Lectures at CROCE DI MAGARA, June 98
(Alain Yger)

1. Residue symbols, Residue currents.

1. Definition in the complete intersection case.

We will start with the definition of the residue symbol in the discrete case. When f1, ..., f,
denote m holomorphic functions of n variables in some neighborhood V' of the origin in
C", such that the origin is a simple isolated zero of the f;, j = 1,...,n, which means that

Jac[fh sy fn](o) 7é Oa

one can define, for each (n, 0)-differential form hd(; A - - - A d(,, where h denotes a germ of
holomorphic function at the origin, the residue symbol

hd¢ } . h(0)
f17“'7fn o JaC[fl, 7fn](0) -

When the origin is still an isolated zero, but is not simple any more, we can define the
residue symbol as follows: let us suppose for the moment that Jac|fi, ..., fn] is not identi-
cally equal to zero near the origin (in fact, we will see later on that this is automatic as
soon as 0 is an isolated common zero of the f;; moreover it is impossible that Jac[f1, ..., fx]
lies in the ideal generated by the f;). Then, following Sard’s theorem, the set of critical
values for the map (| f1/?, ..., | fn|?) has Lebesgue measure 0, which implies that for almost
(€1, .-y €n) €]0,00[™, close to 0, the common zeroes of

(fl - 6167:91’ ey f'n - e’neian)

Res [

are u simple isolated points in V', where p denotes the multiplicity (or the topological
degree) of the map (f1,..., fn). It is natural to consider, for such e and any 6 in [0, 27]™
(with ee®® := (1€, ..., €,€%))

hd(C) = Mo) .
I(G’ 0’ th) N f(a)zz:eeie Ja,C[fl, cens fn](a) a Tr{f:ee“’}[hdd .

One can notice (with Fubini and Lebesgue’s theorems) that

paey . L . _ 1 h(¢)d¢
I(€; hd() == o /[O,zw]nl(e,O, hd¢)db;...do, = @iy /Fe( fFiefn’ (1.1)

where I'¢(f) is the n-dimensional real manifold

Fe(f) = {|fl‘ = €1,y ‘fn| = en}a
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with the orientation such that the differential form

darg(fi) A ... Adarg(fn)

is a positive one when restricted to I'c(f). With Stokes’s theorem, one can see that I(e; hd()
does not depend on €. This will be our definition of the residue symbol in this case

hd¢ 1 1 h(Q)d¢
fes [flv“"f} o (2im)m /F(f) oo (1-2)

When fq, ..., fp, p < n, define a n — p dimensional analytic set in V', one can define, for any
(n,n —p) C?! differential form ¢, with support in V, which is closed in some neighborhood

of Vi :={f1 = ... = fp = 0} (note that this is not incompatible with the fact that ¢ has
compact support), the residue symbol
@ 1 / el
Res = 1.3
[fh---afp] 2im)? Jo 5y 1 fp 3

where this time

Le(f) =A{lfil = €1,y |fp| = Gp},

with the orientation such that the differential form

darg(f1) A ... A darg(fp)

is a positive one when restricted to I'c(f). Here again, € is taken in |0, co[?, close to 0, and
outside a set of measure zero, which corresponds to the set of critical values of the map

(f1l, s 1£pl)-

There are two quite important difficulties when dealing with such an approach to residue
symbols in analysis from the computational point of view:

e The first one is that the support of the analytic chain I'¢( f) is usually hard to parametrize,
which makes the definitions (1.2) or (1.3) rather nonneffective from the computational point
of view.

e The second one, much more involved, is that this definition does not allow us to play
with smooth analytic objects and profit in a real way from analysis, for example to get
rid in the definition (1.2) or (1.3) of the “rigidity constraint” which is imposed by the fact
that numerators of residue symbols must be closed forms in a neighborhood of the origin
in (1.2), or in a neighborhood of V; in (1.3). In fact, the natural thing that one could hope
would be that, when ¢ is any smooth test form with compact support in V, then

lim I(e; ) (1.4)

e—0

exists in an inconditional way. There are simple examples (due to M. Passare, A. Tsikh,
J. E. Bjork ([PTS],[BJ2]), showing that in general, the inconditional limit does not exist.
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Nethertheless, everything is fine when the f; define a manifold, that is if the rank of the
Jacobian matrix is maximal at all points in V. In this situation, one obtains immediately,
for example in the discrete case, that for any (n,0) smooth form ¢ = 9d(¢ with compact

support in V'
¥(0)

Jac[f1, ey fn](o) .

lim 1(€; 1d¢) =

In order to superate these two difficulties, let us do the following and average (still assuming
that ¢ is closed in a neighborhhood of V) the function

e = I(Ve ©) = I(V/e )

(which in fact is constant for € small) on the simplex €; +. ..+ €, = €, where € > 0 is given
small enough and such that {||f]|> = ¢}, where

IFI7 = 1l + -+ [l

is a smooth 2n — 1 real manifold in V. This averaging leads to

Res { 4 } = u/ I(vn @)Xp:(—l)’“‘lnkdn[k]
Fro o Fp E S ’

k=1
where
P
j=1
ik
Using Fubini’s and Lebesgue’s theorem, toge ther with the identity

p

p
DA N AP A= = 3D adfp Ag
k=1 j#k P k=1

and taking into account the fact that the orientation of C™ is the one for which the
differential form (dd®log(||¢||?))™ is positive, one obtains

p(p—1) p
R 2 :|:(—1) 2‘ (p—1)! R
_ (=D (p- 1) / p (DR Fedfi A
(2im)P 1£]12=e 1 £]%7 '

When p = n, one can say more: since the differential form

é (=1)*1 fdfpeg A hdC
| £][2™
3

[y




is closed outside 0 (this is an easy computation), the residue symbol can be expressed by
Stokes’s theorem in this case as

- -1 k—1 d d
Res { hdg } — (=1 (n— 1)!/ hkgl( )7 g A G (1.7)
froe fn (24m)™ oU R )

where U is any compact subset of V' with smooth boundary that contains the origin as the
only common zero of the f;. If

n(n—1)
2

f
(O =g
one can also rewrite (1.7) as
hde ] (=)™ (n—1)! "
fes |:.f15 L) fn:| B (27/77)n /BU h’;(_l) SOkdsO[k] A dC (18)

An homotopy argument shows that one can replace s¢ in formula (1.8) by any fonction
s which is defined in a neighborhood of the boundary of U, is C! in this neighborhhood,
and satisfies

< 5(0), F(Q) >=) _sk(O)fr(¢) =1
k=1

on this boundary. The general formula

n(n—1)

hd 1) =2 (n—1)! ° 1
Res |:f1;--ffn:| _ =D ( ) /a hZ(—l)k Skdspr) A d¢ (1.9)

(2dm)" v

is the Bochner-Martinelli formula.

Of course, one can use formula (1.9) a contrario and choose the section s before choosing
the domain U. The only thing that one asks respect to U is to be a tubular domain
around the zero set V;. This provides interesting expressions for the residue symbol in the
complete intersection case. For example, one can rewrite (1.5) as

p(p—1)

@ (-1)"= (- 1)!/ " el et e
Res = - -1 spdsfy A
|:fla"'afp:| (2ime)P <55’f>=1kz=:1( ) k@S[k) N P
where € is small enough and _
e[
§¢==.
€

One can also replace for example s€ by

ea . AP, Tyl )

€




This leads to the formula

q1 dp
%) 7
Res L P = Res ] .
[ 1ql+1,..., ]()Ip+1:| |:f17"'7fp

One can also rewrite the expression of the multidimensional residue as

2
Res =

]

704 (2'&7'['
P

/ / TT (1 = 50T (5] + D0((g1 + D51, (g9 + Vsp) 7 1dsy . ds,

v1+iR ¥p+iR k=1

(1.10)
where

p
rOve) = ()" [ wa DN ene
k=1

with the 7 €]0, 1[ for any k between 1 and p and |s| := s1 + ... + s, and the g, lie in N.
Formula (1.10) is a Mellin-Barnes representation formula for the residual symbol. In fact,
such a formula holds when the test form ¢ is C'*° with compact support in V' and allows
us to extend the action of our residue symbol on smooth test forms (non necesseraly closed
near V;). In fact, the right-hand side in (1.10) does not depend of ¢. The local residue is
then defined by (1.10). All this works fine only when the f; define a complete intersection
inV.

As for the iterated residues, we get

(_1) p(p2—1)

2 q1 k—1
Res ) > =7 st ... s -1 spdsr A o. (1.11
[ R “] (2im)P /<S7f> IR D (D Tsdspy A (111)

When dealing with global problems (of algebraic nature rather than of analytic nature),
we will also introduce global residue symbols.

e For example, let P = (P, ..., P,) defines a quasi-regular sequence in C[X1, ..., X,], that
is the analytic set

V(P):={¢eC", P(()=0}

is zero-dimensional or (which is a more algebraic point of view), whenever there exists
k € N and polynomials Q; in C[Xj, ..., X,,] such that

§ ' QLP]Z.I...PTZLTL EI(P)’“,
teNn
14 +ip=k+1



where I(P) is the ideal generated by the P;, then all the @; belong to I(P). Then, for any
Q € C[Xy, ..., X,], one denotes

X)dX d
Res [121(,...),13”} = D Res [P?,(f.),]gn]
a€V(P) @

where the sum on the right hand side is the sum of local residues at all points in V(P).
We will also frequently deal with total sums of residues of rational functions: if Py is
a polynomial such that the ideal generated by P, ..., P, is C[Xj, ..., X;,], then, one can
define, for any @ € C[Xq, ..., X,], the residue symbol

e Another type of global situation concerns Laurent polynomials in n variables. Let
Fy, ..., F, be n polynomials in XlﬂEl,...,XﬂLEl with complex coefficients, defining a zero
dimensional analytic set V*(F) in T™ = (C*)",

VHF) :={C e T", Fi(¢) = ... = Fp(¢) =0}

and Py another Laurent polynomial in X 111, ..., XF1: then, one can define the toric residue
symbol

QX)) ax QW) _d¢
Res [PO(X) } = Res [Po(C) Cl---Cn]
15---5Pn T aeV*(P) 1yeesdn 1y

The reason why one uses here the differential form % instead of d( is that one wants

the monoidal change of coordinates (which are standard in the toric setting) to have a nice
action on residue symbols.

