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Abstract Trace formulas (Lagrange, Jacobi-Kronecker, Bergman-Weil) play
a key role in division problems in analytic or algebraic geometry (including
arithmetic aspects, see for example [10]). Unfortunately, they usually hold
within the restricted frame of complete intersections. Besides the fact that it
allows to carry local or semi global analytic problems to a global geometric
setting (think about Crofton’s formula), averaging the Cauchy kernel (from
Cn\{z1 . . . zn = 0} ⊂ Pn(C)), in order to get the Bochner-Martinelli kernel (in
Cn+1 \ {0} ⊂ Pn+1(C) = Cn+1 ∪Pn(C)), leads to the construction of explicit
candidates for the realization of Grothendieck’s duality, namely BM residue
currents ([27, 3, 6]), extending thus the cohomological incarnation of dual-
ity which appears in the complete intersection or Cohen-Macaulay cases. We
will recall here such constructions and, in parallel, suggest how far one could
take advantage of the multiplicative inductive construction introduced in [13]
by N. Coleff and M. Herrera, by relating it to the Stückrad-Vogel algorithm
developed in ([30],[31],[8]) towards improper intersection theory. Results pre-
sented here were initiated all along my long term collaboration with Carlos
Berenstein. To both of us, the mathematical work of Leon Ehrenpreis cer-
tainly remained a constant and how much stimulating source of inspiration.
This presentation relies also deeply on my collaboration with M. Andersson,
H. Samuelsson and E. Wulcan in Göteborg, through the past years.

1 Coleff-Herrera residue currents for complete
intersections and the Transformation Law

Let X be a n-dimensional (ambient) complex manifold and V ⊂ X be a
closed analytic subset with pure codimension M , equipped with its structure
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sheaf OV = OX /IV , where IV,x = {hx ∈ OX ,x ; hx = 0 on Vx}. Let [V ] be
the integration current on the complex subspace (V,OV ). Let ∆1, ...,∆m be
m ≤ n−M Cartier divisors on X , with respective holomorphic global sections
s1, ..., sm, such that for all x ∈ V ∩

⋃m
j=1 s−1

j (0), the germs (s1,x, ..., sm,x)
define a regular sequence in OV,x. We denote as OV [s] the ideal sheaf of
OV obtained as the image of

⊕m
j=1OV (−∆j) by the interior product with

(s1, ..., sm). Note that, if the closed hypersurfaces s−1
j (0), j = 1, ...,m, inter-

sect properly on V (that is dim(V ∩
⋂m

j=1 s−1
j (0)) ≤ n −M −m) or, which

is equivalent, define a complete intersection on V , the required condition
holds provided that the ambient manifold X is replaced by some convenient
neighborhood U of V ∩ s−1(0) := V ∩

⋂m
j=1 s−1

j (0). What seems to be to-
day the most robust approach towards the so-called Coleff-Herrera current∧m

j=1 ∂(1/sj)∧[V ] (originally introduced by N. Coleff and M. Herrera in their
pioneer work [13]) is the following result (initially obtained in [9] for m = 2,
then finally extended by H. Samuelsson [28] for arbitrary m) :

Theorem 1 (robust approach to the Coleff-Herrera residue current
attached to a complete intersection). In the above context, for any
choice of C∞ metrics | |j on the line bundles OX (∆j), the holomorphic⊕m

r=0

⊕
1≤j1<···<jr≤m

′D(M,M+r)(X ,
∧r

l=1OX (−∆jl
))-valued map

(λ1, ..., λm) ∈ {λ ; Re λj > 1, j = 1, ...,m}

7−→
[ 1∧

j=m

(
1− |sj |

2λj

j +
1

2iπ
∂
( |sj |

2λj

j

sj

))]
∧ [V ]

(1)

can be analytically continued as an holomorphic map to a product of half-
spaces {Re λj > −η} for some η > 0. Its value at λ = 0 coincides with
its ′DM,M+r(X ,

∧m
j=1OX (−∆j))-component and defines a ∂-closed bundle-

valued current which is independent of the metrics | |j, j = 1, ...,m. This
current, supported by V ∩s−1(0), is denoted as

∧m
j=1 ∂(1/sj)∧[V ]. Considered

as a ∂-closed current on the complex space (V,OV ), it is locally annihilated by
any local section of the ideal sheaf OV [s]. Moreover, when V = X , it realizes
the local duality with respect to the ideal sheaf OX [s], namely

(
hx ·

m∧
j=1

∂(1/sj) = 0
)
⇐⇒

(
hx ∈ (OX [s])x = (s1,x, ..., sm,x)OX ,x

)
. (2)

