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1 Introduction

The study of Dirichlet series of the form
∑∞
n=1 ann

−s has a long history beginning in the
nineteenth century, and the interest was due mainly to the central role that such series
play in analytic number theory. The general theory of Dirichlet series was developed by
Hadamard, Landau, Hardy, Riesz, Schnee, and Bohr, to name a few. However, the main
results were obtained before the central ideas of Functional Analysis became part of the
toolbox of every analyst, and it would seem a good idea to insert this modern way of
thinking into the study of Dirichlet series. Some effort has already been spent in this
direction; we mention the papers by Helson [10, 11] and Kahane [12, 13]. However, the
field did not seem to catch on. It is hoped that this paper can act as a catalyst by pointing
at a number of natural open problems, as well as some recent advances. Fairly recently,
in [7], Hedenmalm, Lindqvist, and Seip considered a natural Hilbert space H2 of Dirichlet
series and began a systematic study thereof. The elements of H2 are analytic functions on
the half-plane

C 1
2

=
{
s ∈ C : Re s >

1
2

}
of the form

f(s) =
+∞∑
n=1

ann
−s (1.1)

where the coefficients a1, a2, a3, . . . are complex numbers subject to the norm boundedness
condition

‖f‖H2 =
( +∞∑
n=1

|an|2
) 1

2

< +∞.

In a natural sense, this is the analogue of the Hardy space H2 for Dirichlet series. In [7],
the pointwise multipliers of H were characterized, and the result was applied to a problem
of Beurling concerning 2-periodic dilation bases in L2([0, 1]). The reader is referred to [8]
for some historical comments on the topic. We need to introduce the right half plane

C+ =
{
s ∈ C : Re s > 0

}
,

and the space H∞ of bounded analytic functions on C+ which are given by a convergent
Dirichlet series of the form (1.1) in some possibly remote half-plane Re s > σ0. By a
theorem of Schnee [17], which was later improved by Bohr [1], the Dirichlet series for a
function in H∞ actually converges on C+.

2 Multipliers

We formulate the main result of [7]. We say that an analytic function on the half-plane C 1
2

is a multiplier on H2 if ϕf ∈ H2 whenever f ∈ H2.

THEOREM 2.1 The collection of multipliers on H2 equals the space H∞.
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The above theorem is analogous to the following well-known result for Hardy spaces: the
(pointwise) multipliers of H2 are the functions in H∞. A noteworthy difference, however,
is that the multipliers in the Dirichlet series case are defined as bounded and analytic
on a bigger half-plane than the functions in the space. It should be mentioned that the
proof of the above theorem in [7] is based on modelling H2 as the Hardy space on the
infinite-dimensional polydisk D∞, an idea which goes back to a 1913 paper of Bohr.

3 Convergence issues

The convergence and analyticity of f ∈ H2 given by the series (1.1) in the half-plane C 1
2

is
a simple consequence of the Cauchy-Schwarz inequality. A deeper fact is that the boundary
values of f on the ’critical’ line ∂C 1

2
= {s ∈ C : Re s = 1

2} are locally L2-functions (see
[15, formula (29), p. 140] or [7, Theorem 4.11]). It is well-known that functions in H2

need not have any analytic continuations beyond the half-plane C 1
2
, and so the Dirichlet

series need not converge in any strictly larger open half-plane. The question, then, is what
happens precisely on the boundary ∂C 1

2
. Here, we can compare with Carleson’s theorem for

Fourier series: given f ∈ L2 on the unit circle, the corresponding Fourier series converges
almost everywhere [2]. Recently, Hedenmalm and Saksman [9] established the validity of
the counterpart for Dirichlet series of Carleson’s convergence theorem (R is the set of all
real numbers).

THEOREM 3.1 Let
∑+∞
n=1 |an|2 < +∞. Then the series

+∞∑
n=1

an n
− 1

2 +it

converges for almost every t ∈ R.

The proof uses an equivalent dual formulation of the strong L2 maximal function esti-
mate used to prove Carleson’s theorem, in the form of a Strong Hilbert inequality.

PROBLEM 1 Suppose the function

f(s) =
+∞∑
n=1

an n
−s

belongs to H∞, so that the series converges on C+. Does the series then also converge
almost everywhere on the imaginary axis?