This algebraic notion of residue symbol can be extended to the case when (ay,...,a,) is
a quasi-regular sequence in a commutative A-algebra R, such that the quotient P :=
R/(a1,...,ay) is a projective A-module finetely generated (so that Homa (P, P) can be
equipped with a Trace). The algebraic definition of the residue symbols in this case is the
pendant of the analytic definition we proposed at the beginning. If ¢ is a A-linear section
of the projection map

m: R—P:=R/(a1,...,an),

one can associate to any r € R an element 7# in Homp (P, P)[[ay, ..., ay]], defined as

r# = E rLalll . -al,{‘
leN™

and

ro(u) = Z o(ri(u))at ---aln) ueP,



is the development of ro(u) in the (a)-adic completion of R. Of course, the construction

of these operators r; depends on the section one takes. If 7,71, ..., 7, are n + 1 elements in
R, one can compute in Homa (P, P)[[a1, ..., a,]] the element

ort

r# o det [—J

aj

_ l l
= E T1,6(r,r1, .y rp)ay <. a.n

1<ij<n  lEN™

(respect the rules of the determinant calculus in a non commutative setting!). Then one

can define

rdri A ---ANdry,

Res |: a<111+17 ey a’%n+1 } = TI'(Tq,U(T’ 71500y Tn)) .

In fact, these symbols do not depend on the choice of the section. In the local situation of
O,, studied above, their definition fits with the definition which has been proposed at the
beginning of this paragraph. This construction is due to J. Lipman [Li] and the fact that
the two definitions fit together in the analytic case is proved in [Hi-Bo 1].

2. The Transformation law.

We will first study the local situation. Suppose that fi,...., f, and g1, ..., g, are two se-
quences of holomorphic functions in a neighborhood V' of the origin in C”, both defining
a complete intersection in this neighborhood. Suppose also that

g=Af

where A is a matrix with holomorphic coefficients in V. Then the zero set V; is included
in V. Therefore, if U is a tubular neighborhood of Vj, such that the boundary of U is
given by

oU = {< s,9g >= 1},

one can also consider U as a neighborhood of V;, with the boundary expressed as
oU = {< Als, f >=1},

where At is the transposed of the matrix A.

Let H(V) be the algebra of holomorphic functions in V. In order to settle our next propo-
sition, we need to introduce the H(V')-module C™"~? of (n, n—p) smooth differential forms
in V' which are closed in a neighborhood of V; and the module M := Hom¢(C™"~?, C),
considered as a H(V')-module when equipped with the external operation

hM(p) = M(hp), he H(V), p€C™™7P.
Let oy and o4 be the two homomorphisms of H(V)- modules from H(V)[Xj, ..., X,] into
M such that

op(XT - - X) o= gl -qp'Res [f{hH, (’0’ gp+1]

O'Q(Xih .. .Xgp) P q!-- .qp!ReS |:g(111+17i0. ggp_|_1:| ]

In this setting, one has, using formula (1.11), the following proposition:
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Proposition 1.1. For any P in H(V)[Xq,..., X;], one has
o¢(P(X)) = detA oy(P(A'X)). (2.1)

Remark. This is nothing that the chain-rule in differential calculus. In fact, the formula
holds in the general algebraic setting where (g1, ..., g,) and (f1, ..., fn) are two quasi -regular
sequences in the A-algebra R, such that

g=Af

and the modules R/(f) and R/(g) are projective and finitely generated. It is better in
this case to formulate the result without denominators, namely, for any r,ry,...,7, € R,

rdri A ... Ndr - ;
Res [fcnil fqn+?] = Z H (lan) Res
Lreodn lgjl=q; i=1 N 1"
1<5<n

det A H a?;jrdrl A...Ndrp,
1<4,5<n (22)
1
g gl

with the notations

¢ = (q1j5 -1 qnj)s Gi; = (Qi1, -, Gin), |Hi| = @1 + -+ + Qin,

<Mz‘> _ q!
qi; gi!. .. Qin!

Such formulas are originally due to Kytmanov in the analytic context. For the extension
to the algebraic context, we refer to [Hi-Bo 2].

and

There are also useful variants of the transformation law; one which happens to be quite
useful is the following: suppose that (fo, ..., fn) and (fo,91,...,9n) are two quasi-regular
sequences in the A-algebra R, such that the modules R/(fo, ..., fn) and R/(fo, g1, -, gn)
are projective and finitely generated. Suppose that there are relations of the form

n
fgjgj = Zajlfl, j=1,...,n.
=1

Then, for any r,rg,r1,...,7, € R, for any gqg € N,

rdro/\.../\drn:|_Res[ rdet Adro A... Adry, (2.3)

Res [ go+1 +14s1+.Fsn
()0 7f1a"'7f’n f(()l0 ! 7915 ---,9n

There are certainly other generalisations of such an extension. One interesting to suggest is
the extension of the transformation law when g, ..., g5, instead of satisfying g = Af satisfy
global relations on integral dependency over (f1, ..., fn), that is relations of the form

N
Q;Vj +Z( Z aklffl...fén)gj.vj_kzo, i=1,..,n,
k=1

teNn
I14...+ln=Fk



in the spirit of the work of Ostrowski. The formulas (2.2) can be extended in this context
(assuming the same things as before respect to the quotients R/(f) and R/(g)).

3. Duality theorems.

The first (and one of the most important respect to effectivity problems) division formula
in complex analysis is the Bergman-Weil formula. Let us state it in the semilocal context.
Let f1,..., fm, m > n, be m holomorphic functions in a neighborhood V' of the origin in C",
defining (and this is a restrictive clause which will appear to be very important) the origin
as an isolated zero. Then, for € €]0, co[™ with ||€]| small enough, there is one connected
component A of the set

{C € V7 ‘fl(g)‘ S €1, |fm(€)| S em}

which is such that 0 € A € A C V. Furthermore, one assumes that any subfamily of
(f1, -, fm) with cardinal n defines a quasi-regular sequence in H(V). We also assume that
there are holomorphic functions a;x, j =1,...,m, k = 1,...,n, such that

fi(Q) = fi(z) = Zajk(Z,C)(Ck —2), ((,2) eV xV.
k=1

Then, on has in A, the following representation formula, valid for any function A holomor-
phic in A and continuous in A:

1 det[a;, (2, Oli<j<nd(
") = Gy Z/ _____ O = @)= 1) —

1 det Q4,52 C 1< _7<TLdC qn —
~ (2im)" Z Z f[{““(... ;%)j“l 1@ fE = (g

1<i1<...<ip <n gENT

hdet|a;, ;(z, i<nd X .
DD DE S Lt PO RO}

1<i1<...<in <n geN™ [

where v;, .. i, denotes the intersection of the n faces of A

L =1 € A, Ifi, (O] =€}, k=1,...n

with the orientation determined by the order of the faces. When n = m, the formula is
just
h(z) = 7/ hdet[gjk (2, Oli<ij<ndC
(2im)™ Jr, 5y (f1 = f1(2)) -« (f — fu(2))
— Z R |:hdet ng(z C)]1<l7]<"dc ( ) fqn( )

f¢I1+1 s fgn—i-l

(3.2)

geN™



where the g;; are defined by the formulas

fi(z) = f;(€) = ZgngC (zk = Ck);, J=1,..sm.

When fy, ..., f, define a complete intersection in a neighborhood V of the origin (0 € V'(f)),
one can construct generic linear forms Ly1, ..., Ly, such that fi,..., fp, Lp41, ..., Ly, define
the origin as an isolated zero, with

n
)= AikCe, j=p+1,..,m
k=1

Then, for € €]0, 0o[" such that [|€]| is small enough and one can apply Sard’s theorem, for
any h holomorphic in A and continuous in A, one has

(zgﬂxz Odi) A (A Ajrdé)

j=p+1

n

(fi = fi(2) 11 (Lj = Lj(2))

—
S
~
|~
N—r
3
&
I
m
<
S
:—‘
%
Q.
3] T >
=
k‘
,_.
Il

Jj=1 j=p+1
1 Q) A (X a3l QG A (A )
- (2im)™ / |£j1=¢j.3=1,...p = n = (mod(f, ..., fp))
|Lki7=ek‘,7k:=p+1 ..... n f fp H+ (Lj —_ Lj(z))
Jj=p

(3.3)
The main consequence of the Bergman-Weil formula is the duality theorem:

Theorem 1.1. Let fi,..., fp, be p functions which define a complete intersection in a
neighborhood V' of the origin in C™. Then, an holomorphic function h belongs to the ideal
generated by f1,..., fp in H(V) if and only if for any (n,n — p) smooth differential form
with compact support in V, d-closed in a neighborhood of V (f), one has

Res [fl,}.l.gif ] =0. (3.4)

Proof. When p = n, this is just a consequence of the Bergman-Weil formula (3.2). When
p < n, the idea is to use formula (3.3) and to introduce a sequence of smooth fonctions
(xs)ss s € N, on [0, 00] that converges to the characteristic function of [1, c0[. One has, if

—

€= (€,€pt1, -y €n),
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n

RO A (Y gir(m Q) A (A Ajed)

j=1 k=1 j=p+1 _
[fjl=€5,d=1,...,p L

|Ly|=¢€p,k=p+1,..., n fl [P fp ) H (Lj — Lj(z))
. i . (35
RO A gin(z Q) AL A AudGe) A A B (250)
. 7=1 k=1 71=p+1 j=p+1 <
=4 lim - ;
T ITa ) foooify 11 (L = Lj(2))
J=p+1

If condition (3.4) is satisfied, then it follows from (3.5) that

h(¢) j/i\l(él 9k (2, C)dCr) A (j_;\ AjkdCr)

=p+1
/ |fJ|:€],J:1 ..... P == 07
|Lyl=ep k=p+1,...,n fi-fp H (L; — L;(2))

i=p+1

which implies (following (3.3)) that A lies in the ideal generate by fi, ..., f,. The converse
is just a consequence of Stokes’s theorem. <

The situation is much more involved in the non complete intersection case. We will just
briefly mention the ideas in this case. The key point is that the action of the residue
symbols that have been introduced in section 1 can be extended to smooth differential
forms with compact support (that is we can get rid of the fact that the differential form is
closed in a neighborhood of the zero set of the f;). The objects that one can define in this
way are currents, that is linear functionals acting on spaces of smooth differential forms
with compact support (or also, which is an equivalent point of view, differential forms with
coefficients distributions). Let us be more precise: given fi, ..., fp, p holomorphic functions
in an open subset V of C”, one can associate to them a large family of currents.

