept, as they had been used essentially until now (see
also [1] and [7]).

This paper was written while C. Berenstein was on a sabbatical leave supported by
the General Research Board of the University of Maryland and A. Yger was a visiting
protessor 1n that institution. An announcement of the results herein appeared in [9].

We would like to thank Dale Brownawell, Patrice Philippon and Bernard Shiffman
for many useful remarks.

§ 2. Residue currents

We incorporate 1n this section some results of Complex Analysis which form the basis

for the rest of the paper. We start by fixing some notation that will be used throughout.
Let f=(fi,....f,) be a C"valued function, m€EN" a multi-index of length

im/=m;+...+m,. For an integer p EN* we let p=(p, ..., p). Then we denote

-+

112
fr=fte e F=ff, Hme(E |fj|2)

n L af;

of = Af)A...A9f, = A df,, of=) —dz
j=1 k=1 9%
2.1
2.1) ey
8f=8ﬁn...ﬂaj;: f";-, f}"-"—" -—-—--;——dzk
J=] k=1 Y<K

df = df n...ndf,, df,=3f+3f,

where 0/0z;, d/37; are the standard first order complex derivative operators {17], [20],
and the functions f; are continuously differentiable. Note that dz=dz;A...Adz, and

dz=d7,n...ndZ, are particular cases of (2.1). Also note A;’=] ts always understood in

Increasing order.
If Q1sa(l,0)form,i.e. QO)=L7, Q;({)dC, then 3Qis a(l,1) form, and there is no
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ambiguity in writing for KEN
(2.2) 30) =30A...A80 (k times)

since (1, 1) forms commute for the wedge product (30)"=1).

The space of differential forms of type (j, k) with smooth coefficients of compact
support In C" 1s denoted &;,. ¢€%;, is called a test form. The dual space of
Dojn-ks D', n_i» 18 called the space of currents of type (J, k). It can be identified to
the space of differential forms of type (j, k) with coefficients in the space @' of
distributions in C" {24}

Given n entire holomorphic functions f; defining a discrete variety V=V( ),
V:={z€C" fil)=...=f(2)=0}, we can define the Grothendieck residue current (1 If)
as the current of type (0, n) defined on test forms g€ 9, , by

(2.3) <<§-—-!- ¢a> = lim ol Vi A”f [FI* 4" Y3fA @
. f, A—0 (2JII)H C" ,

where F=f}, ..., f, and the meaning of the integral on the right hand side of (2.2) 1s the
tollowing. First, it is well defined as a holomorphic function of A for ReA>1. Then, the
product A”f ,
become a meromorphic function of 4, which is holomorphic in a neighborhood of 1=0.

FI**~D9fA @ can be analytically continued to the whole complex plane to

In fact, the limit in (2.3) is just the evaluation of this analytically continued function at
A=0 (cf. [7]). This coincides with the usual definition of the Grothendieck residue
current [15]. If we want to emphasize the components of f we will write

sL_s5Ll, AdL.
fof Jn
In particular
S =g n. AL
/ 5 fa

Note there is no contradiction between this notation and (2.1). It the holomorphic
function f; is such that 1/f; is differentiable, it means that f; has no zeros. Therefore the
usual differential form 3(1/f,)=0, but the Grothendieck residue will also be zero since
V=0. Furthermore, this observation holds in a local sense also, that is. if suppe N V=
we have (3(1/f).p)=0.

It f,,....f, are polynomials defining a discrete (hence finite) variety V and if 2 1s a
function which is C” in a neighborhood of V we can define the action of 3(1 /f) on the
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form hdz by

<a—}- hdz> <a-}‘; oh a’:<'>

where ¢ € %, ¢=1 on a (small) neighborhood of V. When # is actually holomorphic in a
neighborhood of V then

_ ! — 4z m — 2
2.4) <a-— hd> = f / B J “F
( £ Qy fi=e (Z)f.(z)---f,,(z) 0 2y fi=e  F

where {|f|=¢} is the smooth cycle {z€C":|f(z)|=¢, 1<j<n)} defined (by Sard’s theo-
rem) for 0<e outside a negligible set, and it is taken to be positively oriented (that is

alarg fi)A...Ad(arg f,)=0 on |fl=¢) (cf. [17], [37)). Furthermore, once 0<e<<1, the
limit coincides with the integral over {|f|=¢}.

It follows from the fact that the current 3(1/f) has support in V that for vEY

2.5) <6‘~—,g0dz> (22 Mam) (@),

FevV a

where the interior sum takes place over multi-indices «, |a|<N, c..: €C. In case the
point € V i1s a simple zero then Ca,;=0 tor a#0 and ¢, «=1/J(C), J(C)=the determinant

Jacobian o(f, ... f)/3(z, ... z,) at z={. More generally, we have the identity ([14], §1.9)
for g € -

ceV eV

where m; is the multiplicity of ¢ as a common zero of f,, ....f,. Here we use the fact
that a current can be multiplied by a smooth function g by the rule {(g3(1/f),p):=
(3(1/f),gp). Note this multiplication will also make sense if g is of class CV in a
neighborhood of V, N the integer from (2.5). We remark that in (2.5) the only
derivatives that appear are with respect to the variable ¢ and not ¢ (cf. [14], [7]).

The identity (2.6) allows us to write Cauchy’s formula in terms of residues.
Namely, let qﬁEC(]}(C") and consider the functions jj(cf;_‘)zhir;f., 7=1,....n, for zE(C"
fixed. Then we have

- ] ,.:.f‘ o
<67 — , (&) a’g) = @(z).

[n fact this is a particular case of (2.6), where V={z}, m.=1, J=1.
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Another property that will play a role is that

2.8) fE+=0, j=1,...n

f

Therefore, 3(1/f) vanishes on the Cy-submodule of 9, ,, generated by fi, ....f,.
The three properties (2.5) (conveniently modified), (2.6), and (2.8) hold also for
entire functions f;.

LemMMmA 2.1. Let K be a subfield of C, fi, ....f, € K(z] defining a discrete variety V,
g€ K|z]. Then

D mg(DEK.

CEV

Proof. By (2.6) we have

2 m; g(C) = <Jc§ —Jl;- gdz>_

CEV

By elimmnation theory [36] there are polynomials qy,...,q,€K[z], ¢; a polynomial
depending only on the jth vanable such that

(2.9) G= D, h . h EKIZ]
j=1

Let us denote A=det(h, ;) ;. The transformation law for the residue states that for any
function g smooth 1n C” one has:

<c9_*~*-l-:,gdz> = <A=§~l—,gdz>,
/ q

(cf. {7, Proposition 2.5]). In particular

Z m; g(C) = <E§*(l;- AJg dz>.

HI (X

To finish the proof, it is enough to show that for any monomial "=z,'...2,", we have
(3(1/q).z"dz) EK. To compute this value we can apply (2.4):

<€§J*, 2° dz> = |im 1_ f z° dz
q £—{) (2.7'[1)” gl=¢ q,---4,
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where resg h denotes the usual one variable residue of the function 4 at the point 3. The
easiest way to compute the inner sums is to recall that, for rational functions of one
variable, the sum of the residues over all the poles plus the point at « is zero. Therefore

D, restq)=—restjgh=a_,,
g, (f=0 F *

where t/g{)=a,f'+...+ay+a_,/t+a_,/f+... in a neighborhood of . The coefficients

a, are rational linear combinations of the coefficients of ¢;. Hence each sumis in K. O

COROLLARY 2.2. Let K be a number field of degree e, f,, ....f,, g as in Lemma 2.1.
Let g{,=(c‘{',...,§g)e V, then g({y) is an algebraic number of degree ﬂe(ECE‘,mC). If
max;deg f,=D then the degree of g({y)<eD".

Proof. Let M=%, m,=total number of finite zeros of fi,...,f,, and denote
Ci» ---» Car these zeros, each repeated according to its multiplicity. Then the polynomial
[LZ,(x—g(£)) has coefficients in K. In fact, the symmetric functions of g(;) can be
written as rational combinations of the elementary symmetric functions (Newton sums)
[36], i.e., as rational combinations of

M
D 8l)? = mleOYEK
j=1

(EV

by Lemma 2.1. The last statement follows from Bezout’s theorem.

Lemma 2.3. Let K, f1,....f, as in Lemma 2.1. Let r € K(2) without any poles on V,
then (Q(I/T),rdz) cEK.

Proof. Let q,,...,q, be the same as in the proof of Lemma 2.1. Let r=g/p, g,p
coprime polynomials in K[z], V(p, fi, ..., f,)=@. The difficulty in carrying over the proof
as in Lemma 2.1 consists in that p could vanish on some points of V(q, ...,g,)\V. (In
the application of the transformation law for the residue one had to assume 4 was
globally smooth, it would be enough to know it is smooth in a neighborhood of
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Vi{q1,...,q,) but if r has a pole there we cannot apply that formula.) We first show we
can in fact assume this is not the case.

Let N be the integer defined by (2.5) and consider the polynomial

(2.10) P=Ap+i fM+. .+ ¥

By Lemma 1 from ([28], section 4), we can choose Ay, ...,A, €Z such that P does not

vanish on Vg, ..., q,). In particular A,%0. Therefore we can set A,=1 and Aty ..., 2, €EQ.
From (2.5) it follows now that

;1 g s 1 g
8—, a'z>=<8--—-,—-—dz>
< fp [P
since g/p and g/P coincide and have the same derivatives up to order N at each point
of V.

Since we are now assuming that r has no poles on V(q,,...,q,) we have, as in

Lemma 2.1,
<§-—-]-—, rdz> = <c§-—1—, Ardz>.
/ q

This time Ar is a rational function, hence we cannot reduce ourselves to the case of

monomials as in Lemma 2.1. To overcome this difficulty let us factorize each g; In K[¢]
into 1rreducible factors:

(2.10) G=q;" .4, q,EKI1, s=s(j), n,€Z".

