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Summary. Facing algebraic questions from the analytic point of view has been the
guide line of the joint work which I have been pursuing for almost twenty years
with Carlos Berenstein. Instead of giving an up-to-date state of the art , I will
focus on a few key points which still remain to be clarified and indicate a list of
prospective developments where the ideas that analysis suggests, combined with
multidimensional residue theory, will certainly have to play a major role. I will
point out the following crucial fact, namely that in the “dictionary” between the
analytic and algebraic points of view in multidimensional residue theory, integral
symbols happen to be the analytic substitutes for power series developments in
terms of parameters. Briançon-Skoda theorem, which seems to be a corner stone
between constructions inspired by algebraic ideas on one side and by analytic ideas
on the other side, will be a leitmotiv in this talk. Such ideas need to be combined
in the future with arithmetic aspects we missed up to now and which indeed imply
some additional rigidity.

1 Introduction

The concept of Chow ideal, together with the algebraic notion of integral clo-
sure and Briançon-Skoda theorems (that I will present in section 2), played
a crucial role in D.W. Brownawell’s approach to the effective nullstellensatz
[Bro]. Later on, J. Kollár proposed in [Ko1] an alternative way to attack this
problem which was more directly inspired by algebraic geometry. The search
for a sharp arithmetic nullstellensatz (which was finally obtained by T. Krick,
L.M. Pardo, M. Sombra in [KPS]) was our main motivation with Carlos Beren-
stein to re-interpret in the setting of multidimensional residue theory integral
representation formulas ([BeY4]). Here comes the following crucial fact : in
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the “dictionary” between the analytic point of view (dealing for example with
integral representation formulas of the Bochner-Martinelli type as in [BeY2])
and the algebraic point of view (inspired by multidimensional residue the-
ory, as in [BeY4]), integral symbols happen to be the analytic substitutes for
power series developments in terms of parameters. As an illustration, I will
focus in section 2 on different approaches of Briançon-Skoda theorem which
seems to be a corner stone in our constructions lying in between analysis and
commutative algebra.

The notion of integral closure is also deeply connected with analytic ap-
proaches toward intersection theory. For example, given an intersection cycle
C = C1 • · · · • CM , Lelong numbers related to C or Lojasiewicz exponents
for I(C) (see [CyKT]) are connected to the Chow ideal of C and therefore
to the integral closure of the ideal generated by the ideals corresponding to
the cycles involved in the intersection. Residual currents constructed from
Bochner-Martinelli representation formulas appear to play a crucial role in a
generalization to improper intersections of the Lelong-Poincaré factorization
formula

[V (f1, ..., fm)] =
(

m
∧

j=1

∂
1

fj

)

∧ df1 ∧ · · · ∧ dfm .

The relation with King’s formula is now better understood since the recent
work of M. Méo [Meo1, Meo2] and M. Andersson [And3] (following [PTY] and
[BeY5]). We will point out in section 2 how such results could be related to
improper intersection theory, as introduced in [Tw].

I will conclude with an invitation to pursue such a program, taking more
into account some arithmetic aspects it seems we missed up to now. Note
for example that understanding Briançon-Skoda theorem from the algebraic
point of view is much easier in positive characteristic, or that the theory of
exponential polynomials (which initially inspired our joint work with Carlos
Berenstein) has been recently revisited starting with p-adic ideas introduced
by B. Dwork, N. Katz, P. Robba and more recently by Y. André ([DGS,
Andr]). For example, Ritt’s factorization theorem (which plays, together with
analytic division formulas and Ax-Schanuel theorem, a fundamental role in
our study of ideals generated by exponential-polynomials [BeY1]) is more rigid
in the arithmetic context : in particular, (see [Andr]), the quotient by z − 1
of a sum of exponential

∑

j

aj exp(iαjz) ,

(with aj , αj ∈ Q) which vanishes at z = 1 happens to be a sum of exponentials,
which of course fails without arithmetic constraints (this leads to an elegant
proof of Lindemann-Weierstrass theorem). There seems to me to be a parallel
between the power of reasoning in positive characteristic when understanding
in some algebraic way such mysterious division results as Briançon-Skoda’s
theorem and that of using ideas issued from p-adic analysis to get such rigid-
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ity results for exponential polynomials with both algebraic coefficients and
frequencies.