First, we pick up a weight (q1,...,qp) in NP and define, for any € > 0, the map s%7 as

(FulF 20, o Tl o)

€

99 :=

Then, we pick up a subset Z := {i1, ..., it} in {1,...,p}, with cardinal k, codimV (f) < k <
inf(n,p). For any smooth test ¢ form with type (n,n — p), one can define the residue
symbol

R . 4 . = (_1)— i d A 3.6
s | Jorfun | =l [ (U0 suds) Ae (36)
f]_,...,fp 9 =1

Of course, the main difficulty here is to show that such a limit exists, which is not evident
at all (the proof involves deeply Hironaka’s main theorem about resolution of singularities
over a field of characteristic 0 as well as the D-module theory developped by M. Kashiwara
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and J. E. Bjork). We refer to [PTY] for a detailed proof. Note that if the f; define a
complete intersection, there is just one value of k which is allowed (namely k = p) and one
can show then that in this case the residue symbol does not depend on the weight q. It
corresponds with the definition of residue symbols introduced in section 1. Otherwise, it
depends deeply on the choice of this weight. For example, when p = k = n, one can show
that

(9)

4
Res | fi,...s fp — liI(I)l (Q1+1()2‘ )<qu+1) y
TH>
fla "7fp + m

D
X/ .n/" []T@ = s)T(lsl + D ((q1 + 1)s1, ..., (gp + Dsp) 7 ¥ldsy ... dsy,
71+iR Tp+HiR g

where v v
p(p—1) _ TR
LX) = (—1)" 7 /VH\sz(*’ A"
=1 =1

with the ; €]0, 1] for any [ between 1 and p and |s| := s1 + ... + s,. The key point here is
that this Gamma function has a polar set that contains the origin in CP, which explains
why the limit may depend on the choice of the weight q.

In order to describe an attempt to extend the duality theorem to the case of non complete
intersections, we will assume from now on that the number of variables is strictly superior
to the number of functions (p). We will consider p functions fi, ..., fp, holomorphic in a
neighborhood V' of the origin in C™ and defining an analytic set V; with codimension d in
this neighborhood. We will assume as before that there exist holomorphic functions g;,
j=1,.,p,k=1,...,n,in V x V, such that

Fi(2) = £ =) gin(2,0) (2 = Ck), 5 =1,...,p
k=1
and for technical reasons, we will introduce the (1,0) differential forms in V' x V
n
GJ(Z7 C) = Zgjk(z’C)dea .7 = 17 -y D
k=1

We will fix a function ¢ from V to C, which is smooth, with compact support in V, iden-
tically equal to 1 near 0, and a C"-valued smooth application s defined in a neighborhood
U of the support of 0y and such that

<s8((),(—2>#0,CeU,zeW

where W is a neighborhood of 0 which is contained in the set where ¢ = 1. We note

. . 5(¢)
S“”%‘<40¢—z>

Note that this C"-valued function § (defined in U x W) depends in an holomorphic way
of the variables z. One has the following proposition

,CelU, ze W.
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Proposition 1.2. For any z € W, for any ¢ € N, for any h holomorphic in V,

(n—k)(n—k—1)

P -1 2 n—k)!
M= 2 2 2 - (2i7r)"_k( )

k=d 1<1<...<1,<p 1<51<...<Jn-r<n

B ek (2) (3.7)
hde A (30 (=1)'718;d8p) (2, Q) A dCg A Gz(2, )
Res =1 mod (fi1, ..., fp)-
fila X3} fzk
f17 "'afp

where

=

GI L= Gil (Z,C), I = {’1:1, ,Zk}

o~

1
n—k

dCJ L= /\ deu J = {j17"'7jn—k}-
=1

Remark. The right-hand side of (3.7) defines a function which is holomorphic in W.
Nethertheless, this proposition does not gives us a duality theorem as in the complete
intersection case. The only thing that can be checked about the residue symbols introduced
in (3.7) is that
ha) (9)
Res | fiyy - fiy, =0 (3.8)
fion fp

when 1 is a smooth (n,n—k) form with support in V and h is locally (at any point zp in V')
in the ideal (fi, ..., fp)¥ where the bar denotes the integral closure (that will be discussed
in the next lesson). The set of holomorphic functions in V' which satisfy this property is
an ideal in H (V') which is in general strictly included in (fi, ..., fp). There is still the hope
that, for a convenient choice of ¢1, ..., gp, one has (3.8) for any A in (fi, ..., fp). Is this was
the case (3.7) would be the formulation of a duality result.

Proof. We will not give here the proof of this theorem; it is based on more involved
arguments dealing with integral kernels in complex analysis. One can find the proof (at
least in the case ¢ = 0) in section 5 of [DGSY], proposition 5.6.

4. Intersection and division.

An important ingredient in intersection theory is the notion of integration current asso-
ciated with an analytic cycle on a n-dimensional complex manifold. When this cycle is
purely dimensional (with codimension d) and decomposed as

Z=) k;Z
J

where the Z; are irreducible cycles and the k; positive integers (we are interested here in
effective cycles), the integration current [Z] is a (d, d) current whose action on (n—d, n—d)
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test forms with compact support is given by
<[2],p>:= ij/
j Xi

if X; denotes the support of the irreducible cycle Z;. This definition can be extended (just
by linearity) to cycles which are not purely dimensional.

\Sing(X;)

When Z is a cycle which is defined as a complete intersection, let say Z = {f; = ... =
fp = 0} (taking into account multiplicities) in an open set V of C", then one has the
Monge-Ampere equation

(dd)Plog(|f1]* + - .. + | /pI*) = [2]
that can be written also

dfi A...Ndfp Ao
fla"'afp ’

When f1, ..., f, do not define a complete intersection anymore, but define a codimension d
analytic set, it is interesting to notice that residue symbols can be paired with the df; in
order to construct, for any choice of weight ¢ € N?, closed positive currents [Z]3,..., [Z]%,
where p := inf(n, p) with respective types (d, d),...,(1s, 1) defined as

dfs, ... Ndfi, N (@)
< [Z]Z7Q0 >i= Z Res fi17 7fzk y @ € Dn_k,n_k(v)a d S k S Y-
1<i1 <...<ip <p fis-fp

< [2], >= Res @ € DPn=P) (V) (4.1)

It is a good exercice in differential calculus to check these currents are closed and positive.
We will not do that here. Computing such currents seems to be in general a hard job;
the simplest situations, where it seems possible to deal with such computations are the
situations where the f; are monomials (the normal crossing situation). The question
that arises naturally is whether there exists particular choices of ¢ such that, for any
k€ {d,...u}, the current [Z]} coincides with the integration current (with multiplicities)
associated with the cycle attached to the codimension k& embedded components in the
decomposition of Z. These ideas are part of some work in progress with M. Passare and
A. Tsikh. There seem to be quite a lot of questions to explore in this direction.

I would like to conclude this first lesson with a question in relation with the well known
Lojasiewicz inequality: if fi,..., f, are p analytic function in an open subset V' of C", then,
for any W relatively compact in V', there exists a positive optimum exponent dy (f) > 0
such that

V¢ € W, Max;<j<p|f;(€)| > v(min(1, distance(¢, V(f)))°w D

for some v > 0. The question that arises naturally, and that would be quite interesting re-
spect to effective problems treated with analytic methods, is to clarify the relation between
this Lojasiewicz exponent and the order of the different residue currents

0 (@)
wHReS fip"'a.fik ’ dSkSMa qun
1o
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When fy, ..., f,, define a discrete complete intersection, the order of the residue current

¥

4 > Res |:fla"'afn:|

is less than the maximum of all u(a) — 1, where u(a) denotes the multiplicity at the
common zero « of fi, ..., fn.

[BJ2] J. E. Bjork, Residue calculus and D-modules on complex manifolds (manuscript,
April 1996).

[DGYS] A. Dickenstein, R. Gay, C. Sessa, A. Yger, Analytic functionals annihilated by
ideals, manuscripta math. 90, 175-223 (1996).

[Hi-Bo 2] J. Y. Boyer, M. Hickel, Une generalisation de la loi de transformation pour les
residus, Bulletin Soc. Math. France, 1997.

[Pts] M. Passare, A. Tsikh, Defining the residue current of a compete intersection, in Com-
plex Analysis, Harmonic Analysis and Applications, Pitman Research Notes 347, Longman,
1996.

[PTY] M. Passare, A. Tsikh, A. Yger, Residue currents of the Bochner-Martinelli type,
Preprint, Bordeaux 1998.
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2. Briangon-Skoda theorem, residue symbols and properness.

1. Briangon-Skoda theorem.

Let R be a commutative ring and I an ideal in A; an element h € R is algebraically
dependent over I (h € I) if there exists a relation of integral dependency of the form

AN +a b+ tan=0,a0; €, j=1,...,N. (1.1)

In fact, the set of such h is an ideal T which lies (from the inclusion point of view) between
I and its radical.