From (2.4) we can take 0<e<<1 so that A(z)r(z) is holomorphic in {lgi<e, I<j<n}=
{lgl<e} and

<c§—-!—~,Ardz>= l f A(Z)r(2) dz |
q (2.7'”')” Iq|=¢ ql(z])“- q"(zn)

T'his integral can be computed one variable at a time. Fixing 7', 2'=(2,, ..., z,), we have

’ 5(1) ' ' .
iy L[ Ma) d?»;:Z( S e h(z,,z)/[ql(z,)/q,.k(z.n)

2 . "
270 Ji, pme 91(2) k=1 \ g, (@=071=0 (912"

Fix k, let v=n,, (=q, ,» A=numerator in the interior sum of (2.11). The zeros of g,
are all simple, let them be ., .... a,. We can factorize Q(r) as follows:

N = (1~ (Q'(a)+...)=(t—a,) R, (1),
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R,(¢?) 1s a polynomial in ¢ with coefficients in K[a;]. For a different root a; we will have
Q(t)=(t—a)) K;(t), where the coefficients of R; are obtained by replacing a; to Qa;
everywhere in the computation of R;. The function A is holomorphic at t=q,, S
since the different irreducible factors of g, have no common zeros. Therefore A(1)/Q(7)
has a pole of order exactly v at r=q,.

-
(2.12) es—AW___1 & A0D

=a () =D dr™" (R(1) |i=a,

This expression is now a rational expression in «, (and z') with coefficients in X, such
that the residue at t=aq; is obtained simply by replacing «, by a, everywhere. Therefore

Z Ires Al)

q@=0 @ (g, ()™

is a rational function in K(z'). Furthermore, we note that the portion of the denominator
of A(t) which depends on z' is p(z,7'). The expression (2.12) will have a common
denominator which is p(a,, z')". Hence the inner sum of (2.11) has no poles for z’ a zero
of the product g,(z;) ... g,(z,). The same thing holds therefore for the expression (2.11).
Now we can iterate the procedure and conclude that (3(1/q), Ardz) € K. Hence
(3(1/f),rdz) €K. ]

Remark 2.4. Later on we will need a quantitative version of the fact that
(8(1/f), rdz) € K. For this purpose we will use the local character of the residue current
3(1/f). That is by using a partition of unity {¢;} we have

(QUYf), rdz)=E,ey (3U/f), g, rdz),

@-=1 near ¢. We can further assume that ¢ is the only zero of V(q,,...,q,) lying in the
support of ¢, and that r is holomorphic on supp ¢:. Therefore for each term of this sum
we can apply the transformation law for residues without changing r at all, i.e.,

(2.13) <3"31;, rdz> = Z <c§—1-~ Arg, dz> = <§—~L, &rdz> ,
- ? v

rey V4 {

where we have introduced the last notation to indicate it is only the points of V that
count. Note there are many less points in V than in V(g,,...,qg,). In the first case one
has at most D" points, while in the second one might have as many as D" points.

[n Section 3 we will need the following result from [7]:
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THEOREM 2.5 (cf. [7, Proposition 2.4]). Let f,, ..., f, be n polvnomials in C” defining
a discrete variety V, @ a test function, m an n-tuple of non-negative integers. Then the
function defined for Re A sufficiently large by

(2 14 ) (__”n{-n*—l}fz Af F!2(n+|m|},i_ f“ é’f )
14) R ] LR
(27tr)" *f“z(ﬂﬂmﬂ ¢ aq

has an analytic continuation to the whole plane as a meromorphic fuction. Moreover.

this continuation is holomorphic at 2=0 and its value at this point is given by

(2.15) m. <é L odt
| (n+|m|)! f’””’(p ’
where m!=m'...m,!, m+i=(m+1,....m,+1).

§ 3. Division formulas

The division formula we obtain here generalizes our previous representation formulas
tor solutions of the algebraic Bezout equation. We had originally considered them from
the point of view of deconvolution (cf. [3], [5], [6]). The same techniques can be applied
to entire functions, but to simplify we will only consider the algebraic case [7].

Throughout this section we will assume we have M polynomials p,, ..., py € C[z]
such that

(3.1) M=n,

and that the first n satisfy the following property:

3% >0, c>0 and d>0 such that when ||¢]| = » we have
" 12
E ’PJ(C)‘E) = C”C”d-
j=1

Since the first n polynomials play a special tole, it is convenient to adopt the

notation f=(fi,....f,)=(pi,...,p,), hence (3.2) can be written as | AD)]|I=clie)|* and it
implies that the variety V=V(f) is discrete. We also let

(3.2)

(3.3) max (deg f) = D.

I =j=n

For every polynomial p; (I1<j<M) we can find polynomials g;, of 2n variables,
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with degree <degp; in each variable, such that for every z, { €C" we have

(3.4) p(D)=p,(D) =D, £, 2.0 (z,~ L.
k=1

For instance, we can take

PiCis s G s G oo 2)=PAG s - B Ty -0 2,)

gj,k(Zr C) =

If p.€ Z]z], degp,=D;, then g €2z, (], deg g; «SD; and h(g; J<h(p)+2n log(D;+1).

THEOREM 3.1. Assume (3.1) and (3.2) hold. Let P be a polynomial in I(p,, ...,pa)
and let u,, ..., uy be any functions holomorphic in a neighborhood Q of V such that

(3.5) P=u,p,+...+uyp, in Q.
Then for g EN satisfying
(3.6) dqg =deg P+(n—1)(2D—d)+1,

and, for any z€C" we have

51!1(21 ) g,,,l(z, ) gj_,(z, )

M .

- ] :

P(7) = E , E . . dc ) f™
(Z) Im[ﬂq_” affﬂ*}'l j=l HJ gl‘n(z’ .) o g”' n(Z, .) gj‘n(zl _) C f (z)

LA o £-F() p)

(3.7)

where mEN", m+1=(m;+1,my+1,...,m +1), and the dot in the determinant repre-

sents the variable C on which the residue current é(l/f ™1y acts.

Remark 3.2. (1) The only term in the sum (3.7) that a priori might not belong to
I(py, .., pm) 18 that one corresponding to m=(0, ..., 0). In that case the development of
the determinants along the last row shows that either one has a multiple of p;(z) for
some j, Ij<M, or a multiple of f;({) for some j, I<<j<n. This last type of term vanishes
since 3(1/f) annihilates the ideal generated by the f;. Therefore (3.7) has the form

P(2)=A (D) p(D+...+A (2)p,[2).

(11) In the case M=n+1 and V(p, ..., py)=3 this theorem improves upon Theorem
3 [6] and its applications in [3].
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(1) Note that the conditions (3.5) and PEK(p,, ..., py) are equivalent by Cartan’s
Theorem B [20].

Example 3.3. Let M=n+1, Vb, ....p,.1)=9, p;€Z[z]. For P=1 we can take
uy=...=u,=0, u, =1/p,.,. In that case Lemma 2.3 implies that (3.7) gives a Bezout
formula in Q[z], that is

l=p{DA(D+...+p,, (DA, ,(2)

with A;€ Q[z]. Note that the result remains true if Q is replaced by a number field K and
Z by the field of integers Oy of K.

Proof of Theorem 3.1. The germ of the idea of this proof goes back to our papers
on deconvolution [5], [6] except that here we have to deal inevitably with multiple
zeros in V. In the recent past we have found that the best way to treat this question 1s
through the principle of analytic continuation of the distributions | £1°™ as functions of A
[7]. We also use the recent work of Andersson—Passare on Integral representation
formulas [2].

Let us fix once and for all #€ Z(Q), ¥=1 in a neighborhood of V.

Let o>1 so that Q,={C€C"||{||<o}2suppPU{z}. Let x € X(€2,) such that y=1 in
a neighborhood of supp U {z}, 0<y<I.

Consider the differential form Qy=0(z, ) given by

| L
(3.8) Qy:=(1—x(£) -

If w 1s an open set such that z€w and y=1 on w then Oo1s C” m wxC". Let

(3.9) Co(t) = (1+0)",

with N any integer >n.
For A€C, Rei>1+1/n, let 0,=0,(z,, A) be the differential form (with the nota-

tion of (2.1)):
L0 G,
1FONf

b/

(3.10) 0, :=|FOI

where the differential forms G,=G;(z, ) are given by

(3.11) GJ;::Zgj_kdgk'
k=1

6918285 Acta Mathematica 166 Imprimé le 15 février 1991



82 C. A. BERENSTEIN AND A. YGER

The coefficients of G; are therefore polynomials in z and . Q, is of class C! and a

polynomial in z. If we let ReA>>1, we can make Q, of class C' for any [ given. With g as
in (3.6) let

(3.12) F.()=(1+0).

Finally, define a third differential form 0,=0,(z, £) by

M

(3.13) Q,:= () D, 4, (8)G,
j=1

and let

(3.14) [L,(t):=1¢.

These three differential forms are of type (1,0) in , hence they can be associated
to C"-valued functions, simply take the coefficient of d¢; as its jth component. Using

their bilinear products with the vector valued function z—¢ we can construct three
auxthary functions ®;. We have

(3.15) Dy = {Qyz, §), L) = (I‘\;X;ﬁ? S E-2)(z~8) =701,
P

IFOO? <&
| f;*(C)<st ‘"§>
LFE }S‘:’ Z

FOP* <&, ( ” )
(3.16) = S,f*(C) 2. .z, C)(z,—C)
O =\ & h T

(I)] .= <QI(Z: Cv /1)& Z'ﬂg) -

21 n
= fjfg“z Zﬁ(i)(f}(z)mf}@)),

by (3.3).
The last one is given by

M
B.17)  @,:= (02, ). 2=L)+PE) = 3(©) D u,(0) (p,(2)—p,(O)+P(E).
J=1

Note that in a neighborhood of V we have (IDEijgl u, () p;(2).
As a function of { consider the product

(3.18) Cr>@ =T (®) (D)D),
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for z fixed and 4 fixed, ReA>>1, this is a C™*' function of compact support since
[o(P)=x(£)". Furthermore

(3.19) @(z2) = P(2).

We need one more piece of notation: for 0</<2, and « a non-negative integer
denote

d”
dt”

(3.20) [ =Tz, ) :=—T (1)

r=¢j(:‘:, C)

(Recall that ®, depends also on 1.)
The following lemma will allow us to compute P(z) with the help of Cauchy’s

formula (2.7) applied to ¢ (cf. [2]). Its proof will be postponed to the end of the proof of
Theorem 3.1.

