

ANNÉE 2010

UE: MHT734

Épreuve: Devoir surveillé d'Analyse Complexe

Date: 2 Novembre 2010 Durée: 3 Heures

Épreuve de Monsieur: Philippe Charpentier

Tous Documents Interdits

Exercice I

Soit $\mathbb{D} = \{z \in \mathbb{C} \text{ tels que } |z| < 1\}$ le disque unité du plan complexe. Soit f une fonction holomorphe dans \mathbb{D} injective.

- I. Enoncer le Théorème de l'application ouverte (pour les fonction holomorphes). Montrer que f est un difféomorphisme de $\mathbb D$ sur $f(\mathbb D)$ (i.e. que f' ne s'annule pas).
- 2. Soit $\sum_{n=0}^{\infty} c_n z^n$ le développement en série entière de f. Montrer que la surface de $f(\mathbb{D})$ (i.e. $\int_{f(\mathbb{D})} d\lambda$, λ mesure de Lebesgue) est égale à $\pi \sum_{n=1}^{\infty} n |c_n|^2$ (utiliser la formule de changement de variables).

Exercice II

Soient f et g deux fonctions entières (i.e. holomorphes dans \mathbb{C}).

- 1. On suppose qu'il existe une constante C > 0 telle que, pour tout $z \in \mathbb{C}$ on a $|f(z)| \le C |g(z)|$.
 - (a) Montrer que le quotient f/g est bien défini et est une fonction entière.
 - (b) Montrer qu'il existe une constante λ , $|\lambda| \le C$, telle que $f = \lambda g$.
- 2. On suppose qu'il existe deux constantes A et B et un entier $k \ge 1$ tels que, pour tout $z \in \mathbb{C}$, on a $|f(z)| \le A + B|z|^k$. Monter que f est un polynôme.

Exercice III

Soient $\mathbb{D} = \{z \in \mathbb{C} \text{ tels que } |z| < 1\}$ le disque unité ouvert centré à l'origine du plan complexe et \mathbb{T} sa frontière. Pour tout $w \in \mathbb{D}$ on considère la fonction

$$\varphi_w(z) = \frac{w - z}{1 - \overline{w}z}.$$

- 1. Montrer que φ_w est holomorphe dans \mathbb{D} , continue sur $\overline{\mathbb{D}}$, et que $\varphi_w(\mathbb{D}) \subset \mathbb{D}$ (on pourra d'abord remarquer que, pour $z \in \mathbb{T}$ on a $|\varphi_w(z)| = 1$).
- 2. Vérifier que $\varphi_w(w) = 0$, $\varphi_w(0) = w$ et $(\varphi_w \circ \varphi_w)'(0) = 1$ et en déduire que $\varphi_w \circ \varphi_w$ est l'identité (on pourra soit faire un calcul direct soit appliquer le Lemme de Schwarz).

3. Soit f une fonction holomorphe de $\mathbb D$ dans $\mathbb D$. Montrer que pour tous $z,w\in\mathbb D$ on a

$$\left| \frac{f(w) - f(z)}{1 - \overline{f(w)}f(z)} \right| \le \left| \frac{w - z}{1 - \overline{w}z} \right|$$

Indication. On pourra appliquer le Lemme de Schwarz à la fonction $\varphi_{f(w)} \circ f \circ \varphi_w$.

Exercice IV

Soient Ω un ouvert connexe du plan complexe et f une fonction holomorphe de Ω dans lui-même. On pose $f^{[1]} = f$, et, pour tout entier $n \ge 2$, $f^{[n]} = f \circ f^{[n-1]}$. De plus on note $\Omega_n = f^{[n]}(\Omega)$, $n \in \mathbb{N}$. On suppose que Ω_1 est relativement compact dans Ω .

- 1. Montrer, par récurrence sur n, que Ω_n est un ouvert relativement compact dans Ω_{n-1} (on pourra montrer que $\overline{\Omega_n} \subset \Omega_{n-1}$) et en déduire que l'intersection K des Ω_n est fermée puis que c'est un compact de Ω .
- 2. Déduire de ce qui précède qu'il existe une suite strictement croissante $(n_k)_k$ d'entiers telle que la suite $(f^{[n_k]})_k$ converge, uniformément sur tout compact de Ω , vers une fonction holomorphe $g:\Omega\to\Omega$ telle que $g(\Omega)\subset K$.
- 3. Soit $z \in K$. Pour tout entier k soit ξ_k un point de Ω_1 tel que $z = f^{[n_k]}(\xi_k)$.
 - (a) Montrer qu'il existe une sous-suite convergente $(\xi_{k_p})_p$ de la suite $(\xi_k)_k$ et soit $\xi \in \overline{\Omega_1}$ sa limite.
 - (b) Montrer que $\lim_{p\to+\infty} f^{\left[n_{k_p}\right]}(\xi_{k_p}) = g(\xi)$ (remarquer que la suite des dérivées des fonctions $f^{\left[n_{k_p}\right]}$ converge vers g' uniformément sur $\overline{\Omega_1}$ et utiliser les accroissements finis) et conclure que $g(\Omega) = K$.
- 4. Montrer que, si g n'est pas constante, alors nécéssairement $K = \Omega$.
- 5. Conclure que K est réduit à un point.