Feuille de TD 9 - Analyse complexe M1 - Alain Yger (semaine 49)

THEMES: Théorème de Bloch - Petit théorème de Picard.

<u>Sources</u>: Amar-Matheron [Analyse complexe] (Cassini), Berenstein-Gay [Complex variables] (GTM 125).

NOTA. Les étoiles indiquent le niveau de difficulté de l'exercice.

Exercice 1 (**) : théorème de Kœbe revisité. Soit f une fonction holomorphe bornée du disque unité dans \mathbb{C} , telle que f(0) = 0 et f'(0) = 1. On pose $M = ||f||_{\infty}$.

- a) Soit $w \in \mathbb{C} \setminus f(D(0,1))$. Montrer qu'il existe une et une seule fonction h holomorphe dans D(0,1) telle que $h^2(z) = 1 f(z)/w$ pour tout z dans D(0,1). Donner les premiers termes du développement de h en série entière.
- b) Montrer que

$$||h||_{\infty}^2 \le 1 + \frac{M}{|w|}$$

et déduire du **a**) et de la formule de PLancherel que $|w| \ge 1/(4M)$. Conclure que f(D(0,1)) contient le disque ouvert de rayon 1/(4M). Quelle est la diffénce avec le théorème de Kœbe?

Exercice 2 (**): théorème de Bloch. Soit f une fonction holomorphe au voisinage de $\overline{D(0,1)}$ avec f'(0) = 1.

a) Montrer que

$$t \in [0,1] \mapsto t \sup\{|f'(z)|; |z| \le 1 - t\}$$

est continue sur [0,1] et en déduire qu'il existe $t_0 > 0$ et $a \in D(0,1)$ avec $|a| \le 1 - t_0$, $|f'(a)| = 1/t_0$ et |f'(z)| < 1/t pour $t < t_0$ et $|z| \le 1 - t$.

b) Montrer que $|f'(z)| \le 2/t_0$ dans le disque $D(a, t_0/2)$ et en déduire que la fonction g définie dans D(0, 1) par

$$g(z) = f(z) - f(a)$$

vérifie $|g(z)| \le 1$ dans $D(a, t_0/2)$.

- c) Déduire de l'exercice 1 que f(D(0,1)) contient le disque de centre f(a) et de rayon 1/16.
- d) Montrer qu'il existe une constante C telle que, pour toute fonction f holomorphe dans D(0,1), f(D(0,1)) contient un disque de rayon C|f'(0)|.

Exercice 3 (*) : application du théorème de Bloch. Soit F une fonction entière non constante. En utilisant la conclusion de l'exercice 3 avec les fonctions

$$z \mapsto F(\lambda z + \mu)$$

montrer que $F(\mathbb{C})$ contient des disques de rayon arbitrairement grand.

Exercice 4. On suppose connu le fait qu'une fonction entière dont l'image évite deux valeurs est constante (petit théorème de Picard). Montrer que, si *P* est un polynôme, l'équation

$$e^z = p(z)$$

a une infinité de solutions.