LEMMA 3.2. With the above notation we have, for Re 1>>1.

| _ e 0y .
P(z) = el > — 8: 0z DM AG, 0,2, L. )

(27i)” qrmen Q!
(3.21) 1 e
0 l 5 a = a -
" (9 Qolz, €)) *A (8, O1(z, £, 1)) "7 3, 0z, {).
(27i)" €2 au+ﬂlz=n—l (10! 3 ' : Qﬂ ¢ Ql C Q2 G

The next step will be to study the analytic continuation of this formula as a
function of A. For that purpose, we compute explicitly (3,0,)% I<a<n, always for
ReA>>1. To simplify we simply write 3 for 3;. Let us write first

v £ G
A = J*-lsz j, Q}z'FluA*
1£1]
Then
(3.22) Q)" = [FI*OA) + Ak|F*™-VEFF A A A(GA)"

A 1s a C” form off the variety V. The form (30)" can be written in a shightly different
way by denoting
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Then
(3Q,)" = (2 ) ~1)"P"2 A Sy A A G,
=] j=1 j=1
We have
% A1) 21
llfH | £1) il
Hence
|F|2;1n IF‘ZHnw 1) n
/\aw- of + 4 F fASanFA/\af
T R TP ALt
i if A TRVEA
AP 5 )

Note that 3F=X"_(F/f,) 3f, and 3||f]I*=L £, 3f,. Sincedf, Adf,=0 we have

| Fiun I Flzan ' Flz.&.n

A 3y, =-———23f + ni of — |\ fII* of
AT e e
(3.23) FP
= nA —of.
LA
_ - ‘F"’An M
(3.24) (an)n:(___l)[ﬂ l)nfz “fIFH afﬁ A G

Following the principle we introduced in [5] we have to transform, using Stokes’
theorem, some terms in (3.21) to make them more singular. In this case we apply this
idea to the second term of (3.21), the term with a,=0, a;=n—1. Then

S TG Q) = T TV 60" A5,
FTO T D5y AGO) ™ A Q,+TO T 50, A (50, A,

Recall that I}’ has compact support in Q, and that 3y AQ,=0, since y=1 on supp ¥.
Therefore

J L T30, 'A30, = — [ [T 3d, A0 AQ,.
Q, Q

¢
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To simplity the computation of this last integral, let us introduce polynomials Aj
(Isjsn, IsisM), and A, by

(3.25) GiA...AGA...AG,AG = A, ,dE,
and
(3.26) G\A...AG, = A,dE.

Note that A, =(-1)"7 A,
Now we can compute the integrand above as follows:

mn n rn—1
—-3®,A(00)"'AQ, = — (Z (f; (D=1 (D) é’.f{;) A (2 A, A Gj) A,
j=1 :

A\
=1

k::u:j

= (— 1) 2=y, 1)!( -Al a"wj) AZ (—1(f;,(2)=£&)) ( Gk) AQ,
j= =1

2An
— (_ 1)(!1-*2}(!1—1)1'2”!& !P‘, — 5}_'
LA

n M
A (}j D (=DAL@—FO)A, (2, OHE) u,(z;)) d.

j=1 =

Recall that we have already computed in (3.24) the term with ao=01n the first integral of

(3.21). Let us write now (3.21) as a sum of the contributions from a3=0 1n both integrals
and the other terms put together:

— 1){r—Dni2 2in
P = =1 ——nl [ Iy Iy ul —of
(27i) Q (al
(3.27) |

A [ D,y Ag+(— 1) 9(2 (—D(fD~f) Aj,!u;)] dc+R(4, 2).
N

Let us call T(z, {) the term between brackets in (3.27). Let us show that in the set
where J=1 this term is exactly the determinant that appears 1n the final formuta (3.7).
First we observe that since on supp ¢ we have P(L)=LY, 1, (£) p,(8) then

M

(I)E(Er C) — Z “j(C)Pj(Z)*

J=1
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Now we can expand the determinants in (3.7) by the last row and obtain 7(z, {). This
function is therefore holomorphic on  in a neighborhood of V.

To evaluate (3.27), we will use the fact that both terms are holomorphic functions
of A for ReA>>1 and that they have analytic continuations to the whole plane as
meromorphic functions. We will further see that they are both holomorphic at 1=0,
hence P(z) will appear as

hm R(A, z)+1im (of the first term 1n (3.27)).
A -0 y oy

We proceed now to verify these statements for the first term of (3.27). We have

qg-—n

n) _ g=n 24
= (@1 n),(u ~|F] )+2w(c)f(z>)

— q' < (q n)(l FZJ.)q n—k \F‘luk fm(C)fm( )
(Q“”)!; K F Vil m%k Z

q! Z(q ") I'F - (qik(" " ) —-l)lelz’”) (Z —"l-f"*(z;)f'"(o)

T G- & A\ i mi=k

In order to apply Theorem 2.5, we fix a k£, a multi-index m, {m|=k, and an index j in
the expansion of I'\”. The corresponding term in (3.27) is then, up to a factor f"(z),

(3.28) ——nhc, j — FrAFA (T dE,
@uiy " Jg (AP

¢

where

gl Kk (q-—n) (q—-n—-k)
Ck.m,j ( I)J(q_n)' ! k j .

Replacing 4 by

( n+|m| )l
j+k+n /)

we are in the situation of (2.14) up to the new constant

(Note y=1 in a neighborhood of V, hence 4™ T is holomorphic there.) Therefore, by
Theorem 2.5, the analytic continuation exists, i1t 1s holomorphic at A=0 and its value at
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this point is

' m! - 1 N
(3.29) o G ) <a o TdC>.

Note that the value in (3.29) is independent of the choice of y. We need to evaluate the
constant obtained by adding over all values of J.

(3.30) k

This sum can be computed in terms of the beta function. Namely,

g—n—K o ]
2 (“—“l)j(q n k) +L+_ =f (1—u)3~ "=y th=1 g,
ntk+j ),

=0 J

(n+k—1)!(g—n—k)!

= B(n+k,qg—n—k+1) = I
q'

We find

!
3.31 ia =1.
.35 (nt|mp)!

T'herefore, the value at 1=0 of the first term in (3.27) is exactly the right hand side of
(3.7). We stress once more that the value we obtained is independent of the choice of Y.

To end the proof we need to study the analytic continuation of R(4, z) and evaluate
it at A=0. We assume first that Re A>1+1/n. In R(4, z) we have all terms (3.21) where
ay=>0. Introducing the auxiliary differential forms

S=> (§-z)dt, S=> (t-z)dE,
j=1 /=1

we have

E;—-Idgj’\d‘gj SAS )

(3.32) 30, = 1-
‘ B x)( -2 fg-2f

This shows that 3Q, is identically zero in a neighborhood of supp U {z} by the
conditions imposed on y. Since there is a factor ¢ in O, it follows that all the terms with
ap>0 1n the second integral of (3.21) are identically zero.
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Consider now the term with ay=n in the first integral. Let us rewrite

(3.33) O, +1=1-|F2+|F* > 6.1 (z) = 1-|F*+|F*B,
j=1

where 8;=05)=£(5)/|| F(5)||*. On the support of 3Q, we have that B is C*, since y=1 on
a neighborhood of the singular points of || f({)||”, namely V. Since F is a polynomial, it
follows (for instance by the Weierstrass’ Preparation Theorem or Hironaka’s Resolu-
tion of Singularities) that on the ball Q, we have that |F|™ is integrable for some £>0.
Whence, the term with ay=n, which is given by

. { /N _
3.34 ( )[ O, vV (1+D )0
( ) 2y \ n o X ( ]) ( Q{})

for ReA>1+1/n, and depends on A only in the factor (1+®,)?, is holomorphic for
ReA>—e¢. Its value at A=0 is obtained simply by taking A=0 in the expression of ®,.
That 1s, the value at A=0 of (3.34) 1s

(335) | (N)f ¢2XN—an(éQ0)n_
2,

(2mi)" \n

We now have lett the case 0<ay<n, a,=n—ay, to consider. By (3.22) we have
(8Q,)"" as the sum of two terms. We study first the one that does not contain the factor
A. As we have just shown, A is smooth on the support of 3Q, and the whole integral is
holomorphic for A=0. Its value, obtained by simply setting A=0, is the following

(3.36) : (N) (q ) j ®,y" “BTE0,) A BA)
Q2

(271)" \%o/ \ &)

¢

The other term can be written as a linear combination of integrals of the form

A f IFI*"*~PFAF AC,
Qﬂ

r an integer =a,;, C a smooth form of compact support. By Theorem 1.3 [7], this
function has an analytic continuation as a meromorphic function of 4, whose value at
A=01s, up to multiplicative constants

<a‘ —]—, F(‘>
F
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which is the residue on the hypersurface F=0. Since F divides the test form FC, this

residue 1s zero.
At this point we can summarize what we have just done by saying that A—R(4, z)

has an analytic continuation which is holomorphic at A=0, and

(337) RU:R(;‘-, Z)l,{mg 2( )( ) Zx _JBQ' (ﬂ*j)(aQo)jA(aA)n-uj

(2.7'”)” Q j=1

By now we are essentially in the same situation as in the new Andersson—Passare proof
of the Andersson-Berndtsson integral representation formula (cf. formula (6), proof of
Theorem 2, [2]). They show we can let y tend to the characteristic function of €2, and

use the fact that for a smooth form ¢, and r integral =1, one has

[ éx"ngo——-a» —[ @
Q, 3Q,

Since B=(®,+1)|,_, and A=Q\,.,. the formula (3.37) 1s just the boundary term in the
Andersson-Berndtsson formula for the single pair (A, %) (cf. [2], [7)):

t1-n SA(BS) A(QAY™'
(3.33) Ry=—— Z @, (n - )qu S
(23“) aQ, j=0 J HC --”

where 3=9:.
The last step of the proof is to verify that the estimates on A, B that we can obtain

from the hypotheses are enough to let p— > n (3.38).
Since || AON=c||E||¥ if ||E||=» we have that for g>»x the following two estimates

hold:
B|<const. g
largest coefficient of (34)" ' ~| < const.||g|[*P ¢ V177,

Furthermore ®,=P on 99Q,. If follows that the worst term in the sum corresponds to

Jj=0. From this we conclude that, since

deg P+(n—1)(2D—d)+1 <dg

by (3.6), the integral in (3.38) tends to zero when g— .
This concludes the proof of Theorem 3.1, except for the proot of Lemma 3.2.
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Proof of Lemma 3.2. The defining properties (3.18) and (3.19) show that @isa C"*!
function of compact support in Q, which for a fixed z satisfies @(2)=P(z). Cauchy’s
formula (2.7) states that

(3.39) <<§ : | , @(C) a’C> = @(z) = P(2).