For example, in the n-dimensional local ring O,,, when I = (f1,..., fp), any h which
satisfies a relation of the form (1.1) is such that there exists a constant C' such that, in
some neighborhood of the origin,

RO < CIFQI 1N = (A QP +-- -+ (O (1.2)

It is a deep result of M. Lejeune and B. Teissier [LT] that in this case (R = O,,), the two
conditions (1.1) and (1.2) are equivalent. In fact, they are equivalent to a third one, which
is known as the valuative criterion:

Valuative criterion. Whenever v is a germ of curve at the origin such that the valuation
at 0 of

t= f(v())

is greater than v for any f in I, then the valuation at 0 of

t = h(v(t))

is also greater than v.

As a classical example of this criterion, we can see that, whenever f is a germ of holomor-
phic function at the origin which is in the maximal ideal in O,, then f is in the integral
closure of its Jacobian ideal (0f/0z1, ..., 0f/0xy,).

When [ is an ideal generated by monomials (still in the local ring O,), let say I =
(¢, ...,¢"), h belongs to the integral closure of I if h lies in the ideal which is generated
by the monomials (7, where  is in the convex hull conv(E(I)) of the staircase E(I) of I,

defined as
P

E(I):= (v +N").
j=1
Since E(I) is a semigroup in an affine space with dimension n, it follows from the theorem
of Caratheodory in convex analysis that
n times

E(I)+ ...+ E(I)C conv(E(I)).

In terms of ideal inclusions, this means that T C I. As a matter of fact, this is a particular
case of a very important result, that we will state for the moment in the case of the local
ring O,,.
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Theorem 1.1 (Briangon-Skoda). Let I be an ideal in the local ring O,,, generated by
p elements. Then, for any A > 1, one has

[A-1+inf(p,n)  [*, (1.3)

Proof. Let us suppose first that p < n and that the f; define a regular sequence in O,.
We will suppose that the f; are holomorphic in a neighborhood V' of the origin in C™ and
that V; contains the origin. The first thing to use is that, if I is generated by a regular
sequence fi, ..., fp, one has, for any strictly positive integer A

I = N (f2, e £37)

AENP
A+ FAp=Atp—1

(for the proof, which just uses the standard definition of quasi regularity, see [LiT], p.
106). Let ¢ be a (n,n — p) test form with support in V, which is assumed to be closed
in a neighborhood of V;. It follows from the coaerea formula ([Fe], theorem 3.2.11, p.248)
that the function

€ €]0, co[P mesay,—, (Supp ¢ N Supp T'f(€)) = b5, (Ve).

is integrable in |0, co[P. Moreover, one has

lim Ot (Ve)der .. .de, =0.
70 e1+...+€p<n

Then, it is possible to find a sequence (e*)) in ]0, co[? which tends to 0, is such that

o®

0<y< o5 <I<0,1<4,j<p, (1.4)
€
J

and is such that I'f (e(®)) corresponds to a smooth real analytic chain and

lim mesg,_p,(Supp ¢ N Supp ['(e))) =0.

k— o0

Let us fix A € N* and take h in the integral closure of the ideal I*~1*P. Then, on the set
Ty (e®)) N Supp ¢, one has

R(Q)] < Clmax(el®)A-1+»

for some constant C' > 0. This follows from the fact that h satisfies a relation of integral
dependency over the ideal I*~1*P. Take now A, ..y Ap in N such that Ay + ...+ A, =
A+ p— 1. Then, one has on I'y(e*)) N Supp ¢

] > (min(el) A1
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Therefore, one has, taking into account (1.4),

lim hp

=0
Ap+1 )
ki— 00 Ty (eR) f1>\1+1 o fpp+

which means exactly

he
Res [fAle )\p+1} =0.
IO £
Using the duality theorem, we get that A € ( 1)‘1, ey f;‘ ?) and the conclusion of our theorem
follows.

Since any ideal J in O, is such that

J=((J+MF),

k>0

where M is the maximal ideal, in order to prove that
I>\+(n—1) C IA

for any ideal, it is enough to do it for any ideal I such that the radical of I is the maximal
ideal. In this case, a classical result of Northcott-Rees [NR] asserts that if /T = M and
I =(f1,..-, fp), p > n, then any system (g1, ..., gn) of generic linear combinations of the f;
(with complex coefficients) is a reduction of I, that is an ideal contained in I which has
the same integral closure than I. Therefore, for any ideal in O,,, for any A € N*, one has

H-1) ¢ 1,

The proof is not complete, since we still have to deal with the general case when p < n and
the f; do not define a complete intersection. A direct proof in this case can be obtained
using the weighted version of the Bochner-Martinelli formula. In fact, the proof when
A = 1 is a consequence of our duality theorem (Proposition 1.2 in chapter 1). A more
careful use of these ideas inspired from the work of Berndtsson-Andersson (see for example
[Elk]) leads to the result for arbitrary \. We will not do it here. ¢

In fact, the result of Briangon-Skoda holds in any regular local ring and can be stated as
follows: if R is a regular local ring with dimension n and I any ideal in R, then, for any

A € N*, one has
IA—}-(n—l) C I>\ .

Moreover, if I is generated by p elements, with p < n, we have
I (-1 ¢ I, X e N*.

This is a result of Lipman-Sathaye [LS]. In this algebraic setting, assuming R noetherian,
the fact that an element in R lies in the integral closure of the ideal I can be tested again
with the valuative criterion whose formulation in this case is:
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Valuative criterion (algebraic version). Whenever 0 is an homomorphism from R in
a discrete valuation ring, then
v(h) > v(I)

where v is the order function on R obtained from this valuation.

In order to conclude this section, we would like to mention an interesting formulation of
Briancon-Skoda theorem in the analytic case, in terms of residue calculus. Suppose that
f1, .-+, fn are n elements in O,, defining a regular sequence and that g1, ..., g,, are n elements
lying in the integral closure of the ideal (f). Then, for any ¢ € N", one has, for any h € O,

hg® Tt gantlge
Res [ 1{114_1’-“,}.}%”_’_1 =0.

This can be expressed just saying that the formal power series

hgP T gintlg )
E Res[ ‘;}tlihﬂ ;qnﬂc} ul' L ud (1.4)
ey [

is identically zero. This power series is

h’gl---gndC :|
R
- [fl — U191, a,fn — Ungn

where the residue calculus is understood over the C[[u]]- algebra C[[uy, ..., un]|[[C1, -- s Cn]]-

2. Residues and properness.

In this section, we will first been interested into global problems. We start with a well
known theorem of Jacobi.

Theorem 2.1 (Jacobi). Let Py, ..., P,, be n polynomials in n variables with respective
degrees D+, ..., D, such the homogeneous parts of higher degree define the origin (the
corresponding hypersurfaces in P™ intersect only in C™). Then, for any polynomial Q)
such that

degQ < Di+...+D, —n—1,

one has

Res {gl(ﬁdé } ~0. (2.1)

Proof. Let us give two proofs, an algebraic one and a geometric one. The algebraic
one goes as follows: consider the homogeneizations P;,...,P,, of the polynomials P;. The
corresponding hypersurfaces define a complete intersection in P™ (this is the geometric
vision) or the homogeneous ideal (Py, ..., Pp) in C[ Xy, ..., X;,| has no embedded component
at the origin (in fact these polynomials define a regular sequence in C[Xy, ..., X,,], which
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is the algebraic vision of the situation). From the Hilbert Nullstellensatz, one knows that
there are polynomials Ry (X4),..., Rp(Xy,) (with respective degrees rq, ..., ry,), such that

Rj(Xj) = ZR]k(X)Pk(X); k= 1, e n.
k=1

At any prime in C[Xy, ..., X,] different from (Xy, ..., X,,), the homogeneizations R, ..., Ry,
of the R; are locally in the ideal generated by the P;, j = 1, ..., n. In fact, since the maximal
ideal in C[Xo, ..., X,] is not an embedded prime in (P4, ..., P,), one has

Rj = ZRjkPk’ _] = 1, .y n, (22)
k=1

for some homogeneous polynomials R ;. Dezhomogeizing (2.2), we get

RJ(X) = Zﬁjkpka j = 1, ey n,
k=1

with
degRjr + Dy, =715, 1 <j,k<n.

Is we use the transformation law (namely its global version), we obtain, for any @ €
C[X1, ..., Xul,

QX)dx] _ Q(X)det[R;3]dX
Res {Ph ---,Pn] = Res [R1(X1), ---,RZ(Xn) . (2.3)

We are led to computations of total sums of residues in one variable and conclude that the
residue symbol is zero provided

degQ+mr+...4rp,—D1—...— D, <r1+...+1r, —n—1,

that is
degQ <D:1+...+4D,—n—1,
which is our result.

The geometric proof (which inspired the original proof of Jacobi) can be described as
follows. Let Py, ..., P, be n+ 1 homogeneous polynomials in n + 1 variables defining cycles
Z; which do not intersect in P™. Then

P"=UyN...NUy,,

where
Z/{j = Pn \ Zj .
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For any homogeneous polynomial Q with degree Dy + ...+ D,, —n — 1, the (n,0) globally
defined meromorphic differential form

Q - —
wp.Q = W(Z(_ly ldeX[J])

n =0

defines a Cech cochain in C™(U, Q3. ), that is an element in H™ (U, P™). Such a class [wp g]
acts (by duality) on the finitely dimensional space H,,(P", C); if we define

Q

J

—1)I"1X.dX;
0( ) J [J]) = Trlwp o],
Po, ey Pr

n

we can state the general residue formula in P™: for any k € {0,...,n},

n
Q —1)771X.d X, =
(J:()( ) J [.7]) — (_1)k Z Res[aZO,...,Zk,...,Zn](wp,g)7 (2.5)
Po, ey P we ) 2
J#k

where

=~ = 1 ©
ReSEXZO,...,Zk,...,Zn](w,P7Q) — Resgzoa-..,zky...yzn]( PyQ )

Pr 11 P;

ik
denotes the computation of the local residue respect to the divisors Z;, j # k (one expresses
everything in local coordinates and is led to computations of local residues as in chapter 1 in
local charts). Coming back now to our problem, if we express in homogeneous coordinates
the differential form in C"

_ . Q
w = P .PndX’
we get
Xé)1+...—|—Dn—n—1—degQQ n .
-1y X,;dX5) -
Pr...Pa (jz::()( ) i9X15))

If we set Py = X, we have immediately

Di+...4+D,—d —n i
QXTI (32 (— 1) N dX ) | _
J

Po, s Pn

n

if deg(Q) < Dy + ...+ D, —n — 1. Jacobi’s theorem follows from formula (2.5) applied
with £ = 0.

