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1. INTRODUCTION 

In a number of papers [2-4, 6, 7, 121 the problem of finding explicit 
solutions hi,. . . , h, for the Bezout equation : fihl + +a . +f,h, = 1 has 
been considered. If ft, . . . , f, are complex polynomials in n variables and 
they have no common zeros in C”, the existence of explicit analytic 
expressions for the corresponding polynomiaIs hi, . . . , h, has a number of 
applications to systems theory and commutative algebra. 

For instance, the problem of finding a closed loop controller for certain 
distributed parameter systems reduces to the question of finding a matrix 
with polynomial entries which is a left inverse to a rectangular matrix of 
polynomials of maximal rank (see [lo, 20, or 211 for details). It is easy to see 
that this problem reduces to solving the polynomial Bezout equation (see 
[3]). The case where the rank is not maximal has also considerable interest 
in systems theory, we refer to [4] for some open questions in this case. 

In several contexts, for instance, in transcendental number theory, one is 
interested in finding the solutions hi,. . . , h, of the algebraic Bezout 
equation with the smallest possible degrees. Up to recently the best estimate 
known for deg hi was (of the order of magnitude of) (max deg fi)*“. Using 
explicit analytic expressions for the hi, Brownawell [ll] has shown that one 
can find solutions hi with deg hj s n*(max deg 4)“. This estimate is known 
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to be close to optimal, as we explain in Section 3 below. Up to date no 
purely algebraic proof of this bound for the degrees of the h, has been 
found. (The interested reader will tind a short survey of this topic in [5].) 

Similarly, in the deconvolution problem, one has functions fi, . . . , f, 
which are the Fourier transforms of a strongly coprime family pi,. . . , IL,,, of 
distributions of compact support. One searches for a procedure to compute 
explicitly distributions of compact support vi,. . . , v,,, such that pi * y1 
+ *-- +p,*v, 
tion j&i, + . . . 

= 6. (Here ij play the role of hj in the equivalent formula- 
+p,,$,,, = 1). This question arises in problems of robust 

filtering, image processing, etc. [lo]. In [7] we wrote down formulas for a 
solution pi,. . . , vm of the deconvolution problem in terms of interpolation 
series. The problem we have faced until recently is that, while for the 
one-dimensional case these formulas can be easily implemented, in the 
higher dimensional case they are far too cumbersome. Some of them seem 
to be beyond the range of symbolic languages like MACSYMA upon which 
we had, perhaps too optimistically, relied. For that reason we present here a 
new version of our original deconvolution formulas which assumes extra 
conditions on the family pi,. . . , cc,,, but has as a payoff a very simple 
formula for the deconvolutors vi,. . . , v,,,. We give herein simple examples 
where these extra conditions are satisfied. 

The problem of finding an efficient algorithm to compute the above-men- 
tioned solutions to the algebraic Bezout equation being still open, we also 
analyze here the particular case in which those polynomials can be com- 
puted in terms of interpolation formulas. Finding an algorithm with a low 
complexity for this problem will have many important applications in the 
theory of distributed parameter systems and in robotics. 

We have also found that a language barrier prevented our work [7] from 
being more easily available to some engineers, and we hope that the present 
paper will overcome those shortcomings. 

The tirst author would like to express his gratitude to the Universite de 
Bordeaux I for its hospitality while this work was carried on. His work on 
the algebraic aspects of this paper are inspired by the questions raised by 
the AFOSR-URI project at the University of Maryland. We also thank our 
friends Dale Brownawell and B. Alan Taylor for many helpful remarks. 

2. ANALYTIC CASE 

We will consider only entire functions f of n complex variables satisfying 
inequalities of the form 

1 f(z) 1 I A(1 + ]z])?PmZ), z E C”, 0) 
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Im z = (Im zi, . . . , Im z,) E R”, where H is a convex continuous function 
in W”, homogeneous of degree 1 (i.e., H(k) = M(x) when A > 0). We 
call such a function H a supporting function. By the Paley-Wiener theorem 
[18] there is a distribution p of compact support in R” such that f = fi, the 
Fourier transform of p. Furthermore, the supporting function H, of 
cvsuppp will satisfy H,, I H (Here cv denotes the convex hull). Con- 
versely, if f = fi we can take H = HO in (1) and m is related to the order of 
p in a simple manner. Hereafter we will just write f E 8’ (= k’(W”)) if f 
satisfies (1). 

Forsimplicitydenotep(z) :=log(2+ lz])+ ]Imz].Afamilyf,,...,f,,, 
of functions in 8’ is said to be strongly coprime if there is a constant c such 
that 

f If,(z)/* 2 e-CP(Z), z EC”. (2) 
j=l 

It is well known [14] that (2) is a necessary and sufficient condition for the 
existence of functions hi,. . . , h, E 61 such that 

i fjhj = 1. 
j=l 

In other words, a strongly coprime family is precisely a family for which the 
analytic Bezout equation (3) has a solution. If we consider (3) in terms of 
the distributions pi,. . . , CL,,,, vi,. . . , vm such that fij = fi and cj = hj then 
we have the identity 

pl*vl+ *** +p,*v,=s, (4 

i.e., vi, . . . , vm solve the deconvolution problem stated in [7]. We will say 
sometimes that the family of distributions pi,. . . , p, is strongly coprime. 