4

The proof of this lemma consists in evaluating the residue in the left hand side of (3.39)
using the particular form of ¢. It simplifies the computation of this residue to consider
the shghtly more general form of ¢:

(3.40) (&) =T(C, (Q(z,0),z—L)),

where I’ is an entire function of n+v variables (¢, 1), O=(Q,, ..., 0,) a vector of (1, 0)-

differential forms in &, of class C**!, (Q,2-8):=({0),z=¢),....,{Q,, z—¢t)). For a
multi-index a of ¥ components, we write, as above.

Wy

°r

(3.41) M:.=D]...DS'T:=
" =0z ). 2-¢)

Let ¢, =(—D""P")2xi)". From (2.3) we see that

20— 1)

o (s eod)=tmee | ([T6-2|  sdird
=1

—Z u—0

We compute the analytic continuation of this integral which is originally defined for
Re u>0. |

One can easily verify that:

n—|
d U . 2
((C]%zl) €1~z

=u" 'H (E~z)| (O dCndi
j=1

n 2(p—-1)

H (;—2;) @(C) dézh...ﬁdgn/\dg)

Au—1)

n— | &
Jr(----l)"-'é“__Z C—z ([ [€~2)|  dEn...ndE Adpndt.
] l

P
F5 L

Here d,9 are only computed with respect to ¢. Since the first term is the exact
differential of a form of compact support, we have by Stokes’ Theorem:
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2{u~1)

[ w2 P(5) dCAdE

{ /=1

’E(ﬂ*l}

(3.43) - "
ﬁ(_l)n"'gj—-" & —z,[* Q(Cj—zj) di,A...AdC AOpAdL.

nd

From (3.40) we have
éf;ﬂ = z Dk F(Z (Zj“;f) éQk,j (Zr C))
k=1 j=1

where we recall Q,=L7_, O, .dC.. Let us rewnte dg as follows
(3.44) S¢=—(¢~z) Y, D,T30, ,+R,.
k=1

The analytic continuation of the two separate terms obtained by replacing (3.44) into
(3.43) exists by Theorem 1.3 [7]. The second one is a sum of integrals of the form:

(1sk<vy, 2<i<n).

ICI__ZI}Z,“ n 2u~1) ) ) )
unmlkar — (z.—C) H(ﬁjwzj)q’ dC,n...AdC, AOQ, . AdC.
] I j=2
Since the two distributions
S LoD o

depend on different variables, their analytic continuations as distribution-valued
meromorphic functions can be multiplied (this is just their tensor product). The
first one is holomorphic for u=0, the second one leads to the residue current
SN /E~2))A ... AB(1J(E,—2,)). But the remaining differential form is in the ideal gener-
ated by the functions defining this current. Therefore the value of this product at u=01s
null.

We can therefore forget R, and consider only

 2u—1)

mphr - Wl-enlpr

di, ... AdE A (E D, T30, ,) AdE.
=1

(3.45) (=1l [ g-z | | €2
j=2

In ([7], Proof of Theorem 1.3), we have shown, in a much more general situation,
not only that the analytic continuation of (3.45) 1s holomorphic at ¢=0, but its value 1s
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exactly the same as the one obtained from

2u—1)

(3.46) (- 1)”"‘;:”“'] H (£i—z)) dC,A ... AdE A (Z D,T3Q, ,) AdE.
j=2 k=1

(This also follows from the above remark on the product of the distributions of separate

variables.) It is clear now what the general procedure is, the only point to verify is that
the factor (z,—C,) does not reappear when we apply Stokes’ theorem. For this, it is
enough to compute Z;_, (8D, T A3Q, ,).

ZaDkFSQH ZEDD’: (Z(Z C)SQH)AGQH

=] j=I1

The term (z,—C,;) is the coefficient of L DD I‘SQJ ,A3Q, , which is 0 by the
anticommutativity of the wedge product.

After iterating this procedure a total of »n times, and some algebra, one obtains,
(a=(a,,a,,...,a), a'=a,!...a')

l {I oy 2
, d r‘“’ 30" A ... A(BO Y.
< g 7 @(C) C (23.[{)!1 f |a|___n ( Ql A( Q}.r)

Note that 3Q; are (1, 1) forms which absorb the d¢ term from (3.44). For a detailed
version of this algebraic computation see ([2]. Proof of Theorem 1}. The statement of

the lemma follows from the explicit form of I in this case, we just use that D;I'=0.

§4. On the Noether’s Normalization theorem

In this section we reconsider the classical Noether’'s Normalization theorem [38].
Before we do that we need to recall some well known facts about the heights of
polynomials in Z[z].

For a polynomial P(Z):Z|a|..-=:..d c, 2" €Z[z], we let

(4.1) H(p)=max|c |, h(p)=log H(p).

h(p) is called the (logarithmic) height of p. Some easy properties of the height tollows.
Let C) (’”"‘" ')—number of monomials in n variables of degree exactly d and

C,=(",")=dimension of the vector space of polynomials in n variables of degree at
most d. We have C,<(1+d)""' and C <(1+d)".
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Let p,g€Z|z], degp<d, then

(4.2) H(pqg)<C_,H(p) H(g).

If one changes coordinates by z=Aw, A an invertible matrix with integral coeffi-
cients, and defines g € Z[w) by g(w)=p(Aw), then deg p=degqg and

(4.3) H(q) < C{{n||A|D°H(p),
where ||A]|=max |a, |, A=(a, ).

ProrositioN 4.1. Let p,, ..., pu€Llz,, ..., z,] defining a variety V in C". Assume
dim V=k, 0sk=<n-—1 (for the sake of simplicity, we take here k=0 to mean that V is
either empty or discrete). Let d=max, ., degp; and h=max, ., h(p)). One can find
an invertible nXn matrix A=(a; ;) with integral coefficents such that

(i) |A[|<<oed> =12,

(n) After the change of coordinates z=Aw, q;(w)=p;(Aw), let 3 be the ideal
generated by the q; in Z|w]. There are n—k polynomials Q€3 such that

O(w)= q,_,nuf,f‘+z,u'f*_'1 g, (W,y,...,w, )+...
(4.4) 0,(w) = q, Wy +wy ' gy (ws, .., ) ...
Qn W) =q,_, 4 wi’_’_",f-i—wj’f;ﬂ Qe (W s oo W)+
with
(4.5) d =degQ,<d, d =deg(Q)<xd"' (i=2)
and
(4.6) Q)< xd*'(h+dlogd).

where x=x(n) is an effective constant that depends only on n.

This proposition 1s the usual Noether’s Normalization theorem with good esti-
mates on the degrees and heights of the polynomials Q; and on ||A|] (better than the ones
obtained using Elimination theory).

Remarks. (1) This proposition still holds when the polynomials p;€ C{z], except
that in this case we obtain only (i) and the estimates for the degrees d..
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(2) From now on we will keep the notation x for any eftective constant depending
only on the number of variables n, even if the value of the constant changes from

occurreénce to occurrence. Whenever it is convenient, we will also assume x to be a
positive integer.

Before starting the proof we must recall what is a ring with a size (R,t) [32). Risa
commutative Noetherian ring with identity, Pol(R) is the algebra of polynomials in

infinitely many variables with coefficients in R. R* the set of invertible elements of R.
Then the (logarithmic) size t is a map

t: Pol(R)— {—=} UR,

such that:

(1) t(0)=—2, t(u)=0 if uENR*.

(2) t(fg)=t(f)+1t(g) for every f, g € Pol({R).

(3) There are constants c¢,=1, ¢,=0 so that if we denote t(f):=t( 1)+
c;log(m+1)deg(f), where m is the number of variables appearing 1n f, then

Hfi+. ) < cymax{t(f)), ..., t(f)} +c, log k.
(4) There is a constant c3=1 such that if f=% f;x”, then
max f(fﬁ)ﬁc,g t( f).

The simplest example of such a ring is R=C[z,, .... Zm] With t(f)=d °f=total degree
of f as a polynomial in the z, x variables. In this case =1, ¢;=0, and ¢;=1.

LEMMA 4.2. [32, Theorem 5). Let (R, t) be a ring with a size, N being a regular
ring, its quotient field and f the algebraic closure of . Let Py,....P; in Rx,, ..., x,]
have degree less than 0,021, and size t(P)<H. If the polynomials Py, ..., P, have no
common zeros in £, there is an element bER such that b is in the ideal generated by

Py Poin Rlxy, ..., x,] with size estimated by
t(b) < ¢ ,(m) &(1+ Hu),
where y=min{s, m+1} and c,(m)=3c™" ' 8mc+ 1", where c=max(c,, ¢, Cy).
For the proof of Proposition 4.1 we use the following lemma.

LLEMMA 4.3. Given a family of polynomials F,...FeZ[T, .. . T][X, ... X]=
LITX ] without common zeros in the algebraic closure of the quotient field of Z[T].
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Assume further that for every j, 1<j<r, they satisfy

(1) if d°(F))=degree of F; as a polynomial in all the variables T, X then d°(F)<7D,

() if h{F))=(logarithmic) height of F; as a polynomial in the variables T, X, then
MED<D.

There exists a polynomial b€ Z[T] in the ideal generated by the F; in Z[T[{X] such
that

(4.7) deg b = deg, b < 4c(v) u D
where c(v)=(3""*(24v+1))"**, u=min{r,v+1}, and

(4.8) h(h) < 10c(v) uD* (O +(v+Dlog(D+1)).