Of course, the hypothesis in Jacobi’s theorem deeply involve the fact that the hypersurfaces
defined by the P; do not intersect at infinity in some particular compactification of C”,

21



namely here P"”. We can think about other compactifications and therefore other state-
ments in the Jacobi spirit. The most interesting one concerns the toric point of view. In
order to state this theorem (due to Khovanski), let us define, if F' is a Laurent polynomial
in n variables

F(X)= Y cX{. . X3, ca #0,
a€A(F)CZ™

the support of F' as the set A(F') and, if £ is a direction in (R™)*,

FOX):= Y caX{.. X3,

a€ A(F)
<a,£> minimal

Theorem 2.2 (Khovanskii [Kh]). Let Fi, ..., F}, be n Laurent polynomials in n variables
such that for any direction ¢ € (R™)*, one has

T N{F® =..=F&=0}=0. (2.6)

Then, for any Laurent polynomial G which support lies in the relative interior of

conv(Supp (F1)) + - - - + conv(Supp (Fy))

(that is the interior in the affine subspace generated by this convex polyedra), one has

(2.7)

Res[ GdX } =0.
T

F,.. F,

Proof. The idea of the proof is inspired by the geometric proof of Jacobi formula. Instead
of P" as a compactification of C™, we use a smooth toric variety which is compatible with
all the polyedra A; := conv(Supp F}), j = 1,...,n. Such a variety can be obtained from a
refinement of the fan associated with the convex polyedron

A := conv(Supp (F1)) + - - - + conv(Supp (F,)) .

The Laurent polynomials F1, ..., F}, induce Cartier divisors on this smooth n-dimensional
complex manifold; the conditions (2.6) mean that these divisors intersect only in the torus
T™. One can construct (see [Cox2]) a ring of homogeneous coordinates C|z1, ..., Zs]| asso-
ciated with this manifold; each coordinate x; is in correspondance with a one dimensional
edge of the fan, directed by a primitive vector n;. We can (as in the previous proof) express
the differential form
G(X) dX
Fi(X)...F(X) X;...X,

in homogeneous coordinates, using the parametrisation of the torus, namely

S
— Nij . .<ej,m>
XJ—HJIJ =T 97 )

=1
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which leads to the differential form
G(x<evn> . x<enn>) Q(x)

ﬁ Fj(:lj<61777>7 ...,m<6n777>) T1...Tg
j=1

(2.8)

where Q is the Euler form on the toric variety (exactly like the Euler form in P™). Now,
we use the fact that it is possible to construct [Cox1] a toric residue on this toric variety
X, exactly as we did in the case of P™. Let us just recall that the grading of C[z1, ..., 2]
is a A,—1-grading (here A, _; is the n — 1 Chow group on the manifold), given by

deg(z¥ ... 2%) = [¢1D1 + ... + qsDs],

where the Weil divisors D; are the closed orbits in correspondence with the 1-dimensional
faces of the fan that was used to construct the toric variety (we refer to [Fu] for the
details about divisors and Chow groups on a toric variety). If Fy, ..., F,, are homogeneous
polynomials in zi,...,z,, with degrees &g, ...,d, respect to this grading, such that the

corresponding sections of the line bundles Ox(d;), j = 0, ..., n, do not have common zeroes
n

on X, and G is a polynomial with degree 3 = d; — [D_ Dj], one can define the total
: -

Jj=0 J
toric residue

GQ
fo, ceey fn
as the trace of [GQ/Fy...F,] € H*(X,Q%), considered as acting on H,, (X, Q%). One has
a similar residue formula than in the case of P" (see 2.5). Here the homogeneizations of
the F;, j =1,...,n, are

8 <ami>— min <£a77i>

Filw)= >, ca]]= e

aE.A(Fj) =1

(see for example [CD]). The argument in order to prove Khovanskii’s theorem follows the
geometric argument used in order to prove Jacobi’s theorem. The only thing to check is
that the differential form (2.8) can be written in that case as

G@)
Fi(z) ... Fn(z) (z)

(in fact one can take Fy = 1). We use then the residue theorem on the toric variety. <

Despite of such theorems, there are situations when it is difficult to compactify either C"
or the torus T™ in order to avoid points at infinity, which prevents us from such a result
of the Jacobi type. Nethertheless, a very interesting situation is the situation of proper
maps from C” to C™. In this case, one can find certainly, by means of blowing-ups, a
compactification of C™ such that the divisors induced by the P; on this compactification
do not intersect at infinity. This was suggested to us by A. Dimca. Nethertheless,such a
construction is not effective and we need some more precise vanishing theorem for total
sums of residues. The case when the variety at infinity is discrete has been studied in [Pl].
For the case of proper maps, we can state the following
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Theorem 2.3. Let P = (P, ..., P,) be a polynomial map from C™ to C", such that there
exists strictly positive constants 01, ...,0n,7, K and such that 0 < 6; < D;, D; = deg(P;),
with P
J X|>K. 2.
e AT > > 0, X)) 2 (2:9)

Then, for any @ € C[X4,..., X,], one has

Q(X)dX

Res
q1+1 1
Py s eee Pg"JF

=0 (2.10)

whenever
deg@Q < (1 +1)014 ...+ (gn +1)0, —n — 1.

Proof. A theorem of this kind, less precise, was proved in [BY1], [Y], [FPY], using
Bochner-Martinelli formulas. It was also proved in a more algebraic setting in [BY2],
[BY3], under the restrictive conditions §; = 9, for any 1 < ¢,57 < n and the 1 — §;/D;
smaller than m The key argument used in [BY2], [BY3] was the Briangon-Skoda

theorem. The final step (eliminate all restrictive conditions) is a result due to M. Hickel.

We will give here an analytic proof, in the spirit of [Y] (where the result was proved when
all §; are equal), based on the representation of sum of residues with Bochner-Martinelli
formulas. It seems reasonable to think that such a method could be extended in toric
varieties. The defect of this analytic proof is that it holds only in the analytic setting.
The alternate proof of Hickel, based on Briancon-Skoda theorem, can be extended to the
algebraic situation (thanks to Lipman-Teissier theorem), which is a capital advantage.

Clearly, it is enough to prove the result when ¢ = 0. We can also assume without restriction
that the 6;, j = 1,...,n, are integers, since one can always make the basis change

X;=YN, j=1,..n

where N is a positive integer (in fact a common denominator for the ¢; if those numbers
are assumed to be rational, which of course is always possible).

We will just briefly sketch the proof here. Let M be an integer such that, for any k& €

{1,...,n},
M+6,—Dg>0.

We know from section 1 in chapter 1 that the residue symbol

Q(X)dX
Res [Pl, ...,Pn}

can be expressed as

Q(X)dX — - k—1 (6,R) ; (6,R)
Res |:P17---;Pn = Tn an |P;|2 —R(Z(_l) Sk ds[k] ) /\QdC7
L arix )T k=l
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where

G o
T T i)
and _ S
SGR) . l( P, ) P, )
RN+ || X[|2)0 M2 (1 + || X||2)0n+M

Using the same tricks than in section 1 in chapter 1, we have also

Res [g } / )15 (6)d3(6)) A QdC,
1o B li<li= R k 1

where

30 .— 1 ( 5] Py )
IR o (14 | X2 M7 (1 + || X[[2)on M
Z (L X)2)%

We can rewrite this as

Q(X)dX] ] AN, vko1s 50450 ]
R = n P 1 dsrd) A Qd
€S |:P1, o, P, g _/||§||=R ” ”5 (Z( ) S ) Q C -

k=1

- / 122 (S (=15 5D dsB0) A Qe
|/ ICII=R

k=1

A=0
where
P-|2
P|3:= i .
IPIE =3 ey

We now express in homogeneous coordinates X = (Xo, ..., X,) the differential form

n

IPIFA (Do (~1)* sl Vdsif?) A Qdg

k=1

(when A is a fixed complex number such that ReA >> 1). This leads to a differential form

(p)
Qlf,Q;/\’
which is a (n,n — 1) form in P™, which can be expressed as
n - A
35 1Py [2|Xo 2652030 | % 26
> _ —me1 1 i=1
Q(P) (X)) = XnM+51+...+6n degQ—n—1 il J _ v
raa =% % X2+

o(X)

X p —
(X IP5[2] X0 [0 =Ds+M) || X ||2%1) "
7j=1
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where © is a smooth form,
A=61+...4+ 0, 0 :=A—0;.