2 Chow ideal, integral closure and Briançon-Skoda

theorem

Let us adopt here a geometric (semi-local) point of view. Let U be a neigh-

borhood of the origin in Cn and C =
∑N

j=1 αjZj , αj ∈ N∗, be a purely
k-dimensional effective cycle with support |C| in U . The Chow ideal of the
cycle is defined as follows (see [Ko2]) : consider all admissible linear pro-
jections π : Cn −→ Ck+1 such that the origin is isolated in Kerπ ∩ |C|
and the restriction of π to U ∩ |C| is proper (in the topological sense) ; for
such a map, let µπ,j , j = 1, ..., N , be the number of sheets of the covering
πU∩|Zj | : U ∩ |Zj | −→ π(U) and Fπ :=

∏

j(fπ,j ◦ π)αjµπ,j , where fπ,j = 0 is
an irreducible equation for the hypersurface π(|Zj | ∩ U) in π(U) ; the Chow
ideal Ichow(C) of the effective cycle C is defined as the ideal generated by the
Fπ, π being such an admissible projection. Such a definition can be extended
to non-purely dimensional cycles (Ichow(C1 + C2) = Ichow(C1) · Ichow(C2)).
A key fact relating intersection problems (of geometric nature) and division
problems (of algebraic nature) is the following : if C1, ..., CM are M purely
dimensional effective cycles with support in U and C1 • · · · •CM denotes the
intersection cycle obtained through the Vogel-Tworzewski construction [Tw],
then one has

Ichow(C1 • C2 • · · · • CM ) ⊂ (I(C1), ..., I(CM )) , (1)

where the ideal of an effective cycle C =
∑

j ajZj is defined as

I(C) :=
∏

j

({f ; f = 0 on |Zj |}
αj (2)

and the bar over the right-hand side of this inclusion means the integral closure
of the ideal. We recall here that the integral closure of an ideal I in a noetherian
domain R is defined as the ideal I of all elements in R which satisfy an
homogeneous relation of integral dependency

hN + a1h
N−1 + · · · + aN ≡ 0 (3)

with ak ∈ Ik for k = 1, ..., N . Equivalently, I consists of all elements h such
that h ∈ IV for all discrete valuation rings V lying between R and its fraction
field (3’), or all elements h ∈ R such that there exists c ∈ R∗ with c hn ∈ In

for infinitely many n ∈ N (3”) (see for example [Smi] for a survey and an
updated list of references about such a notion, together with its relation to
the notion of tight closure in a noetherian domain with prime characteristic
on which we will come back later on).
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Summarizing here, we have at least three equivalent ways to assert that some
h ∈ R belongs to the integral closure of I . In the particular case R = On,
testing the valuative criterion for h amounts to say that, given a system
(f1, ..., fm) of generators for I , one has |h| ≤ K max |fj | for some constant
K in a neighborhood of the origin. Such an analytic characterization will be
deeply connected with the use of integral formulas of the Bochner-Martinelli
type in order to solve explicitly division problems : generalized versions of
the Lelong-Poincaré formulas expressed in terms of such integral formulas
lead (when variables are duplicated) to extensions of Lagrange interpolation
formulas of the Cauchy-Weil-Bergman type [We]. It remains an interesting
challenge, in the case R = On, to show (without going through resolution of
singularities and the valuative criterion as in [LejT]) that any h satisfying an
inequality |h| ≤ K max |fj | fulfills an algebraic identity of the form (3).