Proof. We fix a constant C>0, to be chosen later, and define a function
t: POZ[T])—{—>} UR, by t(0)=— and, if PEPI(Z[T)\ {0},

i I
(4.9) t(p)=Cdeg, P+ f [ log|P(e™™, ..., ™™ ™., e™™) db, ... dE,
0 0

where v denotes the number of variables of P as a polynomial with coefficients in Z[T].
We claim that t is a size for the ring Z[T] with constants c,, c;, ¢; independent of C.
First observe that properties (1) and (2) of the definition above are immediate from

(4.9).
Let us write P=5,P(T) X’=E, 38g 5T “X. Introduce the Mahler measures

l I
M(P) = exp( f J log |P(€'2H91, e‘hg")
0 0

! 1
M(Pﬁ) = exp(f J log |Pﬁ(8f2x&', EIMQ"')
0 0

Mabhler’s inequality [26] as rewritten by Philippon [31, Lemma 1.13] states that, if
do=d°P, d;=deg; P, d,=deg, P,

do, ... dg,,,),

de, ... df?!),

d,' d,! |
M(P,) < M(P) < M(P
R T TR T AT
and
- d,! M(P.) < (do) d,! dl!M P
| a,ﬁl a'(dl_I(II)' 5)"‘*- dz ﬁt o ( :



96 C. A. BERENSTEIN AND A. YGER

Hence

(4.10) D, lag ol < 2%+ )% 1+ 1)" Mp)
a,p
It 1s clear that

(4.11) MP)< D a, 4
a. f3

It follows also from [26] that MP)=1, M(P)=1. (This inequality depends on the
fact that the polynomial has integral coefficients.)

We can now proceed to verify properties (3) and (4) of the definition of size: et
R,,...,R, €Pol(Z[T]), write R=L, ﬁagg T°X?. (The number of X variables might
change from polynomial to polynomial.) Then, by (4.11)

M(RI+...+Rk) < Z Iaf;*gl ﬂkmﬁxzﬁ 'g‘[;is‘

joapB

Suppose, to simplify, that the maximum is achieved for j=1, let v be the number of

variables X of R,. Then we can apply (4.10) (using that d<d,+d,, d,=deg,R,,
d,=deg, R))

e

2. layl < Qe+ DY: 2+ 1) MR).
a, f3

Hence

HR,+...+R) < (C+21+2) max(deg,R)+logk+2log(v+1) degy R,+log M(R )

2[+42
C

< (I + ) max(C deg, R)+1(R,)+log ,

where

t(P) = t(P)+2log(v+1) deg, P.

Since M(P)=1, max, (C degTRl,.)ﬂmaxft(Rl.)ﬂ..ma_xﬁ(R,.). Let us assume that C=2/+2.
then

R, +...+R,) <3 max, t(R)+2logk.
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This proves condition (3) with ¢;=3 and ¢,=2, which are independent of C (as long as
C=2[+2). Using (4.10) and (4.11) we obtain

max t(P) < 2t(P),
B

so that ¢;=2 in condition (4). The claim is therefore true.

To continue the proof of LLemma 4.3, we apply Lemma 4.2 with R=Z[T], t as
above, C=max(2[+2,9, (v+1)log(*d+1)), to the given polynomials F,,...,F.€R[X].
Therefore, there 1s an element b € Z[T} with size estimate

t(h) < c(v)( max deg, P})F (1 +p X max t(P})) :
J J

where u=min{v+1,r}, and c(v)=(3"*"%(24v+1))"*. From here we can obtain an estimate
of the degree of b and of the height of its coefficients. Namely,

Cdegb < c(v) DV (1+v(CD+H+(v+ 1) og(D+1))).
Dividing by C we conclude that
deg b < 4c(v) udD**!,
as required. For the estimate of the height of the coefficients of b, we have

h(b) < (log2)deg b+log M(b) < (log2)deg b+1t(b)
< ((log2)+ Q) 4c(v) uD+*!
< 5Cc(v) u D!
< 106(1!);:@"+'(@+(v+1)]0g(@+ ).

This concludes the proof of the lemma. (]

Remark. The point of this lemma is that the estimate of the degree of b given in [32,
Theorem 5] is much worse than (4.7), since it was also dependent on .

Proof of Proposition 4.1. We can assume that none of the polynomials p,, ..., py is
a constant, if it i1s zero we eliminate it from the list, if it is a non-zero constant the result
Is trivial. Let d,=deg p,» and p’ be the leading homogeneous term of p. By [27,
Theorem 1] there is a point a,=(a,,, ...,a,,) €Z" such that a; |<nd,+1 and pi(a,)+0.
Clearly a,+0. We can choose n—1 elements of the canonical basis of C” so that the nXxn
matrix A, with first column a,, completed by them, is invertible. We now make the

7—918285 Acta Mathematica 166. Imprimé le 15 février 1991
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change of variable z=A, £, obtaining polynomials F;(Q)=p;(A,0), j=1,...,M. The first
one will be

F,(C)=pia,) Cf‘+lower degree terms.

It k=n—1, we take A=A,, Q,=F,, and we will be done. We assume therefore that
k<n—1. Consider now the polynomials F; as polynomials in RG], R=Z[E,,....C ).
These polynomials Fy, ..., Fy, have no common zeros on ' f the quotient field of R,
because of the assumption that the dimension k<n—1. Moreover. max, .., deg F;=d, as
betore, and their heights can be bounded using (4.3):

max n(F) < log C;+dlog(n||A,|))+1og max h{p;}

1<jsn EE

(4.12)
< x(n)(dlog d+b),

where x(n) is an effective constant.

We can now apply Lemma 4.3. We find b,E N, i.c., b.€Z[C,,...,C,], in the ideal
generated by F, ..., Fy, in Z[{, ..., {,)J=RI[E, ], such that

d,=deg b, <8c(1)d’

A(b,) < 20c(1) d*(x(n) (dlog d+B)+2 log(d+ 1))
< xd(h+dlog d)

for a new value of the constant x.

By the same [27], Theorem 1] we find a,=0,a, 4,....a, JEL", |a, |<(n—1)d,+1,
b3(a,)*0. Complete the pair e,=(1,0, ...,0), a,, to a basis of C” using the elements of the
canonical basis, so that the matrix A, with these columns is invertible. We change

variables again with z=A,A,7, and we obtain two polynomials in the corresponding
ideals of Z[#n] of the form

G,(n) = g1 o nf'-!—(terms of degree <d,)
G,(n) =G,(n') = gz*on§’+(terms of degree <d,),

with n'=(#,...,n,). Their heights can be estimated by xd*(h+d logd), an estimate that

also holds for all the polynomials pi(AA n). 1t 1s clear now what the inductive
procedure 1s. Proposition 4.1 is therefore correct. .
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Remark 4.4. In case we have L non-trivial finite families of polynomials in »
variables, with corresponding ideals I; and vanieties V;, dim V;=4;, one can proceed as in
Proposition 4.1 simultaneously for all the families. Namely, led d be a common bound
tor the degrees of all these polynomials. Then there is an invertible nxXn matrix A with
integral coefficients satisfying

(4. ]3) ”AII < and}*i-n(n—l)fZ

such that, after the change of coordinates z=Aw, we can find, for every j, polynomials
O/ L in the corresponding ideals .3; of Z[w], of the form given in part (ii) of
Proposition 4.1. The bounds for their degrees still remain (4.5) and the bounds for their
heights are

(4.14) h(Q, ) < xd™'(h+dlog(Ld)).

ProrosiTioN 4.5. Let py,....pn € Zlz1, ..., 2,] be as in Proposition 4.1, d=3. There
is a linear change of coordinates z=Aw, A an invertible matrix with integral coeffi-
cients, [|Al|<xd®*™"" Y2 and strictly positive constants €, K such that if q;(w)=p;(Aw),
then ' ' '

z:={we€C" log max lqj(w)|<log e—d"(log(1+||w|]*))

| <M

cCi={weC" |w|+. .+|lw,_|<K(l+lw, _,  |+...+lw )}

u=min{M, n}. Moreover, we have

(4.15) Kﬁe)(p[xd”_“‘(b-t-dlog d)].

Proof. Let A be the matrix A given by Proposition 4.1, Q; the corresponding
polynomials. Let V'={w€C": q(w)=...=qw)=0}. If w€V' then Q;(w)=0 for
J=1,...,n—k. In particular, the equation

— —_ dn-k d *kﬂ'l
0= Qnmk(w) T qn*-fc*(] wn—k +wnik

‘?r[-—-k_ | (wn.._k+lg ey w”) .
implies that

W, S K+ w, |+ Hwy),

by a well known estimate on the location of the zeros of a polynomial of one variable.
Namely, all the roots s; of an algebraic equation of degree ¢ in a single variable



100 C. A. BERENSTEIN AND A. YGER

ays°+a, s’ '+.. . +a, =0
lie in the disk

(4.16) s,/ < max |d(a/ap)|".

J

Using that degg,_, ,<i we obtain from (4.5), (4.6) and (4.16) that

K < xd" <! explxd” **'(h+dlog d)]
< exp[xd"**'(5+dlog d)].

Iterating this process we find that
Ve{wel":|wl+.. . +w, | <K(+lw,_,, |+...+w ]}

for some K'>0 with same type of estimate (4.15). To conclude the proof we only need
to show that whenever ali the g; are small at a point w, this point is close to a point V".
More precisely, let d(w, V')=min{1, dist(w, V’)}, where dist(w, V') denotes the Euclid-
ean distance from the point w to the variety V’. From the result in [21] one concludes
that there i1s a positive constant A>0 such that

log max |g,(w)| = —A+d log(d(w, V')[(1+||w|]*)

l<j<M
(A 1s not an absolute constant). Choosing £>0 so that A+log e<0, every w € & satisfies

dlw, V'Y< 1.

It 1s now clear that by changing the constant K’ slightly one obtains the inclusion Sc(
we were looking for.