We mention another type of convergence theorem. Given a function f of the form (1.1),
we form the functions

fχ(s) =
∞∑
n=1

an χ(n)n−s, (3.1)

where χ(n) is a character, which means that χ(1) = 1, χ(n) ∈ T for all n, and χ(mn) =
χ(m)χ(n) for all m and n. The functions fχ are known as the vertical limit functions
for f . The terminology is explained by the fact that fχ(s) is obtained from f as a limit
of a sequence of vertical translates f(s − it), with t ∈ R. Each character is determined
uniquely by its values on the set of primes P = {2, 3, 5, 7, 11, . . .}, and the values at different
primes may be chosen independently of each other. The set of all characters is denoted
by Ξ, and we realize that it can be equated with the infinite-dimensional polycircle T∞ by
identifying each dimension with a prime number (see [7] for details). The polycircle T∞
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has a natural product probability measure defined on it, denoted d$, the product of the
normalized arc length measure dσ in each dimension. The set of characters Ξ constitutes
the dual group of the multiplicative group of positive rationals Q+, if the latter is given the
discrete topology. The Haar probability measure on the compact group Ξ coincides with
d$. A natural question arises: given f ∈ H, what is the almost sure convergence behavior
of the series (3.1) for fχ(s), where s is a point in the complex plane, and χ is a character?
It is mentioned in [7] that for almost all χ, fχ(s) extends to a holomorphic function on
the right half plane Re s > 0, and that this is best possible. The behavior of most of the
vertical limit functions is thus in sharp constrast with that of individual functions! As a
matter of fact, in [11] (see also [7], Theorem 4.4), Helson shows that for almost all χ, the
Dirichlet series (3.1) actually converges in the half-plane Re s > 0. By Theorem 4.1 of
[7], the function fχ(it) makes sense as a locally L2 summable function on the real line, for
almost all χ. This makes us suspect that we have convergence in (3.1) for almost all s on
the imaginary line Re s = 0 and almost all χ. In [9], the following theorem is obtained.

THEOREM 3.2 Let f ∈ H be of the form (1.1), and let fχ ∈ H be defined by (3.1).
Then the series

fχ(it) =
∞∑
n=1

an χ(n)n−it

converges for almost all characters χ and almost all reals t.

It is possible to use the above theorem to derive estimates of the almost sure growth
behavior of partial sums of random characters. More precisely, we have, almost surely,

N∑
n=1

χ(n) = O
(√

N logN
(

log logN
)1/2+ε

)
, as N → +∞.

PROBLEM 2 Find the best possible growth bound for the almost sure behavior of the
above partial sums.

This problem has an unmistakable Erdös-type flavor, in its combination of probability
and number theory. And sure enough, in [3, pp. 251–252], Erdös states as a problem
to determine the almost sure growth of the analoguous sums, where the χ(p) for prime
indices p are replaced by independent random variables assuming the values ±1 with equal
probabilities 1

2 . Erdös looks to compare the growth of the partial sums with the classical
law of the iterated logarithm (see [19]), where all the terms χ(n) are independent and
take values ±1 with equal probabilities 1

2 . In Erdös’ problem, as in ours, the characters
have the multiplicative property χ(mn) = χ(m)χ(n), which reduces the randomness and
introduces a number-theoretic ingredient. A complete solution should thus shed light on
the multiplicative structure of the integers. Some progress on Erdös’ problem was obtained
by Halász [5].

4 Composition operators

Let f ∈ H2 be of the form

f(s) =
+∞∑
n=1

ann
−s, s ∈ C 1

2
.

Fix a k = 1, 2, 3, . . .. Then

fk(s) = f(ks) =
+∞∑
n=1

ann
−ks, s ∈ C 1

2
,
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is another function in H2, of the same norm as f . In other words, if Φ(s) = ks, and CΦ is
the associated composition operator,

CΦf(s) = f ◦ Φ(s), s ∈ C 1
2
,

then CΦ is an isometry on H2. One would tend to ask what other kinds of composition
operators might be around. Recently, Gordon and Hedenmalm found a complete answer
to this question. The space D consists of somewhere convergent Dirichlet series.

THEOREM 4.1 An analytic function Φ: C 1
2
→ C 1

2
generates a bounded composition

operator CΦ : H → H if and only if:
(a) it is of the form

Φ(s) = ks+ φ(s),

where k ∈ {0, 1, 2, 3, . . .} and ϕ ∈ D; and
(b) Φ has an analytic extension to C+, also denoted by Φ, such that

(i) Φ(C+) ⊂ C+ if k > 0, and
(ii) Φ(C+) ⊂ C 1

2
if k = 0.

This constitutes a genuine Dirichlet series analogue of Littlewood’s subordination prin-
ciple [14]. Indeed, in case Φ fixes the point +∞, which happens precisely when k > 0, the
composition operator CΦ is a contraction on H2.

Note that we again have this dichotomy that sometimes the half-plane C 1
2

is relevant,
and sometimes we need the whole right half plane C+ instead.

PROBLEM 3 Suppose α = Φ(+∞) ∈ C 1
2
. Find the optimal estimate of the norm ‖CΦ‖

in terms of α. Note that it is clear that ζ(2 Reα) ≤ ‖CΦ‖2.