When R is a regular n-dimensional local ring (such as On), then a funda-
mental result (initially proved in On by J. Briançon and H. Skoda in [BriS]
using L2-methods, then extended by J. Lipman and A. Sathaye in the general
setting [LiS]) asserts that for any ideal I in R, for any k ∈ N∗, the integral
closure of Ik+µ−1 lies in Ik (in particular Iµ ⊂ I taking k = 1) if µ is defined
as the minimum of n and of the least number of generators of I . When R has
positive characteristic p, the proof of this result (for k = 1) follows easily from
the rather immediate intermediate inclusions Ir ⊂ I∗ ⊂ I , where r denotes
the minimal number of generators of I and I∗ denotes the tight closure of
I = (f1, ..., fr), that is the set of h ∈ R such there exists a nonzero element

c ∈ R with c hpe

∈ (fpe

1 , ..., fpe

r ) for all e >> 0. One needs here to use the
last equivalent formulation (3”) we proposed above for the membership to
the integral closure [HoH1, Smi]. In the 0-characteristic case, such arguments
do not apply directly, but it is fundamental to notice (as pointed out by B.
Teissier in [Te3]), that Caratheodory theorem combines with a generalization
of a theorem of Fenchel [HanR] to provide a simple proof of Briançon-Skoda
theorem for monomial ideals. One should add here that the descent from char-
acteristic p down to characteristic zero, which was very recently described in
[HoH2], provides indeed some new light on Briançon-Skoda theorem. It seems
important to connect the näıve ideas we discuss here (inspired by Bochner-
Martinelli type integral formulas or by their algebraic counterpart, multidi-
mensional residue theory in its algebraic presentation, for example [Lip]), to
such an approach going from characteristic p down to characteristic 0.

Chow ideas (initially developed by Y. Nesterenko) were used in 1987 by D.W.
Brownawell who combined them with Briançon-Skoda theorem in order to
state the following striking result :

Theorem ([Bro]) Let P1, ..., Pm be m polynomials in C[X1, ..., Xn] such that
deg Pj ≤ D, j = 1, ..., m, with no common zeroes in Cn ; then one can write
a Bézout identity 1 = P1Q1 + · · ·+PmQm such that maxdeg PjQj ≤ 3nµDµ,
where µ := min(n, m).
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As a matter of fact, Brownawell’s result comes as a combination of Bézout
theorem, the inclusion (1), and finally Briançon-Skoda theorem which plays
the role of a “black box”. The following result (which is due to M. Hickel and
answers positively a question our analytic point of view with Carlos Berenstein
motivated us to ask in [BeY3]) emphasizes the crucial role of Briançon-Skoda
theorem as a path from intersection to division problems (see also [EL] for a
related point of view) :

Theorem ([Hi]) Let P1, ..., Pm be m polynomials in C[X1, ..., Xn] such that
deg Pj ≤ D, j = 1, ..., m, and Q lying locally in the integral closure of
(P1, ..., Pn) at any point in Cn (for example, Q ∈ (P1, ..., Pm)). Then one
can write an explicit division formula :

Qmin(n+1,m) =

m
∑

j=1

PjQj , deg PjQj ≤ min(n + 1, m)(deg Q + Dmin(n,m)) .

A key stumbling block with respect to the use of Briançon-Skoda theorem
(or its natural analytic companion, Bochner-Martinelli integral representation
formula) when one wants to keep track of algebraic or arithmetic constraints
while writing explicit division formulas is the fact that L2-methods (or com-
plex analytic methods involving integral representation formulas), usually hide
the algebraic argument.

In 1981, J. Lipman and B. Teissier proposed in [LiT] an alternative proof of
Briançon Skoda theorem based on the use of multidimensional theory (through
integral symbols) : let f1, ..., fn define a m-primary ideal in On (m being the
maximal ideal in the local ring On) and h lying in the integral closure of
(f1, ..., fn) ; then, for any g ∈ On, the Cauchy-like integral