It might be useful to explain why (4) is called a deconvolution problem. 
If we have an unknown signal (function or even distribution or random 
process) cp then the usual data one measures would be \cIi, . . . ,$, given by 

q1 := p1 * cp,. . .) 4, := pm * cp. (5) 

The way to recover cp is by deconuolution (which is still given here by 
convolution with distributions or compact support). 

cp = v1*& + *** +v,*~,. (6) 

As we have mentioned in the Introduction our problem is to find easily 
computable functions hi and corresponding distributions vi solving (3) and 
(4), respectively. We note that under the strongly coprime condition (2) or 
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even under the weaker assumption that (2) is only satisfied for real values of 
z (z E R”), there are readily available tempered distributions aj solving the 
deconvolution problem, namely, let 

i,(z) = m r,cz> 

c 1g4I” 
z E R”. 

j-l 

(7) 

The problem is that the aj do not have compact support and furthermore, 
the yj themselves are not so readily computable (except by inverting the 
Fourier transform). Nevertheless there are many situations where these aj 
are still very useful, among other reasons because they minimize the noise 
amplifkation of the deconvolution process (6) (see [7] for an example of 
implementation in two dimensions). On the other hand, in many applica- 
tions it is often not necessary to obtain an exact solution to (4) but one is 
allowed to replace the Dirac 6 in (4) by a (sufficiently) smooth function u 
with small support, i.e., an approximation to 6. It is this approximate 
deconvolution problem that is more readily solvable, even with very good 
knowledge on the support of the distributions vi, which will turn out to be 
(reasonably) smooth functions. 

Since the method we use relies on Koppehnan-type formulas, like those 
developed in [l, 91, we need the following explicit relation whose proof is an 
immediate verification. 

LEMMA 1. Let p be a distribution of compact support in W “, 1 I k I n 
and { = (l,, . . . , J,,) E C n. The holomorphic function of 2n complex variables 
gktz, 0 deJined by 

iTk(ZP f) : = 
P(q, . . . . zk,Sk+l,...,~~)-P(zl,...,Zk-1,~k,...,~~) 

- Sk 
(8) 

‘k 

is the Fourier transform (for l fixed) of the distribution denoted I = 
I(p, [, k), which evaluated at ‘p E CF(R”) has the value 

(I, cp) := -i/[ fq(tl,. . ., t&l, u,O,. . . ,O)eilk(Y-rk)du] 

xe-i(B+&+~+ .” +“&+(t). (9) 

(By abuse of language we have written j+(t) dp(t) to denote (p, #)). 

We note that for the distribution I we have cv supp I c cvsupp p. 
Furthermore the collection of functions g,, . . . , g, satisfies 

g1k S)(Zl - L) + ... +g,h S)(Z” - SJ = P(z) - P(S). W-0 
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Associated to these holomorphic functions we have a (1,0) differential form 
g in the variable l given by 

” 
(11) 

Given a family of m entire holomorphic functions fi, . . . , f, its zero set 9’ 
is defined as 

%o:= {z E C”: fl(Z) = -** =fJz) = o}. 02) 

In our applications we will only consider the case where the set 2’ is 
discrete. We say that 9 is almost real if there is constant A > 0 such that 

2’~ {z E C”: IImz) 2 Alog(2 + 1~1)). 

It is well known that an almost real zero set I is discrete [8, 151. For 
a 9 discrete set 22”, r > 0, we can define a counting funclion n(S’, r) := 
#(S?“CI 3Br}, B, = {z E C”: IzI < r} = Euclidean ball of center 0 and 
raidus r. The distancefunction is d(z, 9’) := min(l,min{ Iz - fj: 5 E a}). 

Given a family of n distributions of compact support in I? ‘, pi, . . . , p,, 
let us denote Hi the supporting function of cv U;supp pj, that is, 

H,(O) := i:,ynmax{x. 8: x E supppi}, (0 E R”), (13) 

xd?=x,e,+ *-* tx,e,. 
DEFINITION 1. A family of n distributions pi,. . . , p,, of compact sup- 

port in W” is well behaved if there exist positive constants A, B, N, K, a 
supporting function Ho such that 0 I H, I Hi, such that the zero set 9 of 
the functions fi = /Jr,. . . , f, = fi,, is almost real, 

n(Z, r) = O(rA), 

and, denoting 

If(z) I := [ 2 I.&(z) 12]1’2v 
1 

the following inequality holds : 

If(z) I 2 
Bd(z, 9’)“eHo(1mz) 

(1 + w” . 

(15) 

06) 
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DEFINITION 2. A well-behaved family pl,. . . , p, is very well behaved if 
there are constants cr, M, cr > 0, such that for every S E 3, we have 

(17) 

This condition implies that the common zeros of fr, . . . , f, are simple, 
that we can take K = 1 in (16), and that if [, 3’ E 3, l # [’ then 1s - S’I 
2 cZ(l + III)-M for some positive constants c2, M’. 

We will say also that functions fi, . . . , f, are (very) well behaved if the 
above properties hold. 

Given a family fl, . . . , f, in &R”), m > n, with no common zeros, we 
introduce the following functions and differential forms. First, let gj = 
gj(z, {, pi), 4 = ii, be the (1,0) differential forms in l given by (ll), we 
write gj = C;,,gidlk. Recall the coefficients gl are holomorphic in both z 
and [. Let F be the vector-valued holomorphic function F := ( fl, . . . , f,); 
we write 

IF(S) t := f Ir,(S)I’ [ 1 
l/2 

9 
j-l 

which is a nowhere vanishing C” function of 3. Let 

cp = dz, r> := [ ~m~(zpo2~ (18) 