We now introduce a 2n chain ¥ in P™ (for example the complement of a union of balls
which are all included in C"), such that the support of ¥ does not contain any of the
common zeros of the P;, but contains the hyperplane at infinity. We have, using Stokes’s
theorem, that for ReA >> 1,

X)dX ~ _ -
Res [ QO8] [ a0, (%)= [B0pu0. 2y

We now follow the analytic continuation of the two members in (2.11) as functions of the
parameter A. In fact, one can show that the value at A = 0 of the right-hand side of
(2.11) is well defined. Here we use the properness hypothesis, which tells us that in a
neighborhood of infinity,

n
[Xo[M < C Y [XoMTPrpy(X), (2.12)
k=1

which means that locally X lies in the integral closure of the ideal generated by the
PkXéMM’ﬁ_D ¥k = 1,...,n. The theorem of Briancon-Skoda, applied locally near any
point at infinity, asserts that X§M lies in this ideal near all such points. We do not use
this result here, but just notice (using resolutions of singularities) that if the condition

nM<nM+6+...+46, —n—1—degQ

is fullfilled, then the right-hand side of (2.11) (computed following the analytic continuation
at A = 0) is zero. This is exactly our result, and the proof is completed. For the details
(at least when all 0, are equal), we refer to [Y]. ¢

As a consequence of this result, we can check immediately that if (P, ..., P,) is a proper
map with separated Lojasiewicz exponents 41, ..., d,, then, for any polynomial ) which is
in C[ X}, ..., X,,], the rational function

Q(X)dX
u > Res [Pl —ul,...,Pn—un

(this object is computed using residue theory in C(u)[Xj, ..., X,]) is a polynomial in u;

since all residue symbols
Q(X)dX
Res |:P1(]1+1(’ )’ Pgn—i-l

are zero as soon as < d,q + 1 > —n is strictly bigger than deg(Q), one can write

Q(X)dX _ @ an

31(q1+1)+...+dn(gn+1)<degQ+n
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In particular, if

P;(Y) - Pi(X) = iij(X, Y)Yk — Xk), 5=1,...,n
k=1

and Bez(X,Y') denotes the determinant of the matrix [G;x(X,Y)], one has

Bez(X,Y) = Z ’Yg,ﬁXgYﬁ
la|+|8|<D1+...+Dp—n

and the residue symbol

Q(X)Ber(X,Y)dX ] _ X2Bex(X,Y)dX | op
Res Pl—’U,l,...,Pn—Un o Z ’Yg’EReS Pl—ul,...,Pn—un Y=
|l +1BI< D14+ Do

is a polynomial in Y, u, which contains monomials u£Y? such that
<p+l6>+v<Di+...+ D, +degQ.

This applies (as a consequence) to the Kronecker’s formula for global polynomials maps.
If (P, ..., P,) is a proper polynomial map with separated Lojasiewicz exponents 61, ..., op,
one can write any polynomial () as

X)X o
Q(Y) = Res [g( a2 ] T 3 BV (PUY ) (P (V)0
1y---54n LE(NT)* . pEND
<u+1,6>+v<Dy+...+ Dy +degQ

When (x)
QX)dx]
Res [Pl,...,Pn} =0

formula (2.13) is an explicit formula in order to express @) in the ideal generated by the P;;

this is the most precise one in this context. The first formula in this direction appeared in
[FPY].

We will conclude here this lesson with the caracterizations of the notion of properness in
terms of residue symbols, both in the global and local case.

e Let K be a commutative field. As we have seen above, a dominant polynomial map from
K" to K", P = (P, ..., P,), is proper if and only if all residue symbols of the form

QdX

Res
P1 — Uly..ny Pn — Uy ’

computed taking as reference algebra the K(u)-algebra K(u)[Xq, ..., X,,], are in K[u]. This
result was proved for the first time by G. Biernat [Bi]. All these ideas are the basic tools
in [FPY] and [Hi-Bo].
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e Let now R be a regular local ring with dimension n (assume that (i, ...,(, are such
that their classes in M/M?2, where M is the maximal ideal, generate @ M?*/M*¥1). Let

S
(f1, -, fn) be a quasiregular sequence in R. In general, when r, A € R, one can remark

that
rd(i A d(,
Res [fl — h’U,l, ceey fn — h’l,l,n:| ’

computed taking as the reference algebra the R/M|[u]]-algebra R[[u]], is an element in
(R/M)[[u]], namely the formal power series

. rd¢y A dén _ rhldld¢ P
F(u) := Res [fl—ulh,,...,fn—unh] = Z Res[ ot e uf' .oule

If h is in the integral closure of (f1, ..., fn), there is a relation of the form

hN+i( N apgfi . fANTE =0,

k=1 |ql=k

where the ay , € R. If the oy , denote the classes of the ay , modulo the maximal ideal,
one can rewrite this relation as -

Y +Z( Z Ok,q e -fgn)hN_k € (fl;---vfn)N+1'

k=1 |g|=k
Let us fix » € R and note

hldld
6(r;q) := Res [ {hﬁ ngnﬂ}

Then, one has, for any ¢ such [g| > N,

N
er,g + Z Z ak7L(9T7__L =

k=1 |1|=k

7"<hIgl + i ( > ak,;ffl ...ffl")h@_k)clc
= Res

=R R=10|1]=k =0,
fQ1+1
1

(2.14)

7% fgn-l-l

since the numerator of this residue symbol lies in (f1,..., f») 4+t c ( atl L, fantl),
Since the coefficients of the formal series F' satisfy such a difference equation, F' is the
formal power series that corresponds to a rational function F' € (R/M)[[u]] with no pole
at 0. Note that this rational function is such that the maximum of the degrees of the
numerator and denominator is less than 2N and therefore does not depend of r. Moreover
the denominator of this rational function is independent of r.
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What is interesting here is that this assertion has a converse, as noticed by M. Hickel:
suppose that there exists an integer M such that for any r € R,

rdC
Res [fl - Ulha ) fn - Unh:|

is a rational function with degrees of the numerator and denominator bounded by M, with
no poles at the origin, with denominator independent of r, let us say

rdC N, (u)
R = .
s |:f1_u1h7"'7f’n_unh:| D(U)
Then, one has
D(u)Res rd¢ = N, (u)
fl_ulha"w.fn_unh " )
Then, if
Dw)=1+ Y &ui...uly,
le(Nm)*
1< M

one has, for any g such that |¢| = 2M,

2M wl I Inp2M—E
r(RM 4 (X aftt . f)R2MR)de

Res k=1 |i|=k =0.

q1+1 fq"+1
1 oy I

But, since (f1, ..., fn) is a regular sequence, we have

(fr, o )™= () (o )

IAl=M+n
Therefore, it follows from the duality theorem that
M
RM LY (Y aht MR e () U ) = (e F) M
k=1 |l|=k Al=M+n

This proves that h is in the integral closure of (fi, ..., fn)-

We have proved the following in this local context:

Proposition 2.1. h is in the integral closure of (fi,..., fn) if and only if there exists
M € N such that, for any r € R, the formal power series

rdC
Res F1— han, e, fr — bty
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is a rational function with degree at most M, denominator independent of r*, and without
poles at 0.

Properness and residue symbols, from the global point of view as well as from the local
point of view, are deeply connected. The key points to elucidate are related with the
geometric interpretation of this concept of multi-valued Lojasiewicz exponent.

[Bi] G. Biernat, On the sum of residues for a polynomial mapping, Bull. Soc. Sci. Lett.
Lotz, Ser. Rech. Deform. 9, 1990, 73-83.

[BY1] C. A. Berenstein, A. Yger, A formula of Jacobi and its consequences, Annales de
I’Ecole Normale Superieure, 24, 1991, 363-377.

[BY2] C. A. Berenstein, A. Yger, Residue calculus and effective Nullstellensatz, preprint.
[BY3] C. A. Berenstein, A. Yger, Residues and effective Nullstellensatz, Electronic Re-
search Annoucements of the AMS, 2, 2, 1996.

[CD] E. Cattani, A. Dickenstein, A global view of residues in the torus, Journal of Pure
and Applied Algebra 117-118, 1997.

[Cox1] D. Cox, Toric residues, Arkiv for Mathematik 34, 1996, 73-96.

[Cox2| D. Cox, The homogeneous coordinate ring of a toric variety, Journal of Algebraic
Geometry, 4, 1995, 17-50.

[Elk] M. Elkadi, Une version effective du theoréme de Briancon-Skoda dans le cas algébrique
discret, Acta Arithmetica, 66, 1994, 201-220.

[FPY] A. Fabiano, G. Pucci, A. Yger, Effective Nullstellensatz and geometric degree for
zero-dimensional ideals, Acta Arithmetica, 78(2), 1996.

[Fe] Federer, Geometric measure theory, Springer-Verlag, New-York, 1969.

[Fu] W. Fulton, Introduction to Toric varieties, Princeton Univ. Press, Princeton, 1993.
[Hi-Bo] J. Y. Boyer, M. Hickel, Extension dans un cadre algébrique d’une formule de Weil,
preprint.

[Kh] A. Khovanskii, Newton polyedra and the Euler-Jacobi formula, Russian Math. Sur-
veys 33, 1978, 237-238.

[LS] B. Teissier, A. Sathaye, Jacobian ideals and a theorem of Briangon-Skoda, Michigan
Math Journal 28, 1981, 199-222.

[LT] M. Lejeune, B. Teissier, Cloture intégrale des idéaux et équisingularité, Publications
de I'institut Fourier, F38402, St Martin d’Heres, 1975.

[LiT] J. Lipman, B. Teissier, Pseudo-Rational local rings and a theorem of Brian¢on-Skoda
about integral closures of ideals, Michigan Math. J. 28, 1981, 97-116.

[NR] D. G. Northcott, D. Rees, Reductions of ideals in local rings, Proc. Cambridge.
Philos. Soc. 50 (1954), 145-158.

[P1] A. Ploski, The Noether exponent and Jacobi formula, Bull. Soc. Sci. Lett. Lotz, Ser.
Rech. Deform. 15, 1993, 53-57.

[Y] A. Yger, How to compute multidimensional residues in the toric context, Conf. Cetraro,
1994 (to appear).

* This last condition is in fact not necessary.

30



3. Duality methods for the effective Nullstellensatz.

1. Kronecker’s formula for proper polynomial maps.
Let Py,..., P, be a polynomial map from C" to C" such that
|55 (X)]

1<j<n || X]|%

>, [IX][= K.