1

(2iπ)n

∫

Γf (ε1,...,εn)

hng dζ1 ∧ · · · ∧ dζn

f1 · · · fn
(4)

where Γf (ε) := {|f1| = ε1, ..., |fn| = εn} (which is constant for ε generic
thanks to Stokes’s theorem) tends to 0 when ε tends to zero (remaining in a
cone). Therefore (4) is equal to zero, which implies hn ∈ (f1, ..., fn) because
of the duality theorem for Grothendieck residue symbols attached to regular
sequences. The algebraic counterpart of the Cauchy integral symbol is the
Cauchy development. It is important to recall here that, for such f1, ..., fn

and r ∈ On, the residue symbol

Res

[

r dζ1 ∧ · · · ∧ dζn

f1, ..., fn

]

= lim
ε−→0

1

(2iπ)n

∫

Γf (ε1,...,εn)

rdζ1 ∧ · · · ∧ dζn

f1 · · · fn

is not defined alone in algebraic presentations of multidimensional residue
theory (as for example in [Lip], chapter 3). Such a residue symbol comes
as the trace of an operator T ∈ HomC(On/(f1, ..., fn),On/(f1, ..., fn)). It is
defined together with the whole list of symbols
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Res

[

r dζ1 ∧ · · · ∧ dζn

fk1+1
1 , ..., fkn+1

n

]

, (k1, ..., kn) ∈ Nn .

Note that, in the same vein, Briançon-Skoda theorem for I = (f1, ..., fn) is

not only the inclusion In ⊂ I , but the whole list of inclusions In+k−1 ⊂ Ik

for any k ∈ N∗. Here is an alternative way to relate such list of inclusions
(in terms of Taylor developments instead of Cauchy integrals) to the duality
theorem :

A rephrasing of Briançon-Skoda theorem : Let (f1, ..., fn) and (g1, ..., gn)
be two m-primary ideals in On with the same integral closure ; then the formal
power series (in C[[u]])

∞
∑

k1=0

· · ·
∞
∑

kn=0

Res

[

rgk1+1
1 · · · gkn+1

n dζ1 ∧ · · · ∧ dζn

fk1+1
1 , ..., fkn+1

n

]

uk1

1 · · ·ukn
n

is identically zero for any r ∈ On.

In order to justify such a reformulation, one should recall here the key remark
of M. Hochster in the appendix to [LiT] : given a regular sequence (f1, ..., fn)
in On, one has, for any k ∈ N∗,

(f1, ..., fn)k =
⋂

l∈Nn

l1+···+ln=k−1

(f l1+1
1 , ..., f ln+1

n ) . (5)

Besides the three ways we already mentioned to characterize the member-
ship of a given h ∈ On to the integral closure of some m-primary ideal
(f1, ..., fn), let us formulate here two alternative ones involving multidimen-
sional residue calculus. Both of them appear to be deeply connected with the
various techniques we have been developing with Carlos Berenstein (culminat-
ing in [BeY4]) in order to make “effective” the black box which corresponds
to the involvement of Briançon-Skoda theorem in our work.

Characterization 1 [TsiY], theorem 4.10) An element h ∈ On belongs to the
integral closure of (f1, ..., fn) if and only if there exists N ∈ N such that for
any r ∈ On, the power series

∞
∑

k1=0

· · ·

∞
∑

kn=0

Res

[

rhk1+···+kn dζ1 ∧ · · · ∧ dζn

fk1+1
1 , ..., fkn+1

n

]

uk1

1 · · ·ukn
n

corresponds to the development about u = 0 of a rational function F1/F2 with
no pole at u = 0, F2 independent of r and max(deg F1, deg F2) ≤ N .

Characterization 2 An element h ∈ On belongs to the integral closure of
(f1, ..., fn) if and only if there exists N ∈ N and c ∈ On such that for any
r ∈ On, the formal power series

∞
∑

k1=0

· · ·
∞
∑

kn=0

Res

[

rc hk1+···+kn+1 dζ1 ∧ · · · ∧ dζn

fk1+1
1 , ..., fkn+1

n

]

uk1

1 · · ·ukn
n
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is a polynomial in u with degree less than N .

Such a characterization is obtained from characterization (3)” using (5) and
the duality theorem.