Q = Q(z, 1) := E I,(S)&, 3) 
[ Ii F(lj2. (19) 

j=l 

Therefore cp is a C” function of (z, I), cp(l, {) = 1 and, as a function of 
z, cp is a linear combination of the fi. Q is a (1,0) differential form in [ and 
its coefficients are C” in (z, J) and holomorphic in z. Finally, the n + 1 
functions Aj, Cm in (z, 1) and holomorphic in z are defined by the 
identities 

g’ A . . . Agi A . . . Ag”r\Q=AjdlIr\... /\dl,, 1 ljln (20) 

g’,, . . . Ag” = A,,+t d[, A . -. A d{,,. (21) 

It is clear that the Aj are simply n x n determinants whole entries are 
obtained from the coefficients of g’, . . . , g”, Q. Therefore, as functions of z, 
they are finite linear combinations of products of n among the functions 
gL, 1 I k I n. Note that these products are just Fourier transforms of 
convolutions of n distributions of the form I(pcL,, S,k) (see (9)). 
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In order to obtain simple and easily computable deconvolution formulas 
we need to assume that a strongly coprime family of distributions pl,. . . , ~1, 
contains a (very) well-behaved subfamily pi,. . . , I(,. Furthermore, we need 
some control on the relation between the support of all the pj versus the 
supports of the first n. Let 

H,(B) = itn,ynmax{ x - 8: x E supppj} (e E Et”). (22) 

One such relation between the supporting functions H,,, Hi, Hz is given by 

Hz I 2H,, (23) 

and 

2(n - l)H,(O) + H,(O) < 2nH,(B) if 8 f 0. (24 

The last condition is equivalent to 

3r, > 0 such that rOlf3j 5 2nH,(fI) - 2(n - l)H,(O) -H,(8). 

(25) 

With all this notation in place we are now ready to state the first 
deconvolution formula. 

THEOREM 1. Let pi,. . . ) II,,, be a strongly coprime farnib of distributions 
such that pI,.. ., pn is a very well-behaved subfamily. Assume further that 
(23) and (25) hold. For any u E C,“(R”) with supp u L {x E R”: 1x1 I rO} 
one can write 

+ i (-ly+‘-jf,(z) c 
Aj(z, S) 

3EZ 40 
w. (26) 

j-l 

Formula (26) can be rewritten as 

c(Z) = IZ hj(Z)fi(Z), 
j=l 

where the hj are given by explicit interpolation formulas and they are 
Fourier transforms of a series of distributions which are computable in 
terms of the original pi,. . . , jk,. In the particular case where m = n + 1 
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then formula (26) can be also rewritten as 

i;(z) = c W) ; 
lE.z Wr,+,(S) gk(z, 5) .f * g;+yz; 5) - 

(27) 

fl(4 * - * f,+1(z) 

Proof of Theorem 1. It follows the lines of Theorem 3 from our paper 
[7]. It uses the Koppelman-type generalization of the Cauchy integral 
representation formula, especially in the version due to Anderson and 
Bemdtsson [l]. First one introduces a parameter E > 0, a function cp,, and 
two (1,0) differential forms in 5 as 

i r,(s)r,(z) + E 
cp,(zJ) := j-l 

IfW I2 + E 
(28) 

s(zJ) := i (fj - i;)cqj (29) 
j-l 

i f,(l)gj(z, 5) 

Qeh S) := “if (3) ,2 + E 3 (30) 

where, as before, f = ( fi,. . . , f,) If( = C;=llfi(S)12. The procedure 
from [9, pp. 402,409]) gives two kernels K,, P, (i.e., differential forms in the 
variable S of type (n, n - 1) and (n, n), respectively) such that if u is a 
holomotphic function in a neighborhood of BR, z E B,, then 

These two kernels are defined as follows. Let G,(t) = t” and G2( 
denote for any a E N. 

Cl=) = G,c”‘(z, Z) := ~G,lr~~ec,,i, 

Gj”’ = Gj”‘(z, 3) := 

‘t) = t; we 

(32) 

(33) 

where cp is given by (18) and ‘p, by (28). With Q, defined by (30) and Q by 
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(19), we define 

1 
c - 

G{=%$% A (as)" A (JQ,) =' A (2Q)"' := 
a 'a ' Iz - SI 2(%+4 9 

c+)+a,+a,=n-1 1' 2' 

(34) 

(35) 

where a,-,, ai, a2 E N. Everywhere the variable z is considered as a 
parameter and the 3 derivative is taken with respect to S. Due to our choice 
of function G,, the index a2 can only take the values 0 and 1. For this 
reason the expression for P, becomes particularly simple 

p, = q@Q.)" + n@Q,)“-’ A 3Q. (36) 

The terms (JQ,)‘-’ and (aQ,)” must be computed, for instance, 

(2~~)” = 3Q e A *a- AaQ, (n times) 

= (2i)“n!A,+, 
J(l)& 

(If(s) q+ldXY 
(37) 

where dh = dX(l) = Lebesgue measure in C”. (We have eliminated the 
variables (z, l) where they were evident; we will use this convention freely 
in the rest of the paper.) 

It is clear that ‘p, and Q, are singular when E = 0 precisely at the points 
{ E 9. The expression (37) shows that the strength of this singularity is in 
one of the terms of P,. The strategy of the proof is to try to get very 
singular terms so that when E + 0 the volume integrals in (31) become 
sums, while the boundary integrals tend to zero when we set u = ii and let 
R + 00 over a conveniently chosen sequence. The reason this idea works is 
the following lemma [7, Corollary 4.1.11. 