Remark 4.6. As in Remark 4.4, we see that given L finite families of polynomials,
there is a change of coordinates z=Aw and constants £>0, K>0 such that for the jth
family ¢g; ,,..., g, ,, (after change of coordinates)

T e n. B N Ly Z
<, ={weEC"log giijlqur(w)Hloge d " log(1+|jwl||)}

c§={we€C: |w)|+...+lw, ;| < K(I+|w,_; ,\|+...+|w,]}

where y;=min{n, M;}, k=dim V;, V; the zero variety of the jth family p, ,,...,p; - The
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matrix A has the estimates given in Remark 4.4. The constant X has the estimate
4.17) K <explxd"**'(h+dlog(Ld))],
with k'=min{k;, 1<j<L}.

Remark 4.7. From the remark following the statement of Proposition 4.1, we can
now conclude that Proposition 4.5 is still true when we consider polynomials p; with
complex coefficients, with the obvious exception that we do not have the bounds (4.15)
for the constant X.

§ 5. Effective bounds for the size of the coefficients in the Bezout identity

In this section we will study the Bezout equation for polynomials in Z[z]=2Z[z,, ..., z,].
We remind the reader that for us n=2, the case n=1 being well known as a consequence
of the Euclidean division algorithm:.

Using the division formula (3.7) we will prove

THEOREM 5.1. Let py, ..., pnE Z[2] without common zeros in C", degp<D, D=3,
h(pj)<h. There is an integer DEZL", polynomials q, ...,qn€ Z[z] such that

Piqyt... PGy =D,

satisfying the estimates:

degqgq,<n(2n+1)D",
(5.2) h(g) < x(n) D****(h+log N+Dlog D)
(5.3) Log b < x{n) D***3(h+log N+Dlog D),

where x(n) is an effective constant which can be computed explicitly following step by
step the proof below.

Remark. We remind the reader that all constants are effective but, if they are not
explicitly mentioned to be absolute constants, they will be denoted by the same letter x
and they will depend only on the dimension n. We assume moreover that x is an integer
whenever necessary. We keep track of the dependency on N, & and D, the values from
the statement of Theorem 5.1. Once and for all, we assume n=?2 and D=2.

We start by some preparatory considerations that will allow us to construct
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auxiliary polynomials f,, ..., f,,, in the ideal ¥ generated by p,. ..., pwy in Z[z], for which
the hypotheses from Theorem 3.1 will be satisfied.

As a first step, we adapt the proof of Lemma 2 in [28, section 4] to obtain the
following

LemMMA 5.2. There are integers A; ;, 1<j<n, I1<k<N such that the polynomials
N
(5.4) ;= E’lj.kpk*
k=1

have the property that for any non-empty subset J<{1,...,n} the variety
Vi={z€C:g;=0 for jEJ}
is either empty or of pure dimension n—#(J). Moreover, the A can be chosen so that

(5.5) A <D+

Proof. We start by taking g,=p,. Let 7, ..., 7, be the distinct irreducible polynomi-
als in the factonization of p, in C[z], then r<D. Since the original collection Pls s PN
have no common zeros, for any [, I<I<r, not all the p, are divisible by m;. By Lemma 1
(28, Section 4] there are 4, ,€Z, |4, ,|<D such that if

N
£y)= 2 Az,kpk*
k=

then the 1deal (g, g,) is either C[z] or a proper ideal of rank 2 and degree <D’

We will show now how to construct g;, the general case is handled by induction.
There are two cases which have to be dealt with separately. If (21,22 1s C[z] then we
consider the irreducible factors v, ..., v, of g,¢,. The previous argument allows us to
construct g; in this case, so that both (g, g;) and (g, g3) are either C[z] or proper 1deals
of rank 2 and degree <D’. Since s<deg(g, g,)<2D, the size of the coefficients is at most
2D. The most interesting case occurs when (g,, 22)#C[z]. This ideal is unmixed. We
consider all the ideals %, ..., % in the primary decomposition of (g, 2,). We have now
r+s 1deals (v),...,(v)), %, ..., %, and we know that (+s<D*+2D<(D+1)* (cf. [27], p.
85). By the same Lemma 1 in [28, Section 4] we can find 1, € Z, A S S(D+1)* such
that if

N
1= z As Py
k=3
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then (g,, g2, g3) Is either C[z] or a proper ideal of rank 3 and degree <D’, and the ideals
(g1,g3) and (g,, g;) are either C[z] or proper ideals of rank 2 and degree <D’.

To construct g;,, we have to consider the primary ideals corresponding to all
proper 1deals of the form (g,-[, gif) with i,,...,5,€{1,...,j}. The total number of these
primary ideals is at most D’/+jD’'"'+...+jD<(D+1)’. The rest of the argument is the

same as above. ]
Another little lemma from linear algebra will prove useful.

LEMMA 5.3. Given an integer C=1 there are n linear forms L€ Z{w] such that
(a) H(L)<xC""' (Isj<n)
(with »x as usual an effective constant depending only on n) and

(b) there is a strictly positive constant y (depending on n and C) such that for every
k, 1<k=n, for every J<{l. ...,n}, #(J)=k, we have

(5.6) N |L;(w)| = ¥||w)
jEI
whenever
(5.7) w [+ Hw, | S Cllw, |+ Fw,).

Proof. We note that for k=n, the condition (b) is exactly the condition that
L,,...,L, be linearly independent.

Let B be any nxn matrix with integral coefficients such that every minor of B=(g;)
i1s different from zero. From [27, Theorem 1] one can obtain an explicit estimate of ||B||
depending only on n. Let us denote by A the maximum absolute of any minor of B. It is
clear that A=<n!||B||". Let M=nCA+1 and define, for 1<i<n,

(5.8) Li(wy=8 w+8, ,Mw,+...+8, M 'w,.

The estimate (a) being obvious, we need to show (5.6) for an arbitrary k. For k=n,
it is clear since the determinant of the coefficients of the L; is just M™"~Y2x det B+0. To
see the 1dea, consider the case k=1. We have

!

L) zMw |-M"*A(w,|+...+|w,_ )

> (M -M"AC) [w, | = M w | = 2 MY,
" n C

in the cone given by the mequality (5.10) for k=1.
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For the general case we consider the set J= {1,....k} to simplify the notation.
Consider the system of equations

ne-Kk

Brnist M W, gyt By M w, = Li(w)- D B M,
J=1

(3.9)

n—K
—k - . — |
ﬁk,n"k'*']Mn wﬂ-k+l+“'+ﬁk,ﬂMn wH“Lk(Z)HZﬁH”k.IMJ wj.

J=1

Ehminating any of the variables w__, +1> - w, by Cramer’s rule, we obtain for
n—k+1<j<n:

k n—k
(510) AMj"le:Zaflej(w)_}-E }’i,jMi*lwi’
=]

=1

where A denotes a certain (n—k)X(n—k) minor of B and a; j» ¥i,; are certain other minors
of B. In the cone defined by (5.7), the identity (5.10) leads to the inequality

n—k
= |Ale”’lel—-M”“*"‘A(Z |w£[)
=)

=M w|-M"*AC(w,_,, |+ F|w ).

k
Z a; ; L{w)
=1

'

K
AD |L(w)| =
=]

Adding the inequalities for j=n—k+1, ..., n, we obtain

f

k
kAZ L, (w)| &M”“““'( Z Iw,-l) (M—kAC)
i=]

J=n—k+|

aM"“‘“‘( Z Iw,-l)

J=n—k+1

=2 M),
C

This 1s an inequality of the form (5.6), concluding the proof of the lemma. L]

We are finally ready to start the proof.

Proof of Theorem 5.1. The first step is the construction of auxtliary functions
fro o fn €EX satisfying (3.2).

Let g,....,g, be given by Lemma 5.2. It follows immediately from the statement of
that lemma that
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(5.11) degg; <D,
(5.12) h(g;) <x(h+D+logN).

ItJc{l,...,n}, #(J)=k, I<k<n-—I1, then the family ;7 of polynomuals (g);¢s€ither
defines a complete intersection variety of dimension exactly n—k=1, or is such that the
ideal (g,);¢, 1s C[z]. By Remark 4.6 there is a change of coordinates z=Aw and constants
>0, K>0 such that

Oy = {w:{jw]| = 1, log max |g;(Aw)| < log e~ D" log(1 +|jw|[*)}
je€J

1s contained in the cone
Cri={weC™ |w)|+...+w | < K(wy, |+...+|w,)).

The total number of such families is 2"—2, hence from (4.17) we obtain
(5.13) K <expl{xD"(h+log N+Dlog D)].

We apply Lemma 5.3 to obtain » linear forms L€ Z[w), with heights estimated by
K" !

Let p=WD", where W is a positive integer such that W =2, and consider the
function

(5.14) ¢ W)= (L) g(Aw) (1<j<n)

We claim that for some constant >0 (6 depends on X, N, D, ¢, W) and |w]|>>1 we
have

n 1/2
5.15) (Z !¢j<w)\2) > 8] ¥
j=1

(The value of é plays no role whatsoever in the proof of Theorem 5.1 below.) Namely,
by [22, Proposition 1.10]} there are two positive constants £1,0, (they depend on the
polynomials ¢;, ..., g,) such that:

(5.16) For |lw|| = ¢,, we have log max g, (Aw)| = log ¢,— D" log(1+||wl)).