The intimate relationship between the sheaf of differential operators
with meromorphic coefficients and the local description of such a current
arises from the following remark, which refers to the sheaves of Coleff-
Herrera currents (here bundle-valued, holomorphic or meromorphic, see
[32]) introduced by J.E. Björk in [11], together with their companion lo-
cal structure theorems (see [11], or also [32] for a survey in this volume).
The current

∧m
j=1 ∂(1/sj) ∧ [V ] splits locally about each point of its sup-
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port V ∩ s−1(0) as Tx ∧ ωx, where Tx is a local section of the Coleff-
Herrera sheaf CHX ,V ∩s−1(0)(· ; ?Sx,

∧m
j=1OX (−∆j)), and ωx is a local sec-

tion of ΩM+m
X (·,

∧m
1 OX (∆j)). Here Sx denotes a germ of hypersurface

at x polar respect to Vx ∩ s−1
x (0), i.e. (Vx ∩ s−1

x (0)) \ Sx = Vx ∩ s−1
x (0).

Moreover, when V is Cohen-Macaulay about x0 ∈ V ∩ s−1(0) (that is
OV,x0 is Cohen-Macaulay), the integration current [V ] factorizes about x0

as τx0 ∧ $x0 , where $x0 is a local section of the Coleff-Herrera sheaf
CHX ,V , and $x0 is a section of the sheaf ΩM

X (see [4]), which implies
in this particular case that one can take about x0 the current section
Tx0 to be a local section Tx0 of CHX ,V ∩s−1(0)(·,

∧m
1 OX (−∆j)) instead of

CHX ,V ∩s−1(0)(· ; ?Sx0 ,
∧m

1 OX (−∆j)). This occurs in particular when V is
defined as a reduced complete intersection about the point x0.

Remark 1. Theorem 1 provides a robust approach (via analytic continuation)
towards the Coleff-Herrera residue current for complete intersections on a
purely dimensional analytic set (V,OV ), as developed in [13]. It is important
here to point out that one may replace in (1) the integration current [V ] by
any global section of the Coleff-Herrera sheaf CHX ,V (·, E), where E denotes
a finite rank holomorphic bundle over X . When m ≤ M , the first assertion in
Theorem 1 remains valid under the complete intersection hypothesis about
the sj ’s on V , which provides some kind of robustness for multiplicative
residue calculus involving Coleff-Herrera currents (see for example Proposi-
tion 3 below). The proof can be carried in a similar way than to that in
[28], taking advantage of the wedge product operation introduced in [12] (see
also [32]). Be careful however that the definition of the sheaf CHX ,V (·, E),
whose global sections are (0,M) E-valued currents in the ambient manifold
X with support lying in V , depends on the embedding V ⊂ X . Nevertheless,
Remark 1 will be important with respect to the role of such Coleff-Herrera
residue currents in the construction of analytic tools for division theory, in
accordance with that played by integration currents in intersection theory
(see subsection 2.2 below).

We considered so far the holomorphic sections s1, ..., sm of the hermi-
tian line bundles (OX (∆j), | |j) independently, then introduced the Coleff-
Herrera current

∧m
j=1 ∂(1/sj)∧ [V ] through a multiplicative procedure which

is reminiscent of the multiplicative operational formalism carried by the
Cauchy kernel dz1/z1 ∧ · · · ∧ dzm/zm. Instead of that, one could interpret
s = s1 ⊕ · · · ⊕ sm as an holomorphic section of the m-holomorphic bun-
dle

⊕m
j=1OX (∆j), equipped with the metric ‖ ‖2 = | |21 ⊕ · · · ⊕ | |2m. The

robustness of the approach towards the current
∧m

j=1 ∂(1/sj) ∧ [V ] (in the
complete intersection setting, see Theorem 1) motivates this alternative one.
We still use analytic continuation, but this time respect to a single auxiliary
complex parameter λ instead of several. Such an approach was introduced in
[9, 27], then extensively developed (after being interpreted within the frame
of holomorphic hermitian bundles) in [3, 4, 6, 7]. It is based on an averaging
procedure.
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Theorem 2 (Bochner-Martinelli approach). Let X , V , the ∆j’s and the
sj’s be as in the preamble of this section. Let ‖ ‖ be an arbitrary hermitian
metric on the m-dimensional bundle

⊕m
j=1OX (∆j) = E∆, s = s1⊕· · ·⊕ sm,

and s∗ be the conjugate section of s, that is s∗(x)(ξ) = 〈〈ξ, s(x)〉〉x for x ∈ X ,
ξ ∈ E∆,x. The holomorphic