LEMMA 2. L-et a,-, be the measure which is the sum of direct masses at the 
points of 9’; i.e., for $J E Cc(C”) we have /$ da, = &esr#([). Then, the 
family of measures a, given by 

d%(l) = (, f(S) ,:, e)n+l dW (38) 
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converges when E --) 0, to the measure 

IT” da,, 

n?13(5)12’ (39) 

where, as always, J denotes the determinant Jacobian of fr, . . . , f,. 

From (37) we see that the first term in (36) is amenable to Lemma 2. The 
second term is not singular enough, therefore it will be transformed using 
Stokes’ formula in the corresponding integral of (31). Namely, due to type 
considerations, one obtains the first part of the identity 

= a( q#Q,)"-' * Q) 

= +$Qe)"-' A i?Q + dcp, A (aQ,)“-’ A Q, 

The last identity follows from the fact that u is a holomorphic function in S 
and the (2n - 2) form (JQ,)“-’ is 2 closed. Using this identity the 
representation formula (31) becomes 

where the integration is in the variable { and we have suppressed the 
dependency on (z, S) of the kernels. 

LEMMA 3. The following identity holdr 

&,e A (@)“-’ = (n - l)(“+l)n’Z 

where the wedge products in (41) are to be taken in their natural order, e.g., 
Ak+lgk=g2 A ‘.. Ag”. 
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Proof of Lemma 3. We start by rewriting q~,, 

2 f,(z)f,W + E i J(s)(fi(z) -h(O) + Ir,(S) I2 + & 

‘p, = j-l, f(l) (2 + E 

= i=l 
If(S) I2 + E 

= 1 + i (f,(z) -f,(S)) ,,($) 
j=l +E’ 

Denote 4 = h(S) and #j = #j({) := (If( + E)-‘{. Then we have 

~c=l+J$l(~(Z)-fj)J;, Qe= I?+jgj* 
j=l 

Therefore, 

i&p8 A (JQ.)“-’ = [C(h(Z) -fj)a,] A [CJcP, A g']"-l 

= i (f,(z) -4) 24. 
j=l 

[ ,A [lpkql]? 

since ~I/I~ A ale; = 0. Using that the 2-forms &, A gk commute and that 
the product of two of them with the same index vanishes, we have 

[ LjQk A pL]II = (n - l)! A (&bk A g”) k+j 

= b - 1)!(-1)‘“-1’“/2( /djgk) A ( /dje+k). 

Hence 

Now, we have &, =-(lf12 + e)-lFfk - (IfI + e)-2fkalf12. Therefore we 
can use that Jlf12 A alfl’ = 0 and obtain 

ii -ar, 

i; Jqk = k-l 

t 
_ j=l 

fjsi<j%. A Jlf12 A i; vk 

j<k<n 1 
k=l (IfI’ + 4” (IfI” + T+l 
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If we now expand alf12 = C,fkqk, 
in the triple product above. Hence 

we see that only the term 674 remains 

This concludes the proof of Lemma 3. EI 

Lemma 3 tells us that a(p, A (jQJ-’ A Q is the product of a measure 
with a smooth density, independent of E, and the function a( If({) 1 2 + a)“-l. 
Lemma 2 can now be invoked to see that the volume integral in (40) 
reduces to a sum when E + 0. In fact, let us choose R so that If( = 
Ifiw12 + * * * + IfJ,<r) 1 2 # 0 when 1s 1 = R. This choice is always possible 
since 9 is a discrete set by assumption. In this case none of TV, K,, Q, have 
singularities when E = 0 and { E dB,. We set ‘pO, K,, Q, to be the corre- 
spondent quantities. Therefore 

u(z) = &r&$O(Ko + wo((aQo)"-' * Q)> 

Recall that A({) = 0 if [ E 9 and 1 <i I n. Using Lemma 2 and the 
definition (20) and (21) of the A, we can compute explicitly the limit and 
obtain 

Up to this moment we have only used that S!“n aB, = 0 and that u is 
holomorphic in a neighborhood of B,. To let R + oo we have to choose a 
sequence R --, 00 judiciously. Recall that n( I, r) = #( 9” n B,) I Cr A 
for some positive constants A, D, and all r 2 1. Let M be the smallest 
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integer 2 C( R + l)A + 1, divide the shell BR+i \ BR into A4 concentric 
subshells but choosing the boundaries to be cYB(~+~,,,,), 0 I j I M. There is 
at least one such subshell that is free from points of 3; choose R’ to be the 
mid-radius of this subshell, then d([, 3’) 2 (2M)-’ if /[I = R’. Starting 
from the sequence R = q = 1,2,. . . we construct a sequence R 4, q -c R, < 
q + 1, such that for some positive constants A,, N,, 

If(s) 1 2 Alq-N,eHo(1m3) if IsI = R,. (43) 

This follows from (16) and the choice of R,. 
We are now ready to estimate the terms in the boundary integral of (42) 

for R = R,. We will assume Izl I C, < cc and consider those q such that 
R, 2 Co + 1. 