1<i<n

Taking g, sufficiently large, for lwil=z0,=0, we have

log &, ~ D" log(1+||w||) = log e—D"log(1+}jw|)).
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It follows from (5.14) that the set {w €C": ||w||=g,} can be written as the disjoint union
of the sets

T, {w€C ||wl| = 0,, log g, (Aw)| < log e~ D" log(1+|w]]) if jE J

and log g (Aw)|>log e—D"log(1+||w||) if j&J}.

where J 1s any subset of {1,...,n}, I<#(J)<n—1. Any point of I, is contained in Z,,
and a posteriori in &, k=#(J). By the definition of the L,

(5.17) E L (w)|zyllwl] if wel,
J&J

Hence, for some j, & J, |L, (w)|[=(y/n)|jw||, so that

0, W) =L, )| g, (Aw)| = (y/n)w|° || (1+|Jaw]) ™" = 8| * D"

proving (5.15).
We define now

(5.18) J;(@):=((detA) L, (A~ ) g;(2).
The linear forms L;(w) found in Lemma 5.3 have their heights bounded by
H(L) < xK""' = exp[xD"(h+log N+Dlog D)].

atter an eventual change of constant » which depends onlv on n. Therefore. the height
of the corresponding linear forms A;(z)=(detA) L, (A" 'z), in the original variables, can
be estimated by

(5.19) H(A)) = exp[xD"(h+log N+Dlog D)].

using that ||(det A)A~'||<n!||A|I"s<»xD" and the formula (4.3). With this notation, the
functions f; defined by (5.18) are given by

(5.20) £(2) = (A(2))g,(2).
where
(5.21) p = WD".

We know therefore that for some constants y>0 and ¢>0 we have, for ||z]|=0.

(5.22) | f@ =

o l{ W11 D"
' .
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with f=(fy,....f,). Moreover, the number N of common zeros of the f;» without
counting multiplicities, 1s at most

(5.23) | [(1+degg)<xD",
j=1

as shown by the classical Bezout estimate. It is convenient to introduce the auxihary

polynomtals
(5.24) P, (2):= Af2) g{2).
Then
(5.23) max deg @, = D+1,
)
and
(5.26) maxn(®) < xD"(h+log N+Dlog D).
7

One last auxiliary polynomial f, ., is obtained as a linear combination

far1 = AP APy,

LEZ,

Aj=dt=xD", in such a way that
E€CHfiD=...=f, (=0} = {zEC: D (D) =..=P () =f,, (1) =0} =D

The existence of such £, is given by Lemma 2 in [28, section 4]. We have

(5.27) h(f . Y<h+logN+nlogD+x.
The sequence f,....f,,, fits exactly in the situation of Example 3.3 with
d=(W—-1)D" and WD"+D instead of D. Since n=2, D=3, as soon as W' =2n. we get
nW—n>n—-0)W+n—1+ Df_] :

so that the condition (3.6) is fulfilled for P=1, g=n, (W'-1)D" instead of d. and WD"+ D
instead of D. We shall from now on choose #=2n.

It follows that there are polynomials A;€Q[z] satisfying

n+ |

(5.29) > Af=1
1=1
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They are explicitly obtained from the formula

1,1 - Ba1  8n+rid
o
f st |8in - Ban 8reim
Ha .. f2) f.,@

(5.30) 3

dg | =1,

where the g;, are given by the formula following (3.4). It remains to estimate the
degrees of the A;, find a common denominator d €Z* of their coefficients. and obtain a
good bound for the coefficients of the polynomials DA;, which are now in Z[z].

It 1s immediate that

degA;< n(2n+1)D".

Rewriting (5.29) in terms of the original polynomials p; and clearing denominators
we have

N
z q;P;= 0
j=1

Wlth qﬂ,E Z[Z],

deg g, =n(2n+1)D".

Betore proceeding to the estimate of the common denominator D, we need to recall

a few definitions from Algebraic Number Theory. Given an algebraic number a one
denotes

@l = max{ja’|: @’ conjugate of a over Q)
s(a) = max{logden(a), log|d|},

where den(a)=denominator of a=smallest mteger d>0 such that da is an algebraic
Integer.

Finally, let p€Z[z,,...,z,], ay,...,a, algebraic numbers, and B=p(a,,...,a,). To
estimate den(3) and s(f), let r=deg, p=degree of p with respect to the variable z;- Then

(5.31) den(p) is a divisor of [ [ (den(a,)"
)=

and

(5.32) s(B) < h(p)+ D, (r;s(a)+log(r+1)).
j=1
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Later on we will also need to estimate the denominator of the inverse of an
algebraic number a (a=+0). If N(a) denotes its norm and d a denominator of a one can
use that N(da) is a denominator for (da)™'. Therefore

log den(a™") < log den((da)™") < log N(da)

(.33) < (deg a) s(da) < 2(deg a) s(a).

In order to apply these inequalities to formula (5.30), we need to estimate a
common denominator for all the rational numbers of the form

-1 ¢ >
(5.34) ={ 99—, dC), |kl<n(2n+1)D",
9y < 7 . ki

which appear as coefficients of the polynomials A;.

LEMMA 5.4. There is a common denominator d€Z* for the rationgl numbers o,
defined by (5.34) such that

log b <xD***(h+log N+ Dlog D),

where x=x(n) is an effective constant depending only on n.

Proof. We rewrite (5.34) by letting ®=(P,, ..., D)), g=(g1,....g,) and

] g%

e

Therefore, the rational numbers ox are linear combinations with integral coefficients of
rationals of the form

(5.35) <é L & d§>,

(I}P | fn+l
with
k| < n(2n + ) D"+n(2nD"—1) < n(4n+1) D".

The coefficients of these linear combinations do not play any role because we are, for
the moment, only interested in the denominators.

To compute explicitly the residues (3.35) we can use an observation from [7].
Proposition 2.5 and tollowing remark. It shows that it is enough to find n polynomials
by,....b,EZ[Z]. b, a polynomial on the single variable Zj, all of them in the idea}
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generated by @y, ..., ®, in Z[z]. To find these polynomials b;, we apply first Lemma 4.3,
with T=z;, X=(z,...,2,1, 24, .., Z,) to the family ®,,....®,. In this way, we obtain
intermediate polynomials

B/(z)=B,(z), BE® Zzl+....d, Z[z).

(5.36)
deg B, <xD""',

and

(5.37) h(B) < %D*"*'(h+log N+Dlog D).

Regretfully, we have no information at this point on the degrees of the polynomials B; ,
that appear in the representation B=Yt;.,B,®, To solve this problem we apply
Rabinowitsch’s trick and [32, Theorem 4]. For a fixed j, let I'=deg B;, consider the
polynomuals in Z[zy, zy, ..., z,] (z=(zy, ..., z,) as always)

1 =25 B;(2), ®,(2), ..., P,(2).

The first one has degree at most 27, the others of degree <D+1. We may assume
2T=zD+1 and T<xD"'. Their heights are bounded by xD**'(h+log N+Dlog D). By

[32, Theorem 1] there exist an a;€Z*, and polynomials S,....,S,€Z{z, 71, ...,z,} such
that

(5.38) deg[(1—zg B;(2)) Sy} <(n+4)2T(D+1)"

(5.39) deg(S; )< (n+4)2T(D+1)",

h(aj) < x2TD3”+](h+log N+Dlog D),

(5.40)

< xD***(h+log N+ Dlog D),
and
(5.41) a,=(1-z0B)Sy+S,®,+...+S, @ .

Following [10] we decompose §; as

-1
I k
k=0

The identity (5.41) implies that

(542) &j = (1 “‘Z;{Bj (Z)) Sn_ﬂ(zgs Z)+S]‘{)(Z(:]r:r ) ¢1(E)+-*-+Sn_g(zga Z) (DH(Z)-
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Replace z] by X, then one has

degy S, , <2(n+4)(D+1)".

{

Theretore, as in Rabinowitsch’s trick we let X=1 /B; and define

(5.43) b, = q}-B}’, Yy =2(n+4)(D+1)".
We have
(544) bj = ajk (I)ka

with a; € Z[z] satisfying the estimates

(5.45) dega, < xD"*!

T'he height of the a; is unknown but the height of b; can be bounded using (5.37),
(4.2) and (5.40).

Let us now take M=n"p, to guarantee that the polynomials b are in the ideal
generated by the entries of ®°. We have from (5.44) that

(5.46) ¥ =" ' P

k=1

for some a}” € Z[z]. Let Ay=det(ay”), then

degay" < xMD™' < xD¥t!
(5.47)

From the law of transformation of residues (2.13) we conclude that

-1 - ] Aygk >
o —, d¢ )=( 00—, dCc ) .
< ¢* fn+l C> < bM n+ | C %'

with B={z EC": Pi(z)=...=D,(2)=0} and b=(b,, .-.»b,). Since Ay, has integral coeffi-
ctents and we only worry about the denominators of the algebraic numbers that appear

as the residues at each point « €8 in the last formula, we can reduce ourselves to look
for a common denominator of all the numbers
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k
(5.48) <c§ l_ 6 d§>, a €18,

where |k|<n(4n+1) D"+deg A, <xD***'.
The quantity (5.48) has the advantage that it can be computed by an iteration of the
usual formulas of the Residue Calculus in one variable. We have profited already from

this remark in the proof of Lemma 2.3. Let a=(q,, ..., a,) in B. Let v; be the multiplicity
of q; as a zero of B;, then v=1 and

B,(z) =(z;~a)"6.(z),
with 6;€ Z[a;)(z;} defined by this identity and 6,(a;)+0. Let
(5.49) a=(a,...a )",
and MM=(Myv,~1, ..., Myv_—1). Then
Ve = My(v,+...+v)—n, T'=Myv,—D!...(Myv —D\.

This vector 2R depends on the point .
The function ¢/f,, (¢) is holomorphic in a neighborhood of a, hence

o R < B Gm'ek)
20 <a bM,f;H-I dC>ﬂ-—- a ! ( S (@
where
k
(5.51) ©,(z) = 7 "; = (612 . 0, )7

We rewrite the derivatives in (5.50) using the Leibniz product formula and obtain
an expression of the form

%k(a,,...,an, 1 : ! . 1 ),
f;r+l(a) 91((1]) Bn(an)

where i, is a polynomial in Z[X,, ..., X,, ,,]. Let 0;=degy ¥, then it is easy to see that
(5jﬂxD3”+2 (1<j<n)
0., <|M+1<xD*!

6n+]+j$My+Myvjﬂ D" (1<j<n).
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(It 1s hard to estimate v; better than by degB,, i.e.. v<xD""'.)
From the observation (5.31) we see now that a denominator of the residues

o
g 5 4
< T C>

1S
aﬂi'n(den(a )" (den(1/f,, (@) "”XH(den(l/Q ().