PROBLEM 4 Characterize the compact composition operators on H2. Compare with
Shapiro’s characterization [18] of the compact composition operators on H2 in terms of the
Nevanlinna counting function.

5 Integral means

It is well-known that the norm on H2 can be expressed in terms of integral means of the
function itself, provided the function is “nice”. Suppose

f(s) =
+∞∑
n=1

an n
−s,

where the sum is finite, that is, all but finitely many of the an’s are 0. We might call such
functions Dirichlet polynomials. Then

1
2T

∫ T

−T
|f(σ + it)|2dt→

+∞∑
n=1

|an|2

n2σ
as T → +∞, (5.1)

for each real σ. We can think of this as a Plancherel formula. However, it is not really
useful for calculating the norm of functions in H2, as such functions need not even be
defined along the imaginary axis where the integral mean should then be computed. In
fact, functions in H2 need only be defined in C 1

2
, which is quite far from the imaginary

axis! We shall view (5.1) as a combination of two things:

• a Plancherel formula, and
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• an ergodic theorem.

The “genuine” Plancherel formula involves the characters we met earlier:∫
Ξ

|fχ(σ)|2d$(χ) =
+∞∑
n=1

|an|2

n2σ
,

where we recall the notation

fχ(s) =
+∞∑
n=1

an χ(n)n−s

for the vertical limit function associated with the character χ. The characters of the form

χt(n) = n−it, t ∈ R,

constitute a dense “one-dimensional” subset of Ξ; moreover, we can think of them as the
result of a motion in Ξ. To make the latter idea precise, just think of the transformation
Tt(χ) = χtχ which moves the point χ along the time flow parametrized by t. This flow is
ergodic, because there are not subsets of Ξ of intermediate mass (that is, not equal to 0 or
1) which are preserved by it. The general ergodic theorem then says that the time average
along the flow of a continuous function equals the space average, that is, the integral. And
the limit

lim
T→+∞

1
2T

∫ T

−T
|f(σ + it)|2dt = lim

T→+∞

1
2T

∫ T

−T

∣∣fχt(σ)
∣∣2dt

is exactly a time average, whereas ∫
Ξ

|fχ(σ)|2d$(χ)

is the space average. Now, we see that (5.1) holds for more general Dirichlet series f ; what
is needed is that fχ(σ) defines a continuous function of χ ∈ Ξ. For instance, this is true
for all σ with 0 < σ < +∞ if f ∈ H∞.

PROBLEM 5 Suppose f ∈ H∞, so that f has well-defined nontangential boundary val-
ues almost everywhere on the imaginary line. Is it true that

1
2T

∫ T

−T
|f(it)|2dt→

+∞∑
n=1

|an|2 as T → +∞?

6 Hardy spaces for Dirichlet series

Suppose f is a Dirichlet polynomial (which means that the Dirichlet series is finite). Fix a
p, 1 < p < +∞. One can show that the limit

lim
T→+∞

1
2T

∫ T

−T
|f(it)|pdt

exists with ergodic methods like in the previous section; it equals the p-th power of the
Lp(Ξ) norm of χ 7→ fχ(0). As a consequence, we can use the above limit to define a norm
on the Dirichlet polynomials, and then form the completion of the space with respect to it.
The result is the space Hp, the Hardy space for Dirichlet series. For each p, the elements
of Hp are Dirichlet series that define analytic functions on C 1

2
, and generally speaking, not

on any other bigger domain.

PROBLEM 6 Find another scale of spaces (perhaps of Orlicz type) which is able to
resolve the jump from finite p when the functions are analytic on C 1

2
, to p = +∞, when

the functions are analytic on C+.

PROBLEM 7 Study the properties of the spaces Hp in more detail.

5



7 General Dirichlet series

The theorem of Schnee [17] (see also the book of Hardy and Riesz [6]) mentioned earlier
says the following: if

f(s) =
+∞∑
n=1

ann
−s

converges in some (possibly remote) half-plane Re s > σ0, and the function has an analytic
continuation to the right half-plane C+, and satisfies the growth bound for each ε > 0,

|f(s)| = O(|s|ε), as |s| → +∞,

in every half-plane Re s > δ with δ > 0, then the Dirichlet series for f(s) converges on C+.
Schnee’s theorem also applies to more general Dirichlet series of the form

f(s) =
+∞∑
n=1

ane
−λns,

where λn ∈ R for all n, and λn → +∞ as n → +∞; the classical case corresponds to
having λn = log n. Schnee’s theorem has certain regularity assumptions on the λn’s. So,
for instance, it does not apply when this sequence of frequences “clumps together” too
much.

PROBLEM 8 Is it possible to handle the case when we have “clumping together” of the
frequencies by enforcing a stronger growth condition on the function?

PROBLEM 9 To what extent are the results mentioned in the previous sections peculiar
to λn = log n?
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