First, let us observe that the functions gi, 1 I j I m, 1 I k I n, satisfy 
an estimate of the form 

IgL(z, 3) 1 I C,(l + lzl)“‘(l + 131)“‘eH2(‘mr)+Hz(1m*), (4) 

for some constants M,, C, > 0. If 1 I j I n, we can replace H, by Hi. We 
can now estimate the coefficients of differential form Q. Denote IlQ(z, S)ll 
the largest absolute value of the coefficients of dS;, at the point (z, S). We 
proceed as follows. First, 

IF(l) 1 2 If(s) 1 2 Alq-M,eHo(lml) if l{l = R,. (45) 

Therefore, 

IlQ(zJ)ll s j& 

I Cl0 + I4 M~efWImr)(l + R,)~~~HZ(I~Z) 
~lq-4efWml) 

which leads to 

IlQ(z, 3) 11 5 Gq ~2,4UmWWIm3)~ (W 

The constant C, depends in fact on z, but lz 1 I C, and N2 = Mi + Ni. (In 
fact C, can be estimated in terms of e2e(Im ‘) and polynomials in Iz 1.) 
Similarly, with possibly different values for the constants C,, N2 appearing 
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below, we have 

II~Q(z, 3) 11 5 Gq N2eH,(Imz)-2Ho(Imz) 

II~Qo(z, 5) 11 s C,q 
N2,2Hl(Imr)-2Ho(Imr) 

1 cpo( z, 3) 1 I C3qN,e-Ho(1mr) 

(47) 

(48) 

(49) 

IF(z) I 
(50) 

To estimate K, we recall that a2 can only take the values 0 afld 1 in (34). 
In case a2 = 0 we have to estimate terms of the form cP;;-%JJ( ZJQ,,)ai, with 
0 I (pi ZG n - 1. There are powers of q that we will disregard, the estimate 
is then the function of Im [, 

Since Hi 2 H,, the worst case estimate occurs when cq = n - 1. Hence the 
terms corresponding to a2 = 0, q, + (pi = n - 1, in the definition of K, 
can all be estimated by 

C,q N3e- 2nHo(Im3)+2(n-l)f&(Imz) 
3 Ill = R,. (51) 

The terms with ~yi = 1, LYE + ~yi = n - 2 corresponds to the estimate of 
Ilc~;;-=~@Qo>=~ * aQII- m e worst case occurs this time when (pi = n - 2 
and we obtain an estimate of the form 

C,q N3e- 2nHo(Im{)+2(n-2)H1(Im.t)+2H,(Im~) 
3 ISI = R,. (52) 

In (42) we have one more term to estimate for 151 = R,, 

~lm,(~Qo)“-’ A QII s C3qN3e- 2nHo(Im{)+2(n-1)H,(Im3)+Hz(ImS) 
. (53) 

The conditions (23) and (25) imply that the largest exponential factor in 
(51), (52), and (53) is the one in (53) and it satisfies 

-2nH,(Im{) + 2(n - l)H,(Im[) + H,(Im{) I -r,lImSI. (54) 

Since we have assumed that u E Com(B& we have 

Id(S) 1 5 C,(l + I[I)-N3-2ne~11mbl, 5 E C”, (55) 

which allows us to conclude that, with u = ii, 

lim / 
q-00 ae, 

fi(l)[ &,(z, 3) + w,,(z, 3)( aQ,,)“-’ * Q(z, 511 = 0. (56) 
,? 
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To conclude the proof of Theorem 1 we need to show that the series 
appearing in the representation formula (26) converge absolutely and 
uniformly in compact subsets of C” to functions in 8. Since we have 
assumed that I is almost real, the estimates of all the terms Aj, (p, J-’ are 
in terms of powers of ]l]. Using that n(9, r) = O(rA) and I;(l)] de- 
creases as fast as ]I] -h for [ E .Z’, we have the desired convergence once 
N4 is chosen sufficiently large. The support of all the distributions thus 
obtained is contained in the convex set K whose supporting function is 
(n + l)H*. Cl 

Remarks 1. One can see that the condition 2Hi 2 Hz cannot be relaxed 
if the other conditions of the theorem remain the same, otherwise the 
exponent in (52) would become positive and we would not be able to prove 
(56). 

2. A way to weaken the conditions in Theorem 1 is to impose some 
better lower bound on IFI than (45) that only depends on the first n 
functions. We will do so in Theorem 2 below. 

3. It is clear that one only needs u E CON(&) for N sufficiently large 
to obtain (26). 

The following example shows how Theorem 1 enormously simplifies the 
computation of the deconvolution formula proposed in [7]. 

Let pi, CL*, p3 be the characteristic functions of the squares centered at 0, 
of sides parallel to the axes and of lengths 2fi, 2&, 2, respectively. One 
can easily show [7, 171 that pi, p2 is a very well-behaved family with 

H,(ImS) = fi(lImLi +IImS,I) 

Here H,(Im l) = H,(Im [) = fi( ]Im S;I + I Im S21). In this case the main 
h otheses (24) reduces to verify that 4fi - 3fi > 0 !. Since Ix1 I + Ix*] = 

T- xf + x2” for x E R2, we have r, = 4\/jl - 36 > 0.2. The variety 9’ in 
this case is given by 

%“= ([g,;]: +a*}” {[g,;]: j,kEZ’]. 

(There were about forty different types of terms in [7] to compute.) 
Before we proceed to state Theorem 2 we need to point out that the 

representation formula (31) does not depend on the particular choice of the 
differential forms gj we have chosen, rather on the fact that (10) is satisfied. 
That is, 
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Now, let f = fi and h(z) = sin Bz, for some B > 0, and denote by g the 
differential forms associated to f by (8) and (11). Let us define a differential 
form y by 

Y(Z, s> :=fW 
sin Bz, - sin B& 

z1 _ f a, + Wdz9 0, (57) 
1 

writing y = Eyk dS;, we have 

Y&9 3)(z, - Sl) + *-* +Y,(z,w, - Sn) =fWW -fW(O 

Therefore we can associate y to the product f. h. It is also clear that as a 
function of z, the yk are Fourier transforms of distribution of compact 
support, easily computable terms of 1-1 and B. Obviously we can replace 
sin Bz, by sin Bzj without any problems; hence, given a family fi, . . . , f, 
we can construct an augmented family fi, . . . , f,, f,, 1 := fi sin Bz,, . . . , fzm 
:= fm * sin Bz 17. f - 7 (*+l)m := f f* * sin Bz,. The corresponding gJ for j 2 
m + 1 are computed following the procedure (57). It is clear that if 
f 1, * - *, f, was strongly coprime, the augmented family remains strongly 
coprime. If fi,. . ., f, form a very well-behaved family we will keep the 
notation H,, Hi, Hz to indicate the support functions corresponding to the 
m original members of the augmented family fi, . . . , fcn+ljm. 