In order to unify the picture (and understand completely the reason why
multivariate residue calculus appears as an algebraic counterpart of integral
representation formulas or L2 methods), it would be crucial to derive a direct
“combinatoric” proof of Briançon-Skoda theorem which does not use (even in
some artificial way) an integral symbol such as the integration on the chain
Γf (ε) in (4). Unfortunately, despite many efforts with M. Hickel, we could
not achieve such an objective. Let us sketch briefly what could be a conjec-
tural scheme of the proof : first start with two m-primary ideals (f1, ..., fn)
and (g1, ..., gn) with the same integral closure. Then introducing additional
parameters u1, ..., un and noting that formally (this follows from the transfor-
mation law in residue calculus, see for example [GrH], chapter 6), one has, for
any r ∈ On,

∞
∑

k1=0

· · ·

∞
∑

kn=0

Res

[

rgk1+1
1 · · · gkn+1

n dζ1 ∧ · · · ∧ dζn

fk1+1
1 , ..., fkn+1

n

]

uk1

1 · · ·ukn
n

= Res

[

rg1 · · · gndζ1 ∧ · · · ∧ dζn

f1 − g1u1, ..., fn − gnun

]

=
(−1)n

(u1 · · ·un)2
Res

[

rg1 · · · gndζ1 ∧ · · · ∧ dζn

g1 − f1/u1, ..., gn − fn/un

]

.

Reversing the roles of f and g and introducing additional parameters v1, ..., vn

deduce that

∞
∑

k1=0

· · ·

∞
∑

kn=0

Res

[

rfk1+1
1 · · · fkn+1

n dζ1 ∧ · · · ∧ dζn

gk1+1
1 , ..., gkn+1

n

]

vk1

1 · · · vkn
n

= Res

[

rg1 · · · gndζ1 ∧ · · · ∧ dζn

g1 − f1v1, ..., gn − fnvn

]

.

On the other hand, thanks to characterization 2, the fact that g1, ..., gn lie in
(f1, ..., fn) implies that there exists a non zero element c ∈ On and N ∈ N

such that, for any r ∈ On, the formal power series

∞
∑

k1=0

· · ·

∞
∑

kn=0

Res

[

rc gk1+1
1 · · · gkn+1

n dζ1 ∧ · · · ∧ dζn

fk1+1
1 , ..., fkn+1

n

]

uk1

1 · · ·ukn
n

is a polynomial in u with degree N . Since the polar set of the rational function
whose development about the origin is

∞
∑

k1=0

· · ·

∞
∑

kn=0

Res

[

rgk1+1
1 · · · gkn+1

n dζ1 ∧ · · · ∧ dζn

fk1+1
1 , ..., fkn+1

n

]

uk1

1 · · ·ukn
n



8 A. Yger

does not depend of r, there is some hope to show that one get get rid of c and
get that such a rational function is in fact a polynomial in u, which contradicts
(if it is not identically zero) the fact that it could be also expressed as a
polynomial in 1/u1, ..., 1/un (as expected through the transformation law).

Let us go now from the local setting to the global setting and replace the lo-
cal ring On with the polynomial ring C[X1, ..., Xn]. Our long term work with
Carlos Berenstein convinced me that what makes the algebraic and analytic
approaches so different (and therefore so complementary) is that there are
two different perceptions of the hyperplane at infinity when dealing with one
point of view or the other. In algebraic geometry, the hyperplane at infinity
is nothing else than a projective hyperplane (it can be any projective hyper-
plane after a projective change of coordinates). For the analyst, who looks at
algebraic division problems from the affine space Cn, the notion of infinity
makes sense and carries related notions such as, for example, the notion of
topological properness for a polynomial map from Cn to Cm, the concept of
separation at infinity, together with the related definition of the Lojasiewicz
exponent at infinity (see for example [CyKT] for a general overview and refer-
ences about these fundamental notions which have been extensively studied in
the past years by the Crakow school), the concept of apparent contour which
was introduced by G. Monge, etc.