⊕m
r=0

′DM,M+r(X ,
∧r

E∗
∆)-valued map

λ 7−→
(
(1− ‖s‖2λ) + ∂‖s‖2λ ∧

( m∑
r=1

1
(2iπ)r

s∗ ∧ (∂s∗)r−1

‖s‖2r

))
∧ [V ] (3)

(defined for Re λ >> 1) extends as an holomorphic map in a half-plane
Re λ > −η for some η > 0. It coincides at λ = 0 coincides with its
′DM,M+m(X ,

∧m
E∗

∆) component, that is, independently of the choice of the
metric ‖ ‖ on E∆, the Coleff-Herrera current

∧m
j=1 ∂(1/sj) ∧ [V ].

Remark 2. In the particular case where all line bundles OX (∆j), j = 1, ...,m,
are trivial over X , and the holomorphic sections sj are holomorphic functions
in X defining a complete intersection on V , one can interpret the current[(

(1− ‖s‖2λ) + ∂‖s‖2λ ∧
( m∑

r=1

1
(2iπ)r

s∗ ∧ (∂s∗)r−1

‖s‖2r

))
∧ [V ]

]
λ=0

(now ‖ ‖ is the euclidean norm on Cm, s∗(x)(ξ) =
∑m

1 sj(x) ξj for ξ ∈ Cm)
as an averaged value of the currents[

1∧
j=m

(
1− |〈uj , s〉|2λj +

1
2iπ

∂
( |〈uj , s〉|2λj

〈uj , s〉

))
∧ [V ]

]
λ1=···=λm=0

(where (u1, ..., um) ∈ (Pn−1(C))m, and 〈s, uj〉 =
∑m

k=0 uj
ksk for k = 1, ...,m)

defined as in in (1), for (u1, ..., um) generic in (Pm−1(C))m, respect to the
normalized tensorized Fubini-Study metric on (Pn−1(C))m.

Averaging Coleff-Herrera currents (realized in a multiplicative form as in
Theorem 1) prevents usually from keeping track of the algebraic or arithmetic
structure of the data (when there is one). Keeping track of such a structure is
indeed better possible through a multiplicative approach such as in Theorem
1. Nevertheless, within the complete intersection frame, the fact that the cur-
rent

∧m
j=1 ∂(1/sj)∧ [V ] remains preserved under such averaging (Theorem 2)

allows to reinterpret in geometric terms (and prove) the key (algebraic) oper-
ational property of multivariate residue calculus (see for example [23, 10, 18]),
the so called Transformation Law. In order to formulate such a computational
rule (which appears to be the geometric counterpart of Wiebe’s theorem [33])
in a rather general form, one needs to introduce two sequences of Cartier di-
visors on the ambient complex manifold X , namely (∆1, ...,∆m,T0, ...,Tk−1)
and (∆̃1, ..., ∆̃m) (m + k ≤ n − M), together with respective holomorphic
sections (s1, ..., sm, t0, ..., tk−1) = (s, t), (s̃1, ..., s̃m) = s̃ ; when k = 0, one
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takes {T0, ...,Tk−1} = ∅. The geometric hypothesis are :

codimV (V ∩ s−1(0)) = codimV (V ∩ s̃−1(0)) = m ;

(V ∩ s−1(0)) ∩ t−1
l (0) = V ∩ s−1(0) ∀ l = 0, ..., k − 1 ;

codimV (V ∩ s−1(0) ∩ t−1(0)) = codimV (V ∩ s̃−1(0) ∩ t−1(0)) = m + k.

(4)

Let E∆ =
⊕m

j=1OX (∆j) and E∆̃ =
⊕m

j=1OX (∆̃j). As a pendant alge-
braic hypothesis, one assumes that there is a meromorphic section H of
HomC(E∆, E∆̃), together with positive integers ν0, ..., νk, such that s̃ = H · s
and

D = det H ⊗
k−1⊗
κ=0

t⊗νκ
κ ∈ OX

(
X ,HomC(E∆, E∆̃)⊗

k−1⊗
κ=0

OX (νκ Tκ)
)

. (5)

Theorem 3 (Transformation Law for Coleff-Herrera residue cur-
rents). Under the above geometric and algebraic hypothesis (4) and (5),
one has the following identity between bundle valued currents :

m∧
j=1

∂
( 1

sj

)
∧

k−1∧
κ=0

∂
( 1

tκ

)
∧ [V ] =

( m∧
j=1

∂
( 1

s̃j

)
∧

k−1∧
κ=0

∂
( 1

tνκ+1
κ

)
∧ [V ]