THEOREM 2. atset fi,. . ., f,,, be a strongly coprime family such that the 
subfamily fi, . . . , f, is very well behaved. There are constants B, 2 0, r,, > 0, 
such that for any B 2 B,,, and any u E CT( BJ, the representation formula 
(26) is valid for the augmented family fi, . . . , f,,,, . . . , fcn+lJm defined above if 
either of the following two conditions holds: 

H2<2HI and 2(n - l)H, < (2n - l)H, 63) 

2H, < Hz and 2(n - 2)H, + Hz < (2n - l)HO. (59) 

Proof. The proof is exactly the same as that of Theorem 1 except for 
improvements on the estimates (46), (47), and (50) for the new Q and cp. 
Recall that it is there where all the functions fi, . . . , fcn+ljm appear. Let 
4 := <fD * * -7 f(n+l)m ) and keep the notation F = ( fi,. . . , f,) as before. 
We have 

IF,([) 1 = IF({) I(1 + lsin BS;l’ + . . . + (sin B3n12)1’2 = (F(S) 1 . a(<). 

050) 
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It is clear that for some positive constants c,, CA we have 

2 c;[e ZB(ImS,J + . . . +e2BIImSmI 1’2 1 
, c e2(B/n)IImllt 
- n 

2 C2(Wn)lImTI 
It 9 

where lIrnljl = C~,,IIm[jl, lirnll = [E&IIIm~i12]‘/2. We estimate first 
g/ j = m + 1, for 1.z - <I 2 1, since that is the only case that appears in 
the proof of (56). As it follows from (57) we have, for some i, k (1 I i I n, 
1 I k I m), the estimate 

((gj( z, l) 11 5 ce2BJrm ql [If/c(S) l(l + lsh BS,12)1’2 + ((gktz* 5) II] 

I C(1 + J~l)~‘(l + jSI)N,eBI1mr~I 

X [If({)l19(S) + eH2(rmr)eH2(1m6)]. 

It follows that 

I C,(l + lzl)“‘(l + (~I)N,eB11mrl+H2(1mz) 

i 

eH2(ImS) IF(() IS(p) 

x Piw + li;;Wl i - 

Therefore, for a positive constant C, depending on z, we obtain 

IlQ(z, l) 11 s C,(l + j[j)“[l + eH2(1mr)-Ho(1mS)-(B’n)(1m511]. (61) 

Similarly, 

PlW I (c~(z, l)I -< m 5 C,(l + (S()~eHo(rm3)-(B’n)J1mTJ1. 

Finally, 
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Now, for j 2 m + 1 we have for some 1 I i I n, 1 s 1 I m, 

Ilaf,(l> 11 = lb Xl * ah(t) + f,(S)B * COs BSi dSiII 

5 Cdl + IsI)N2(~(s) eH2(Irnl) + (F(S) IS(S)). 

It follows that 

+g({)p2(ImT) 1 
s ~~(1 + I~I)~Z[~ + 2eH2(ImT)-H0(Im0 

+,2H2(Im~)-2H0(Im~)-(B/n)lImTI1]. 

Choose B,, 2 0 such that 

2f&(ImS) - 2H,(ImS) + (B,/n)lImSI, 2 0. 

When B 2 B, we will have II&z, l)ll I C,(l + llI)Nl and 

IIjQ(z, {) I( s C,(l + Irl)YeH2(1m*)-Ho(1m3), 

(63) 

(64) 

where C, still denotes a constant depending on t of the form 

c, = mnst(l + IZ))NleH~(Im~)+~IIm~I~. 

We can now return to the proof of Theorem 1 at the point where we 
obtained the estimates (51), (52), (53). Ignoring powers of q, the exponential 
factors are 

exp( -2nH,(ImS) + 2(n - l)H,(ImS) - (B/n)lIm5lJ (51’) 

exp( -(2n - l)H,(Im~) + 2(rr - 2)H,(Iml) + H,(Imc)) (52’) 

exp( -(2n - l)H,(Im{) + 2(n - 2)H,(ImS)). (53’) 

Under hypothesis (58) the largests of these three is (53’) and its exponent 
satisfies 

- (2n - l)H,(Im 3) + 2(n - l)H,(Im S) I -r,lIm [I, (53”) 

for some r0 > 0. If the hypothesis (59) holds, then the largest exponent is 
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(52’) and we define r, > 0 by 

-(2n - l)H,(Iml) + 2(n - 2)H,(ImJ) + H,(ImS) I -ra]Im5]. 
(52”) 

In either case the rest of the proof is the same as that of Theorem 1. 

EXAMPLE. As [7] shows the family pi, p,, pL3 obtained by taking pi = 
characteristic function of the unit square = ~~-~,i~~~-i,il, ~1~ a rotation of 
pi by 36” and pr a rotation of pi by 45” satisfies the first conditions of 
Theorem 1 and Theorem 2 with H,,( 0) = 18 1, since the squares contain the 
unit disk. One can easily convince oneself that the hypothesis (24) does not 
hold (e.g., take 8 = (t, 0), t > 0.) On the other hand, one can take H,(B) = 
WQ = ml, since aII the squares are contained in the disk of radius \/jl. 
We are in the situation of hypothesis (58) and its verification reduces to the 
fact that 

Furthermore, 23, = 4(fi - 1) works in this case. 