Let then P = (P1, ..., Pm) be a polynomial map from Cn to Cm such that the
zero set V (P1, ..., Pn) := {ζ ∈ Cn ; P (ζ) = 0} is discrete (hence finite). Let
I be the ideal generated in C[X0, ..., Xn] by the homogenizations of the Pj ;
let V (I) the zero set of I in Pn(C). One can define (see [Hi]) in terms of the
polar invariants attached (see [Te1]) to the normalized blow-up of Pn(C) with
center V (I), the least positive rational number ν∞(I) such that

m
∑

j=1

Pj(ζ)

‖ζ‖deg Pj
≥ κ‖ζ‖−ν∞(I)

for some κ > 0 when ‖ζ‖ >> 0. When ν∞(I) < deg Pj for j = 1, ..., m,
the polynomial map P is proper in the topological sense ; the case ν∞(I) = 0
corresponds to the particular case when the supports of the projective divisors
corresponding to P1, ..., Pm do not intersect on the hyperplane at infinity. The
following result (which was transposed in [VY] from the projective setting to
the toric setting [GeKZ]) appears [BoH] to be the corner stone of the effective
results [BeY2, BeY4] that gave the first result toward the formulation of an
effective arithmetic nullstellensatz :

Theorem ([VY]) Assume (P1, ..., Pn) is a proper map from Cn to Cn. Then,
for any Q ∈ C[X1, ..., Xn] such that

deg Q <

n
∑

j=1

deg Pj − n(1 + ν∞(I)) =

n
∑

j=1

(deg Pj − ν∞(I)) − n ,
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the total residue symbol (that is the sum of local Grothendieck residues at all
points in V (P1, ..., Pn))

Res

[

Q(X) dX1 ∧ · · · ∧ dXn

P1, ..., Pn

]

is equal to 0.

This result can be proved using Bochner-Martinelli integral representation
formula [VY]. M. Hickel noticed that an alternative way to prove it is to
use the Briançon-Skoda theorem in its full strength, that is, for any ideal
I generated by n elements in On+1 and for any k ∈ N∗, Ik+n−1 ⊂ Ik for
any k ∈ N∗ (note that the assertion for k = 1 is not sufficient, which shows
again that integral symbols involved in Bochner-Martinelli integral formulas
hide some Cauchy-like development). One should add here that a currential
geometric re-interpretation of this result was recently proposed in [And1].

Because of its ubiquity, Briançon-Skoda theorem provides a dictionary be-
tween analytic informations (such as Lojasiewicz inequalities) and algebraic
informations (for example the vanishing of a formal power series defined in
terms of residue symbols). Here is an example of such a result :

Proposition ([TsiY], lemma 4.2) Let P1, ..., Pn ∈ C[X1, ..., Xn] be a proper
polynomial map from Cn to Cn ; the Lojasiewicz exponent at infinity of P is
at most 1 (that is lim inf

‖ζ‖→∞
‖P (ζ)‖/‖ζ‖1−ε > 0 for any ε > 0, which is clearly

an analytic assertion) if and only if all residue symbols

Res

[

rX l1
1 · · ·X ln

n dX1 ∧ · · · ∧ dXn

P k1+1
1 , ..., P kn+1

n

]

, l1 + · · · + ln < k1 + · · · + kn

are equal to zero (this is a list of algebraic relations).

3 Multiplying integration currents

At the same time we pushed forward our efforts to clarify the dictionary
between analytic tools (such as integral representation formulas) and algebraic
ones (multivariate residue calculus adding parameters as described in section
2), we went on profiting from analytic aspects of multidimensional residue
theory, dealing with the much less rigid currential point of view [Lel]. I will
just point out here relevant recent results with potential applications since
they are closely related either to integral closure and Briançon-Skoda theorem
and to intersection theory. We were interested in both questions with Carlos
Berenstein when profiting from the complementarity of analytic, geometric
and algebraic ideas. For further references and a complete up-to-date overview
of all such topics, I refer to the two survey papers [Bjo] and [TsiY].
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Let U be some open set in Cn, F1, ..., FM M holomorphic functions in U .
Exploring analytic ideas involved in multivariate residue calculus and in-
spired (as the analytic ideas lying behind the concept of algebraic closure
introduced in the previous section) by normalized blowing-up techniques and
toric geometry, we introduced with M. Passare, A. Tsikh and Carlos Beren-
stein in [Y1, Y2, PTY, BeY4] a list of currents TI(F, p) which is indexed
by the collection of all non-empty ordered subsets I = {i1, ..., ik} (with
1 ≤ i1 < · · · < ik ≤ M) of {1, ..., M} and by the collection of multi-indexes
p = (p1, ..., pM ) in NM . For k ∈ {1, ..., min(M, n)} and I with cardinal k, for
each p ∈ NM , the “residual current” TI(F, p) is the (0, k) current whose action
on an (n, n − k)-test form ϕ can be expressed as