)
⊗D

Proof. In order to get this result, we introduce metrics | |κ on the divisors
Tκ, κ = 0, ..., k − 1, and compare the values at µ0 = · · · = µk−1 (following
the analytic continuation) of the two holomorphic maps (for Re µκ >> 1,
κ = 0, ..., k − 1):

µ 7−→
0∧

κ=k−1

∂
( |tκ|2µκ

κ

tκ

)
∧

m∧
j=1

∂
( 1

sj

)
∧ [V ]

µ 7−→
( 0∧

κ=k−1

∂
( |tκ|2µκ

κ

tκ

)
∧

m∧
j=1

∂
( 1

s̃j

)
∧ [V ]

)
⊗ D

tν0
0 · · · tνk−1

k−1

.

(6)

These two current valued maps coincide for Re µκ >> 1, κ = 0, ..., k − 1,
because of the robustness assumption in Theorem 2, together with the holon-
omy and the Standard Extension Property of sections of the Coleff-Herrera
sheaves CHX ,V ∩s−1(0)(· ; ?S) or CHX ,V ∩s̃−1(0)(· ; ?S), where S =

⋃k−1
κ=0 t−1

κ (0)
(see [32], condition 1 in Definition 2). The fact that they share the same value
at µ = 0 about any x ∈ V ∩ s−1(0) ∩ t−1(0) follows from the robustness of
the approach towards the Coleff-Herrera residue via analytic continuation
(Theorem 1). On the other hand, both maps (6) vanish at µ = 0 about any
x ∈ V ∩ (s̃−1(0) \ s−1(0)) ∩ t−1(0) because of Cramer’s rule, combined with
the local duality property (2) in Theorem 1 (here is the crucial algebraic
point on which relies Wiebe’s theorem in the algebraic context).
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In order to focus on the importance of the Transformation Law, let us
conclude this section with few comments inspired by arithmetic considera-
tions. Let {p1, ..., pm} be a collection of polynomials in Z[X1, ..., Xn] (here
m ≤ n), with respective degrees d1, ..., dm, whose homogenizations define
a complete intersection in Cn = Pn \ {z0 = 0}. Denote as T [p1, ..., pm] the∧m

1 OPn(C)(−dj)-valued Coleff-Herrera global current in Pn(C) obtained from
the current T [p1] = ∂(1/p1) through the inductive process

T [p1, ..., pl+1] =
[ 1
2iπ

∂
( |pl+1|2λ

l+1

pl

)
∧ T [p1, ..., pl]

]
λ=0

, l = 1, ...,m− 1. (7)

The metric | |l one takes here on OPn(C)(dl+1) is the Fubini-Study metric, but
this is in fact irrelevant, since the result after taking λ = 0 in (7) is unaffected
by such a choice. For u1, ..., un−m generic in Zm+1 \ {0}, the linear subspace

Πu := {[z0 : · · · : zn] ∈ Pn(C) ; 〈uj , z〉 = 0 , j = 1, ...,m}

is such that dimCn(Πu ∩ {p1 = · · · = pm = 0}) = 0. Consider the∧m
1 OPn(C)(−dj)-valued (n − m, n) ∂-closed current T [p1, ..., pm] ∧ [Πu]. For

any global smooth (m, 0) form b in Pn(C) with values in
∧m

1 OPn(C)(dj), one
has, 〈

T [p1, ..., pm] ∧ [Πu], b
〉

=
〈 [

(1− |z0|2λ)T [p1, ..., pm] ∧ [Πu]
]

λ=0
, b

〉
+

〈 [
|z0|2λ T [p1, ..., pm] ∧ [Πu]

]
λ=0

, b
〉

=
〈
(T [p1, ..., pm] ∧ [Πu])|{z0=0}, b

〉
+

〈
(T [p1, ..., pm] ∧ [Πu])|Cn , b

〉
.