Then, as we have seen in the preceeding chapter, if

Bk )= Y e,
a,fENT -
lel+|8I<Di+...4+Dn—n

one can write

XedX
b= by Yo pRes [plqﬁ'l, - Pgn+1:| YEP (V) ... Py (V)4 =
qENT ,aBENT
<q,64+1>+|8|<Dy+...4+Dp
lal+|8|<Di+...+Dp—n
B Bez(X,Y)dX
=R [P )
XedX
’ 2 TS [P{”“, Pgwl} YER(Y)® ... Pa(¥)™.

gE(N™)*,afENT
<g,6+1>+|B|<Di+...+Dnp
la|+18I<D1+...4+Dp—n

Let us now consider a polynomial Py which does not vanish on the set of common zeroes
of the Pj, j =1,...,n. Let ao1, ..., apn, be n polynomials in 2n variables (X,Y") such that

Py(X)—Py(Y) = zn:aok(X, Y) (X — Yr)
k=1

and Ag, £k = 1,...,n, be the determinant obtained replacing the column with index k in
the Bezoutian determinant Bez(X,Y’) by the column

ao1 (Xa Y)

aon (X, Y)

One can rewrite the identity (1.1) as

_ Bez(X,Y)dX - Ae(X,Y)dX
1= s [P0 o) Y [ M0 e+
Xa&dX 1.9
T Z Ya,pRes [pl‘h“’ __',pgnﬂ} YEP (V) ... P, (Y)%. (1.2)

gE(Nn)*,géeNn
<4,6+1>+|8|<D1+...+Dn
lal+181<D1+...+Dp—n
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This leads to a Bézout identity of the form
1= Qr(Y)Pu(Y).
k=0

(see [BY2], [BY3]). If we now suppose that @) is a polynomial which vanishes on the set
of common zeroes of P4, ..., P, and v denotes the maximum of local Noether exponents of
the polynomial map (P4, ..., P,) at these points (note that the local Noether exponent is
less than the multiplicity), one can write, using the same ideas

) v(X)X2dX
Q"(Y) = > Yo, s Res P?1+(1 ) Pt | YEPL(Y)® Py (V).

ge(N”)*,ggeN"
<g,6+1>+|8|<Dy+...4+Dp+vdeg Q
la|+|8|< D1+ +Dn—n

(1.3)
This is an explicit version of the Hilbert’s Nullstellensatz in this case (see [FPY]). One
can also write such a version of the Nullstellensatz when (P, ..., Pg) is strictly quasi-
regular in the sense of Ploski [CaPl]. This means that one can find Ly, ..., L,k such that
(Py,...,Pg, L1, ..., Lp_k) defines a proper map. This means that there exists Lojasiewicz
exponents 41, ..., 0, such that

k n—k
X)|
E ||X||‘SJ Z IXII5 >, X[ > K.

Then, one can use the Cauchy-Weil’s formula in a bounded connected component A of the
set
{P;(X) < Ry, j=1,.k; |Lj(X)| <Ry, j=1,...,n—k}

that contains all common zeroes of (P, ..., Pg, L1, ..., Lp—g). If

Tr:={CeA, |Pj(X)|=Rj, j=1,...k |L;(X)|=R;j, j=1,...,n—k},
one has, for z in this component

Bez() (¢, 2)d¢
1 :\/I: & n—k
" L0 - B T - 1)

b

where .
(L) _ P
Ber (X, Y) = Z a,ﬂXaY
la|+|8|<Di+...+ Dy —k

denotes a Bézoutian of (P, ..., P,, L1, ..., L,_§). This formula can be transformed as fol-
lows (exactly as in the case k = n studied before). For any Py that does not vanish on the
zero set defined by the P;, with

Po(X) - P()(Y) = a01(X, Y)(X1 - }/1) + ...+ U'On(X; Y)(Xn - Yn);
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one has the Bézout identity:

Bez'H) (X)Y) s (L)
1:Res[ — Ry X ]PO(X)—I-ZRGS[ Ay (X, Y)dX ]Pk(X)—i-
Py, ..;Py Ly, ..., Ly, — Py, ...;Py, Ly, .., Loy,
L X2dX
+ > 7;513‘65 [Pl‘h*l,...,P,gk“,L‘{’“““,...,Lg"_*,;l} %
gENT,(q1,---,q)#0, aBENT
<g,6+1>+|B8|<D1+...4+Dp+n—k
lel+[8I<D1+..-+Dp—k
x YEP ()0 ... P(Y)® LI+ (Y) ... Lo (V).
(1.4)

In the above formula, Bez") is a Bézoutian of Py, .. P Lq,.. L, ; and the A,(CL) are

obtained as before substituting to the column with intex k in the determinant Bez") the

column
aopl (X, Y)

aon (X, Y)

Of course, in this kind of construction, one could think about an optimum choice of the
L; in order that the Lojasiewicz exponents (01, ..., d,) are (if possible) all maximal. We do
not know which corresponds to the optimum choice here.

Such a Kronecker’s formula holds in the sparse situation, when one deals with Laurent
polynomials instead of polynomials.

Let Fy, ..., F,, be n Laurent polynomials, with respective supports As,...,/A, (with convex
closed enveloppes Ay, ...,A,). Suppose that all relative interiors of the A;, 7 =1,...,n,
contain the origin. Then, if the condition that ensures that the Cartier divisors induced
by the F; on the toric variety X'(A1 + ...+ A,) intersect only in the torus are satisfied,
and G is a Laurent polynomial with support in

ﬂ U relative interior (A + ...+ (I +1)A; + ...+ Ay],
j=11eN
then, the toric residue symbols

G(X)dX n
Res [quri—l( ) Fqn+1:| 4 € N
yoeny B T

are zero as sOOn as
Supp G Crel. int. [(g1 +1)A1+ ...+ (¢gn +1)A,].

It follows then that

Res [ G(X)dX ]T 7

F1 — Ui, ---;Fn — Unp
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where the u; are complex parameters (this residue symbol makes sense since the F; — u;

j =1,...,n, define a discrete variety in the torus) can be expanded as

Res G(X)dX _
Fl—ul,...,Fn—un T
G(X)dX
= Z Res [qui-l( ) Fan+1 ui ...
= 1 R k) T

Supp GgZrel. int. [(g1+1)A1+...+(an+1)An]

that is, as a polynomial in u = (g, ..., Uy).

n

'k

(1.5)

Let us suppose also that the A; are polyedra with dimension n and let us introduce the

“saturated” polyedra A; in R?" which are the closed convex enveloppes of the sets

U (&0),(0,n)]

£EA; MEA,

Then, as in the affine case, we can introduce a Bézoutian such that

Bez(X,Y)X;...X, = > Ya,s X2YE
a,BENT

(@.B)EA I+ +Ap

and get the following Kronecker’s identity

| = Res | X1+ XnBea(X,¥)dX]
F,..,F, -
Xeqx
+ Z ’Yg,ﬁReS [F]?l—i—l’ csey Fqn+1 T YEF]-(Y)QI e Fn(Y)qn °

aE(NT)* (aB)E€AL+...+An
agrell int. [(q1+D)A1+...+(an+1)An]

(1.6)

If Fy is a Laurent polynomial which does not vanish on the set of common zeroes of the
F;, 1 <j <mn, in the torus and the Ay, k = 1,...,n, are Laurent polynomials constructed
as before when substituting to the column with index k in the Bézoutian determinant

Bez(X,Y) the column
aop1 (X, Y)

7

Qaon (X, Y)

where the ag satisfy

Fo(X)—Fo(Y) = iaOk(X, Y) (X — Yi),
k=1
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one deduces from (1.5) the Bézout identity

_ X;...X,Bez(X,Y)dX - X1.. X AR (X,Y)dX
1 = Res [ P .. F, ]TFO(X) + E Res [ P F TFk(X)—i—
k=1
X2dX
+ Z WQaﬂReS [FQ1+1 Fq“+1:| YﬁFl (Y)ql e Fn(Y)Qn .
L A Bt L Fatt ]
aE(N™)* (af)EAL+...+Ap
agrel. int. [(g1+1)A1+...+(an+1)An]
(1.7)

One can also state in this case a version of the algebraic Nullstellensatz, exactly with the
same idea one uses in the affine case.

Nethertheless, such statements dealing with systems of sparse polynomials are deeply con-
nected with the fact that n of them, namely Fi,..., F,,, do not have common zeroes at
infinity. If one wants to lower this condition, it is natural to introduce a notion of proper-
ness in the torus. We will use an analytic approach in order to precise this notion in a
particular case.