〈TI(F, p) , ϕ〉 := lim
ε−→0

(−1)k(k−1)/2(k − 1)!

(2iπ)k

1

εk

∫

‖F‖2
p
=ε

Ω(F ; I ; p) ∧ ϕ ,

where

‖F‖2
p : =

M
∑

j=1

|Fj |
2(pj+1)

Ω(F ; I ; p) : =

k
∑

l=1

(−1)l−1Fil

k
∧

ν=1

ν 6=l

d [Fiν
|Fiν

|2piν ]

The current TI(F, p) with #I = k, k = 1, ..., min(n, M), is annihilated in
U (as a current) by holomorphic functions h which locally satisfy about any
point in U the condition

(

∏

i∈I

F pi

i

)

h ∈ (F p1+1
1 , ..., F pM+1

M )#I .

Moreover the support of all such currents(for any subset I, for any multi-index
p ∈ Nn) lies in the closed analytic set V (F ) = {z ∈ U ; F (z) = 0} since it
is locally annihilated (as a current) by any anti holomorphic function which
vanishes on V (F ). From such a property, one could guess, at least heuristically,
that the action of the residual current TI(F, p) involves only the holomorphic
differential operators ∂/∂zj for j = 1, ..., n. Though they fail to be ∂-closed
(except in the particular case k = M ≤ n), such currents TI(F, p) would
probably gain to be better understood from the algebraic point of view.

Let C be an effective analytic cycle with support in U and defining ideal
(multiplicities being taken into account as in (2)) I(C) = (f1, ..., fm). Let
also S := {L1 = · · · = Lr = 0} be a s dimensional reduced subman-
ifold in U . In [Tw], P. Tworzewski introduced (through an algorithm in-
spired by the Vogel-Stückrad construction) the local multi-index of contact
ν(C, S) = (νs(C, S), ..., ν0(C, S)) ∈ Ns+1 between the cycle C and the smooth
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s-dimensional submanifold S at some point x lying in the intersection of the
support of C and S. He also introduced the related intersection cycle C • S.
It was shown by Achilles and Rams [AchR] (see also [AchM]) that the com-
ponents of the multi-index of contact ν ∈ Nn−r+1 can be understood as gen-
eralized Hilbert-Samuel multiplicities.

On the other hand, let M = r + m and F := (L1, ..., Lr, f1, ..., fm). For any
k ∈ {0, s}, for any p ∈ Nr, the currents TI(F ; p), with #I = n − k (where
p := (p1, ..., pr, 0, ..., 0)) can be combined with the dF1, ..., dFM in order to
realize the positive ∂ and ∂-closed (n − k, n − k) current

[Vp(F )]k :=
∑

I
#I=n−k

∏

i∈I

(pi + 1) TI(F, p) ∧ dFi1 ∧ · · · ∧ dFin−k

(see [BeY5]). When k = s, it follows from King’s formula [King] that at
least if the pj are large enough, the current [Vp(F )]s vanishes if dim(S ∩
V (f1, ..., fm)) < s. Otherwise (see [BeY5, Meo1, Meo2, And3], S is involved
as an irreducible component in the decomposition of the analytic subset
S ∩ V (f1, ..., fm) and the current [Vp(F )]s equals Zs , where Zs is the s-
dimensional component of the intersection cycle C • S between C and the
smooth manifold S (the local multiplicity at z of such a cycle Zs being the
first component in the multi-index of intersection between C and S at the
point z in the sense of [Tw]). When k = 0, ..., s−1, the closed positive current
[Vp(F )]k admits a unique Siu decomposition