This expression depends a priori on the multiindex Kk, but taking the largest
possible value for the d; we obtain a denominator which is valid for all the k that appear
in the computations. That is, we should consider the Integer D, given by

xD

D n
(5.53) b,:= a%( (ﬂ den(aj)) xden(1/f,., (@)% | | den(1 /q(aj))) ,
7= =1

for some integer x=x(n).

The next step is to estimate the denominators that appear in (5.53), still for a fixed
a €. For a;, we use that B;(a)=0, hence den(a;) divides the leading term of B;
Therefore

(5.54) max log den(a;) < max #(B) < »D*"*'(h+log N+ D log D).
‘

J

For the other terms we use (5.33). We need first to know the degree of the algebraic
numbers f, . (a) and Gj(aj). Our previous Corollary 2.2 allows us to conclude that

(5.55) deg( f,, (a)), deg(8,(a)) <(D+1)",

since *B is defined by equations of degree <D+1.
Yo find s(a;) we use again the equation B; i(a;)=0. The conjugates of a; are solutions

of the same equation, hence their absolute can be estimated by the inequality (4.16).
Then

log || < log(deg B)+h(B).
Hence.

(5.56) max s(a;) < xD*"*'(h+log N+ Dlog D).

;

B8-918285 Acra Mathematica 166. Imprimé le 15 février 1991
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Theretore, formula (5.32) gives the upper bounds

s(f, (@) < h(ﬂ!+l)+z (Ds(a)+log(D+1)) < xD*"**(h+log N+ Dlog D).
J=1
The values 6;(a;) are also explicitly given in Z[a;], namely
(¥))
0;(a) = B;"(a)/v,".
The height of the polynomial ijf')(t)/vj! IS at most H(Bj)xzdegﬂf
obtain

. Use again (5.32) to

s(60;(a))) < kD" "*(h+log N+ Dlog D).
From (5.33) we conclude
(5.57) logden(l/f,, (@) <2deg(f,, (a))s(f,, (@)<xD****(h+log N+Dlog D),
and, for 1<j<n,
(5.58) log den(1/60,(a)) <xD*"**(h+log N+ Dlog D).
These computations lead to the following estimate for logd,,:

(5.59) log b, <xD'""*(h+log N+Dlog D).

We know that #(B)<(2D+1)" by the Bezout estimate. Moreover. the above
reasoning shows that if we define

(5.60) =[] >,

a €8

then 0 1s a denominator for any coefficient in the formula (5.30), hence it can be taken
as the value in the statement of this theorem. We have

log D < #D¥*}(h+log N+ D log D),

from (5.59) and (5.60). This is precisely the statement of the lemma.

To fimsh the proof of Theorem 5.1 we only need to estimate #(g;). Given that we
know a common denominator for all the rational numbers that appear In the formula
(3.30), 1t 1s enough to find an upper bound of the absolute values of these coefficients.
This can be done analytically, again by estimation of residues.
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LEMMA 5.6. The rational numbers o, defined by (5.34) satisfy the estimate
(5.61) log*lo,| < xD*"*'(h+log N+ Dlog D),

for |ki<n(2n+1)D".

Proof. We use the notation of the previous lemma, in particular, B is the variety

defined by ®,, ..., ®,. It is also exactly the set of common zeros of fis ..., fn. Therefore,
as we have already said in the previous lemma, D.,...,P,.f ., do not have any
common zeros in C”. It follows from [11, Theorem Al, applied to ®,, ..., ®,, that for
any q €8

log| £, 1(@)| = —(D+1)"[11(n+ 1’(D+ 1)+(n+1)* max {k(®) (1 <j < n), h(f., )}

+2(n+1)*log™||af]].

From (5.26) and (5.56) we conclude that

(5.62) log|f, . ()] = —xD"*(h+log N+ Dlog D).

It we take a ball B(a, n) centered at «a and of radius n, logn=
—xD"* (h+log N +Dlog D), the same inequality (5.62) holds in B(a, n) (with a slightly
different constant x).

There are at most (D+1)" points in B. Divide the ball B(a,n) in (D+1)Y'+1
concentric shells, one of them does not contain any points in 8. Hence, on the sphere
3. that lies half-way between the boundaries of this shell, we have

d(&, B) = 4 ., CES
2(D+1)+1)

al

We can now apply the local Nullstellen inequality in [9, Theorem A] to the family
Py, ..., D,. At any point &, in S, we obtain

log max 1(111.(50)1 = -2D+1)Y'[1{n+ 1D’ (D+ D+(n+1) max h((bj)

| <)<n I</<n

+2(n+1)*log*flal|—(n+1)*log d(¢, B)]
= ~xD*"*'(h+log N+ Dlog D),

due to the choice of 5. Let i be index for which '(I)':(CU)I:maXIEjEn‘(I)Ji(g{}”- We have
D, (C{})z A, (Cn) 8 (C(}) and
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log |g(8y)| < h(g)+nlog(D+1)+Dlog*||E,|
<xD*"*’(h+log N+D log D).

Theretore

log|A; (E)l = —xD* ' (h+log N+ Dlog D).

Hence, recalling that f;=A] g. (cf. (5.21) and (5.22)), we get

log | f{Ey)| = log |P(Ly)|+(p—1)1og A, (L)
= —xD"*'(h+log N+Dlog D).

We conclue that on any point CE S,

I

112
(5.63) log || F(O|| = log(z |/, (C)]Z) = —xD’"*(h+log N+ Dlog D).

J=1

This mequality holds for any a €B.

Let us consider the family of closed balls B, such that 8B,=S5,. To simplify the
reasoning, we order the a €8 so that the radii of the B, are decreasing, B={a; Isisv}.
Consider the auxiliary sets 2,=B,, Q,=B,\B,, Q,=B,\(B,UB,), etc., disregarding
the empty ones. These domains are disjoint, B<U,Q., and the surface area of any 3,
can be estimated by w,,_,(D+1)"p*""!, w, _,=surface area of unit sphere in C”.

We have that

N
R )

Each sum between parenthesis in (5.64) can be computed using the Bochner—Martinelli

formula [17];

~ k — k L : - LI
S (5558 o] L Hf(C)Il”z”(Z =" A awc).
ntl / a i=1 =

a€EBNQ, (271)" agfﬁ;-p](C)

&3]

We know the behavior of every term in this integral, and the bound

log™|o,] < »xD*"*(h+log N+ Dlog D)

1S now immediate. [
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Let us recall that in the formula (5.30) the right hand side can be written as

. 1 1
<3‘L, ] |(z,C)dC>f1(z)+---+< f fn+1 .a-.r+l(Z C)d§>fn+l

A d
< 77 2 {2, 5 £(0) c>

+1 (=]

where A; denote the nXn minors that appear when we develop the determinant in (5.30)
along the last row. The last term 1s zero because the residue current i1s evaluated on a
form which i1s locally in the ideal generated by f;,...,f,. Therefore, let us denote by
Y c, 7 the polynomial in 2z variables which represents the whole determinant in
(5.30) or one of the minors A,,..., A .. Since we are using the g, ; defined after (3.4), it
follows that ¢, ,€Z. The height of this polynomial can be estimated in terms of the
heights A(f), namely

max]og ¢, ] < x( max h(f)+logD).

l=j<sn+|
Recall f=A’g; 1<j<n, hence
h( f) < p(h(A))+log n)+h(g) < »D*(h+log N+Dlog D).

This estimate 1s also valid for A(f, . ;) (see (5.27)). It follows that

max log|c, | <xD*"(h+log N+Dlog D).
1

The polynomials multiplying /,, ..., f, ., 1n (5.65) are in Q[z}; they are of the form

B3 (Teb ) 3(F )

k I\ %k

In this sum, |k|<n(2n+1)D", hence

logly,, | <logx+n’log D+maxlog|c, |+maxlog|o,]
k1 k

<xD"*(h+log N+DlogD).
Summarizing, the formula (3.40) can be written in the form

=A,f,+...+A

n+lJSn+l?
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with good estimates on the degrees of the polynomials A; € Q[z]. Furthermore, we have
an estimate for the logarithm A of the largest absolute value among the coefficients of all
the A; given by

(5.66) A< xD"*Y(h+log N+Dlog D).

It 1s clear that a common denominator for all the numbers g, 1s also a common
denominator for all the coefficients of the A;. By Lemma 5.4 we have a common
denominator DEZ" so that the polynomials defined by A;=bA;, will have integral
coefficients and satisfy

h(A) <log b+A <xD*"*’(h+log N+DlogD),
and

(5.67) Afi+...+A_  f.. =D

Finally, we write explicitly the polynomials f; in terms of p,...,py, replace in
(5.67) and use Lemma 5.2 to estimate the height of the resulting g,€Z[z], which
therefore solve the equation

q,pyt...+gypy=D.

One easily sees that the above estimate for the h(ﬁj) remains valid for the h{(qg;). This
concludes the proof of Theorem 5.1.

(1) The essential property of Z that we have used is that Pol(Z[ X}, ..., X,,]) could be
equipped with a size t. We can replace Z throughout by the ring £ ¢ of integers of a
number field K. The constant »x will depend not only on » but also on [K: Q].

(2) In the first version of this paper we had succeeded in proving this result with a
smaller and explicit constant x(n). This was done under the additional assumption that
the variety of zeros at = of the p,, ..., py was discrete. This indicates that the exponents
in (5.1), (5.2) and (5.3) are not optimal. In fact, from [32, Theorem 1] one knows that
there 1s a formula d=X7_, p.q,, with log d<xD"(h+ D log D).

(3) It would be particularly interesting for the case d,=...=dy=2 to improve all the
above estimates.

(4) In the related problem, given a polynomial f in the ideal generated by p, ..., pa

in Ciz], find optimal bounds for the degrees of polynomials g, € C[z] such that

f:plql =...TPndn
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it s known that in general maxdeg qj..-‘?'-‘-:-Dzﬁ (essentially). One can prove by analytic
methods that if p,, ..., py define a discrete varnety V or, if N<n and dim V=n-—N, then
one can find g; with max deg g;<deg f+»xD* (see [8]). It would be Interesting to obtain
also bounds for the heights when f, py, ..., pnEZ[Z].
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