Suppose that Fy,...,F, are n Laurent polynomials with respective supports Ajs,...,A,; sup-
pose that the closed convex enveloppes of the A;, j = 1,..., k, are all equal to a polyedron
A, which contains the origin as an interior point. Another way to express that the divisors
induced by the F; on the toric variety X'(A) do not intersect at infinity is the following:
there are two constants v > 0, K > 0, such that, for any ( € C",

max Re<§,(>
IRe(Q)]| > K = max |F(e, .., )| > yeca .
1<k<n

When Fi,..., F,, induce divisors that intersect at infinity on the toric variety X(A), it
is natural to introduce the weaker following concept: the map F = (Fi,..., F,,) will be
proper (respect to the torus embedded in the toric variety X' (A)), if one can find a convex
polyedron 4, also containing the origin as an interior point, with § C A, such that there
exists two constants v > 0, K > 0, such that, for any ( € C™,

max Re<§,(>
IRe(O)l] > K — max [Fy(eC?, ..., )] > ye 65
1<k<n

If such is the case, one can show that, for any Laurent polynomial G, for ¢ € N™ such that
|q| is large enough, one has

Res[ G(X)dX ]T:O

q1+1 n+1
FOrl Rt

As in the affine case, for any Laurent polynomial GG, Kronecker’s formula,

G(Y) = Res [

G(X)X:...XnBez(X, Y)dX}
Fi— Fy(Y),...,F, — F,(Y)
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provides an algebraic identity
G(X)Bez(X,Y )
G(Y) = > Res [F§+)1 (Fqn+2 Pi(Y)T . P, (V).
4EN™,|¢|<C(Q) toormie

Such an identity can be used in order to solve Bézout identities or explicit formulations of
the Hilbert’s Nullstellensatz. It seems an interesting problem to understand this properness
condition in algebraic terms (that is in terms of integral dependence at infinity), using the
ring of homogeneous coordinates associated with the toric variety X(A). The natural
result one could predict would be the following:

Question. Suppose that there exists n convex polyedra with rational vertices, containing
the origin as an interior point, and such that there exists two constants v > 0, K > 0,
such that, for any ( € C"

|Fk(e<1, - eC")|

[Re(©)]] > K = max “ECnt il >y,
6565k
Is it true that, for ¢ € N",
. G(X)dX
Supp G C int. ((g1 +1)d1 + ...+ (¢ + 1)) = Res Fq1_|_1( ) Fatl | = 0°?
ey O T

2. Nullstellensatz and degree estimates.

Suppose that P, ..., P, are n polynomials in C[ X}, ..., X,,] defining a discrete variety and
let v be the sum of the local Noether exponents at all common zeroes of Py, ..., P,. Then,
one can find, for each j € {1,...,n}, a polynomial with degree at most v in the variables
(X1,..., X;,) which lies in the ideal generated by Py, ..., P,,. Let us suppose that ¢ is the
Lojesiewicz exponent at infinity, that is

1Pl
6 := max{r € R, liminf
{ HE=E

We will suppose here that § < 0 (the case § > 0 has been studied in our second lesson).

Taking the homogeneizations R1(Xo, X1),...,Rn(Xo, Xy), of the R;, j = 1,...,n, one has,
for some constant C' > 0 and in a compact neighborhood U of the origin in C"*1!,

> 0}.

| Xo[PHPIR;(Xo, X;)| < C D |Xg ~P¥Pr(Xo, -, Xn),
k=1

where Py is the homogeneized version of Py, D = deg P, k=1, ...,n, D = max Dy. We
use Briangon-Skoda’s theorem, which allows us to write

(X(|)6|+DR Xo, Zujk XO,---, )XmaX(|6| D)= DkP (X07"'aXn)7 J: ]-7 ey
(2.1)
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If we deshomogeneize (2.1), we get
n
R(X;)" = ZRjk(X)PIc(X)a j=1..,n, (2.2)
k=1

where we have
degRji, < n(v+0])+(n—1)D, 1 < j,k<mn. (2.3)

The same argument can be used for inconsistent systems: suppose that (P, ..., Py,) define
a sequence of polynomials without common zeroes, and such that

1Pl

0 := max{r € R, liminf ——— > 0}.
t licl—oo [ICII 4

Then, one can find polynomials @, ..., @, such that

1=PQ1+...+ PpQn, deg (P;Q;) < n(max(—6,0) + D).

3. Perron’s theorem and size estimates.

Our goal in this section is to compute residue symbols of the form

X)dX
Res [pglgl(,...),pqnﬂ] : (3.1)

when the polynomials @, p1, ..., p, have coeflicients in a regular factorial domain A. Since
we are interested here into arithmetic problems, we will deal with situations where the
algebra A[Xy,..., X,] is equipped with a logarithmic size: the two important examples
we will treat here are the example of A = Z[uq, ..., 44|, the sizes induced on Pol A :=
A[(Y:)ien] being the the sizes

to(P) := Cdeg, P +/ log | P (e, ..., e"*)|df; . ..d0,, P € PolA

[0,27]™
and the example A := Fp[uy, ..., ug], the size induced on Pol A in this case being

t(P) :=deg,P, P € PolA.

Let us deal with the case A = Z and consider a quasi-regular sequence (p1,...,pn), Pj €
Z[X,, ..., Xn], the quasiregularity being unterstood over C. The first idea in order to
compute express residue symbols of the form (3.1) is to use the algebraic Nullstellensatz.
For example, one can use the transformation law and the set of formulas (2.2). Of course,
using plain linear algebra it is possible to assume that such relations are with rational
coefficients, or, raising denominators, that they can be written

5;(X;) = Zsjkpm Sj, Sjk € L[ X1, ..., Xy] .
k=1
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Since a rough estimate for the degrees of the S; and the S, is k(n)D™ (using Brownawell’s
estimate for |§], see [Brl]), the estimate one can predict for the size of the polynomials

S;, Sjk is k(n)D™ uax t(p;), if t is the size on Pol(Z).
<j<n

Question. It is a natural question to ask whether the well known Perron’s theorem [Pe,
Satz 57] can be precised if for example it is settled over a field with parameters such that
C(u1, ..., uq), the Pj, j = 0,...,n, being in Clus, ..., uq]) whether, given n + 1 polynomials
in Clu, ..., ug)[ X1, ..., Xy], Do, ., P, 1t is possible to find an integral dependency relation

Q(“aPO) "'7pn) =0

with coefficients in Cluy, ..., uq|, such that the weighted degree (as in Perron’s theorem)
of the polynomial Q(u,Y) in'Y (with the weight in Y; being D; = degx(p;)) is at most
Dy ...D,, and the weighted degree of Q(u,Y) in u (with the weight in Y; being p; =
deg,(pj), j =0,...,n) is at most g . .. .

At the moment, we have no idea about such a result. It may be possible that the construc-
tion of [Elk-Mo], where the relations of integral dependence are given by non zeroes minors
with maximal rank in the Bézoutian matrix, could provide relations of integral dependency
with balanced control respect to degree and logarithmic size ( respectively degree in X and
degree in u in our example). Something else that seems to be noticiable in this direction
is the fact that if one considers the ¢ +n + 1 polynomials (u1, ..., g, Po, P1, .-, Pn) iID N+ ¢
variables, one can find a non trivial relation of integral dependence

Q(ula ---3 Ug, Do, "'Jpn) =0

n

with total degree at most [](p; + Dj). If the p;, 7 = 1,...,n, define a regular se-

i=0
quence on C(u)[X7q, ..., Xp], such a relation is a relation of integral dependency of py over
C(u’ph "'7pn)'
Nethertheless, if p1, ..., p, are polynomials with coefficients in a factorial regular ring A
(with fraction field K), equipped with a size, defining a dominant sequence in K[ X1, ..., X,,],
we can use the theorem of P. Philippon [Ph] which ensures one has estimates in accord
with arithmetic Bézout theory [BGS] for the size of an element §; € Afvy,...,v,]* such
that

n

8 (V0, - 0n) = ¥ _(pj — v;) @k (v, X) + (X; — v0)gjo(u, X), gjr € Alvg, ..., vn, X].
k=1

If the degrees of the polynomials are bounded by D and the sizes bounded by A (to fix ideas,
we take here A = Z), we have the following control, in k1(n)D™, where D = max deg(p;)
<j<n

for the degrees (in v) and ka(n)D™(h + D) for the sizes. From the relations
§;(X;, Py, Pa) =0, j=1,...m, (3.2)
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it is possible to compute (and therefore estimate the size) the residue symbols

Res[ Q(X)dX }

q1+1 n+1
pll ,---ap% +

This is done using the identities

QNX 15 g QO Not ol e

Res a
t|g|+1’p1 - OA]_t, eeey Pn — Oént

1 -ty

the identities (3.2) rewritten as

t% (Rj(a, X;) — tS;(t, a, X)) = Z Bji(t, o, X, p1y ey Pn) (D5 — 4t)
k=1

and the generalisation of the transformation law proposed in the first chapter (see formula
(2.3) in chapter 1). The estimates we get for numerators and denominators of such residue
symbols are of the form «(n)|q|D"(h + D) + h(Q) (see [BY2], [BY3]).

4. An explicit version of the effective Nullstellensatz.

Consider P4, ..., P, m polynomials without common zeroes (let us say for the moment with
complex coefficients). Let (p1, ..., pn) be n generic linear combinations of the P; defining a
normal system, that is any subfamily of the family (p1,...,pn) is quasiregular). We know
(from Kolldr’s theorem [JKS]) that there is a constant v such that for any such family
(Pi)icz, one has

s deg p;

min(L, d(¢, VI»)}]I
14|l

(with the restriction that the degrees are at least 2). With the Noether normalization

lemma, one can show that it is possible to find n linear forms (independent), Ly, ..., Ly,
such that the map

max |£i(€)] > 7

(Lan+1ﬁ17 L) Lgn-l-lﬁn)

is proper (with Lojasiewicz exponent at least 1). In fact, one can show later on that the
choice of these linear forms is in fact generic.

Once these forms have been chosen, one can find a linear combination (also generic) of
the P;, 7 = 1,...,n, which does not vanish on the zero set of the p; = L;p;, j = 1,...,n.
We can use the formulas in section 1 of this chapter with the system of polynomials
Py, Pj,j =1,...,n, where P; := Lan"'lpj, 7 =1,...,n and make explicit a Bézout identity

1=PyQo+PiQ1+...+ P,Q, .
We obtain with this process an effective Bézout identity
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which happens to be economic respect to degree and size estimates. This identity respects
the field over which the P; are defined. Moreover, if the entries P; have degree estimates
in D and logarithmic size estimates in h, the degree estimate for the Q; is in k1 (n)D",
while the size estimate for them is in kg (n)D%™ (h 4+ D + logm). These estimates are
far to be optimum, since an arithmetic version of Bézout’s theorem (as in [BGS]) predicts
there could be height estimates in x(n)D"™(h + D + m). It seems that the Cauchy-Weil’s
formula, though used as here in some rather artisanal way, could provide an interesting
joint solution to the arithmetic and geometric division problem. Note that the pairing of
arithmetic cycles and Green currents (that is analytic tools) provides already a solution to
the arithmetic and geometric intersection problem (see [GS]).
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