[Vp(F )]k =
∑

j

αp,k,jCp,k,j + Rp,k

(see [Siu, Dem1, Dem2]) and it seems a natural question to ask whether, for
p1, ..., pr large enough (or if not for which p) the singular part

∑

j

αp,k,jCp,k,j

fits with the k-dimensional component in the decomposition of the intersection
cycle C • S (as defined by Tworzewski in [Tw]). This would give some way
to approximate the Tworzewski’s multi-index of contact in terms of Bochner-
Martinelli integral representation formulas (as it of course happens when C
and S intersect properly).

Such factorization results of the Lelong-Poincaré type for integration currents
in the improper intersection case enhance the role of multidimensional residue
theory when multiplying in a robust way (as described in [Bjo]) integration
currents with meromorphic forms (either in a product space as for the con-
struction of Green currents [BeY5] or on an incidence manifold as far as the
concept of trace is concerned). I will just refer here to our recent work [BeVY]
and to the “algebraic” formulations (in terms of the rigidity of a non-linear,
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non-homogeneous system of differential equations whose all solutions are au-
tomatically rational when the right-hand side is) of Abel’s inverse theorem
(see [Gr, HeP, Y3, Wei]). In the same vein I would like also to mention before
concluding this section the recent work of B. Fabre [Fab], extending Abel’s
theorem replacing the notion of trace of a meromorphic form by that of Abel-
Radon transform of a residual current.

4 Some conclusive and prospective remarks

We have seen how simpler the understanding of results such as Briançon-Skoda
theorem could be when working in positive characteristic (where the concept
of tight closure happens to be a quite useful intermediate notion toward the
notion of integral closure). What we tried to point out in this short quite
oriented survey is that any time one wants to substitute an algebraic argument
to the use of an integral representation, one has to add additional parameters
and study the algebraic properties of formal power series involving residual
symbols : do such power series correspond to polynomials, developments of
rational functions, of algebraic functions, etc. ? The sequence of coefficients of
such power series is algebraically governed by transformation laws involved in
residue calculus (or generalized versions of transformation laws, as in [BeY4]).

Rigidity constraints that lead to criteria of rationality in K[[u]], where K is a
field, imply usually much stronger results in positive characteristic or under
arithmetic conditions that allow to use p-adic analysis (working over a number
field). For example, the combination of Katz and Chudnowsky theorems (as
in [DGS, Andr]) is fundamental to conclude to the rationality of solutions of
some peculiar differential systems D−Γ in K[[X ]]µ, where Γ ∈ Mµ,µ(K[X ]),
K being a number field.

There seem to be some interest to transpose such ideas (inspired by p-adic
analysis) to the range of methods we summarized in this very partial pre-
sentation. Note that the search for Bernstein-Sato type identities which is
central in our attack with Carlos Berenstein of division problems (division
being replaced by integration by parts) could also gained to be carried in
such a context. This is probably what we missed in our previous study of
ideals generated by exponential polynomials. I cannot conclude this survey
without mentioning that L. Ehrenpreis’s question (are the zeroes of a sum
of exponentials with algebraic coefficients and frequencies well separated ?)
was (and still remains) a central motivation for introducing all such tech-
niques ; a positive answer to such a question is conditioned by the existence
of Bernstein-Sato identities (thinking about analytic division formulas as a
tool to attack the problem) or by a better understanding of multidimensional
residue calculus (its algebraic companion) in positive characteristic or over a
number field (where p-adic ideas can be used).
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[BeY1] Berenstein, C.A., Yger, A.: Ideals generated by exponential-polynomials,

Advances in Math. 60 (1986), pp. 69–120.
[BeY2] Berenstein, C.A., Yger, A.: Effective Bézout identitities in Q[z1, ..., zn], Acta
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