3. POLYNOMIAL CASE 

The conditions on Theorems 1 and 2 imply that the convex set defined by 
H,, contains a ball. If we want to prove an algebraic version of (26), the fact 
that this condition is not satisfied plays a role. Such a representation was 
stated in [3, 41 without proof. We analyze here the conditions under which 
it is valid. 

THEOREM 3. Let pl,. . ., p,,, be a farnib of polynomials in C” without 
common zeros, suppose further that: 

(a) D := max isjs,,,degpj = degpi for 1 I i I n. 

(b) %“= {z E C”: p,(z) = 0; 1 I i I n) is discrete. 

(c) J(z) := Jacobian determinant of pl,. . . , p, at z is f 0 for all 
z E%“. 

(4 PI,..., p,, have no common zeros at infinity, i.e., #%“= D”. 

Then 

1 = c An+l(z? 5) Aj(Z, S) 

cc$z- JW 
cp(z,S) + 5 (-l)“+‘-‘p,(z) c 

j=l St=3 J(S) ’ @j5) 

where cp, Aj are defined as in (18)-(21) with respect to the polynomials 
PI,. . ., P,. 
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Remarks 1. The functions g/ defined by (8) are obviously polynomials 
of degree D - 1. It follows that (66) has the form 

Plw4(4 + *** +Pmw4n(z) = 1 (66) 

for some polynomials Aj E C[z,, . . . , zn] of degree of most n( D - 1). This 
follows from the fact they are given as n X n determinants involving the gL. 

2. As before, the case m = n + 1 leads to a particularly pleasing form 
of VW, 

1 1 

l=c,op,,,o 

3. The two statements in condition (d) above are really a form of 
Bezout’s theorem [19]. The meaning of the expression “pi,. . . i p,, have no 
common zeros at infinity” is that if we introduce homogeneous polynomials 
Hj(Z IJ,“‘, Z”) := z,Dpi[ zl/zg, . . . ) z,/z,,] then the subset of Cn+’ defined 
by {zO=O,Hl= ... = H,, = 0} is (0). This is equivalent to the state- 
ment 

l/2 
2 ClzlD if ItI 2 R, 2 1. (68) 

If we call p:(z) the leading homogeneous polynomial of pj, then the 
estimate (68) is also equivalent to 

{z E C”: p!(z) = . . . =p,o(z) = o} = (0). (69) 

We also note that (69) implies (b) above. That is, condition (d) above 
implies condition (b). 

Proof of Theorem 3. The proof is the same as that of Theorem 1. This 
time we take u = 1 and R arbitrary 2 R, (cf. (68)). One can estimate 
IlQ(z, r)lI s C/131, Il~Qk 3>ll s C/lS12, I’po(z, S)I 5 
C/IIID, IlaQo(z, l)ll I C/Ill2 if IsI = R and ItI I K I R - 1, with C = 
C(k) > 0. These estimates imply that the boundary integral in (40) tends to 
zero when R --) CCL 0 

If Pl, * * *, p,, are such that their leading terms p,! satisfy (69) but their 
degrees deg pi = Dj are not all equal or max{ Dj: 1 I j I n } is smaller than 
D = max{ Dj: 1 5 j I m}, then we can still prove a version of Theorem 3. 
That corresponds to the analytic counterpart of Theorem 1, that is, to 
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Theorem 2. For the moment we continue to assume that J(z) # 0 Vz E 9’ 
= {pl= . . . =p,=O}. 

Let Li(z) = ~izi + . . . + U,Z, be a linear homogeneous polynomial with 
generic coefficients. The condition that {z E C *: L, = p; = * * * = p: = 0} 
# (0) is an algebraic condition on the coefficients of L,. Therefore we can 
choose L, such that for any integer d, 2 0 we have {[ pTL$ = pi = - * * = 
5: = 0} = {O}. Continuing in this fashion we can choose L,, . . . , L,, 

i,. . . , d,, such that for any choice of constants &it.. . , en, if we define 
pj = pj( Lj + E~)~J, then { j$’ = . . . jji = 0) = (0) and deg jjj = D for 1 I 
j I n. It is clear now that for most choices of ej we still have that all 
common zeros of jjf = ... j$’ are simple and j$ = **. ji,pn+l,...,p,,, 
have no common zeros. Theorem 3 can now be applied to this new family; 
one obtains polynomials Aj, 

2 Ajpj = 1, deg Aj I n(D - l), (70) 
j-l 

and such that they have a representation of the type (65). 
We remark that a representation such as (65) cannot be valid if the 

Pl, * * *, p,, have common zeros at infinity. For instance, in the example of 
Masser and Philippon in [ll], 

p1 = zp, p2 = z1 - z!, . . . ) pn-l = z,-2 - z,D_1, p, = 1 - z,-iz,D-l 

one knows that S = D” - D”-’ is the best estimate possible for the degrees 
of Aj solving the polynomial Bezout equation. The polynomials 

[ 
02 

A, = z;, A, = -z,” 
zp - z* 1 1 03 zf - ZJ 1 Zl - z2" 7 A, = -z,” z2 - zp ,-**, 

t z::y - z;y 1 1 - zD"-'z8 
A 

n-l ” 
n-l = -Zf 

Z 
A, = 

n-2 - z,“-1 ’ 1 - Z,-iZ;-i’ 

have exactly this degree. On the other hand, if we had a representation like 
(65) we could conclude that there are solutions Aj of the polynomial Bezout 
equation with deg Aj s n( D - 1) as in (70). 

We would like now to show that the condition (c) for the simplicity of the 
zeros in Theorem 3 is not necessary. Regretfully, we only know how to do 
thisinthecasewherem=n+l. 

TIYIEOBBM 4. tit pl,. . . , p,, + 1 be a Jimily of polynomials in C n without 
any common zeros, D = deg p1 = . - - = deg p,, 2 deg P,,+~ and { py = 
. . . = p,” = 0) = (0). Th en we can find polynomials Aj of degree I 
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n( D - 1) satisfying the identity c,“+‘A,p, = 1. The coeficients of the Aj can 
be written in terms of the values of p,+ 1 and values of the derivatives of p,, + 1, 
and the coeflcients of gi+‘( z, l) ( w h en considered as polynomials in z), all of 
these evaluated at the points of I= {l: p,(l) = . . * = p,(l) = O}. 

Proof. For 0 < Ed -=x 1 the function l/p,+, is holomorphic in a neigh- 
borhood of II = {IpI1 I q,..., jp,I 5 en}. This set is a compact poly- 
normally convex set. (The compactness follows from condition (68)). By 
Sard’s theorem one can choose the aj so that the sets { Ipi1 = Ed} are real 
analytic submanifol@ of C”. (In fact, we only need it in a neighborhood of 
II.) For an v E X(II) we have that integral 

Res,(vdl, A .. . Ads,) := 

is independent of choice of q, . . . , a,, as long as 0 < uj I &j and the 
{ Ipi1 = ej} are smooth. Furthermore, if v is in the ideal generated by 
pp. -. 9 p,, in .X?‘(n) then this residue is zero. Therefore, it depends only on 
the values of v at 9’ and a certain number of derivatives of v at I (as it 
follows from the NullstelIensatz as presented, e.g., in [13, 161). In other 
words, the integral (71) can be considered as an operator defined by a 
certain linear combination of the Dirac masses 6, and their derivatives 
(a ‘“l/al*) a,, [ E A?“, applied to the holomorphic function v. This operator 
is very hard to compute explicitly except in very simple cases but it is 
perfectly defined as the common value of all the integrals (71). It is called 
the residue current of 9”. 

Let us consider now the polynomial B(z) defined by 

B(z) = ResSP”+,(O g;(z,‘3) * * * g,“+yz; S) 
dl, A . . . A a,. (72) 

PI(Z) . * * Pn+l(Z) 1 

This polynomial is in fact of the form qz:Aj(z)pj(z), with Aj polynomi- 
als of degree I n( D - 1) whose coeffcients are computed in terms of the 
values of derivatives of A+~ and the coefficients of gi (as polynomials in 
z) evaluated over 1. The only problem is to show B(z) = 1. We fix values 
uj, 0 < uj c aj. Consider complex numbers q,. . . , a, sufficiently small and 
so chosen that: 

(i) All the common zeros of p1 - aI,. . . , p,, - a,, are simple and lie in 
{IPII < h,.--, IPnl < iU”>. 

(ii) Pl - al, * *. 9 p,, - a,, p, + 1 have no common zeros. 
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Note that p1 - al,. . . , p, - a, still do not have any common zeros at 
cc. Let us denote %“, = {z EC”: p1 - aI = ... =pn - a, = 0). Then 

Res,jvdJ, A . * . A dl,,) 

= & 1;,,1=09~) 

d& h e-0 Ad{,, 

(Pm - al) * * * (P”(P) - a,) 

where 

lP”l’% 

= & ~ts)/Jts)~ 

m 

(73) 

J(S) = 
a(pl - a19...,pn - an) J(P 17”‘Y PJ 

W1Y.J”) = ~(~l,...,S,) 

and the last identity follows from Stokes’ theroem. (Replace the contour by 
little spheres about the distinct points of 5J. This last identity is the 
effective computation of the residue current of Ta, namely, 

Res, = IIIImJ(s~-‘s,. 

The first identity in (73) shows that Res, + Res, as (I + 0, i.e., the 
residue currents at a = 0 are continuous when acting on holomorphic (n, 0) 
forms. On the other hand, by Theorem 3 we have 

I 
\ 

1 d(z, s> * - * g;+‘(zv S) 
. . . g,““(z,{) d& A a.. Adl, = 1. 

I 

(Note that the gj corresponding to pi and to pi - aj coincide.) By 
continuity we obtain B = 1. This concludes the proof of Theorem 4. 0 

Remarks 1. We can obviously obtain the same result without assuming 
the degrees of pl,. . . , p, coincide or that they are larger or equal than that 
of Pn+l* 

2. The reasoning of Theorem 4 extends to a strongly coprime family of 
n + 1 elements whose first n members form a well-behaved family. Under 
the other conditions of Theorem 1 or Theorem 2, we obtain a series 
representation of the solutions of Bezout equation which we computed in 
terms of the residue current associated to 9. This time the series converges 
after grouping of terms. 

3. The interest of the theorems in this section lies in the search for 
explicit algorithms to obtain solutions Aj for the algebraic Bezout equation 
C,mAjpj = 1 which satisfy Brownawell’s estimate, deg Aj I 3pnD”, /.L = 
min(n, m). 
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4. CONCLUSION 

We have shown how explicit solutions to the analytic and algebraic 
Bezout equations can be obtained under natural restrictions on the original 
functions fi, . . . , f,. This work has applications to the implementation of 
deconvolution for multidetector systems. 
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