An explicit computation of〈
(T [p1, ..., pm] ∧ [Πu])|Cn , b

〉
(8)

can be carried thanks to the Transformation Law (such as formulated in
Theorem 3 with k = 0), following the procedure which is described in [18]. In
particular, if b[q, J ] is the form expressed in Cn, in affine coordinates ζ1, ..., ζn,
as

b[q, J ] =
q(ζ)

(1 + |ζ|2)(d+deg q)/2

m∧
l=1

d
( ζjl√

1 + |ζ|2
)

, d = d1 + · · ·+ dm

for some q ∈ Z[X1, ..., Xn] and 1 ≤ j1 < · · · < jm ≤ n, one gets for (8)
a somehow explicit rational expression Rq,J [u] ∈ Q. A key point in such a
procedure is that it provides a final estimate on the logarithmic height h of
the rational function Rq,J [u] of the form
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h(Rq,J [u]) ≤ h(q) + κ1(n)D(D + deg q) max(h(pj), log ‖uj‖), (9)

where D =
∏m

1 (dj+1), in accordance with the geometric Bézout theorem and
its arithmetic counterpart. If q (T [p1, ..., pm]∧ [Πu]){z0=0}, one gets a rational
expression with logarithmic height control (9) for 〈T [p1, ..., pm]∧[Πu], b[q, J ]〉.

2 Coleff-Herrera residue currents and ordered sequences
of sections of Cartier divisors

Let X be an n-dimensional complex manifold. Given a purely dimensional
cycle [V ] ∈ Zn−M (X ) (identified here with the (M,M) associated integration
current on it and with support denoted as V ) and a closed submanifold
Z ⊂ X , the splitting operation

[V ] = [V ]Z + [V ]X\Z , (10)

which consists in separating (as components of [V ]Z) the components of [V ]
with support lying in Z, from the others, is one of the major operational
tools in geometric intersection theory. Transposed in algebraic terms, it leads
to the notion of gap sheaf (see for an introduction to the subject Part I in
[26]).

Example 1. [30, 31, 24] Let [V1], ..., [Vm] be m purely dimensional algebraic
cycles in Pn(C), [V ] be the (n−M)-cycle in X = Pn(C) ( n = m(n + 1)− 1,
M =

∑m
j=1 codimPn(C)Vj) corresponding to the ruled join

J(V1, ..., Vm) =
{

[Z1 : · · · : Zm] ∈ Pm(n+1)−1(C) ; zj ∈ Vj ∀ j = 1, ...,m
}

(multiplicities been taken into account), and Z be the diagonal subspace of
Pn(C) defined as a complete intersection as the set of points [Z1 : · · · : Zm] ∈
Pn(C) such that Zk = Z1 for any k ∈ {2, ...,m} (see [19]). Note that, in this
particular case, the coherent OPn(C)-ideal sheaf IZ is globally generated by
(m − 1)(n + 1) holomorphic sections σl of the same line bundle OPn(C)(1).
Moreover the zero sets σ−1

l (0), l = 1, ..., (m − 1)(n + 1), define here Z as a
complete intersection in the ambient n-dimensional manifold X = Pn(C).

What we propose to do now is to transpose within the frame of global
sections of the Coleff-Herrera sheaves CHX ,V (or CHX ,V (· ; ?S)) (instead
of the geometric frame of integration currents) the splitting operation (10),
together with the construction such an operation generates when applied
inductively. We should point out here that such a construction is directly
inspired from the ideas introduced in [13] by N. Coleff and M. Herrera (see
for example [29]).
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2.1 The Coleff-Herrera product

Let X and V be as in Section 1. Consider also an ordered sequence ∆1, ...,∆m

(one drops here the assumption m ≤ n − M) of Cartier divisors on X ,
equipped respectively with hermitian metrics | |j , j = 1, ...,m, and with
holomorphic global sections s1, ..., sm. The major difference with Section 1 is
that we forget here the geometric assumption that the closed hypersurfaces
s−1

j (0) ⊂ X , j = 1, ...,m, intersect as a complete intersection on the closed
analytic subset V . Let T be a global section over X of the Coleff-Herrera
sheaf CHX ,V (·, E), where E denotes some finite rank holomorphic bundle
over X . Let

∧m
j=1 ∂(1/sj) ∧ T be the current in

m⊕
r=0

⊕
1≤j1<···<jr≤m

′D(0,M+r)(X ,
r∧

l=1

OX (−∆jl
)⊗ E)

defined inductively from

∂
( 1

s1

)
∧ T =

[(
1− |s1|2λ

1 +
1

2iπ
∂
( |s1|2λ

1

s1

))
∧ T

]
λ=0

by the iterative process

l+1∧
j=1

∂
( 1

sj

)
∧T =

[(
1−|sl+1|2λ

l+1+
1

2iπ
∂
( |sl+1|2λ

l+1

sl+1

))
∧

l∧
j=1

∂
( 1

sj

)
∧T

]
λ=0

(11)

for l = 1, ...,m − 1. Remark that in spite of the notation
∧m

j=1 ∂(1/sj) ∧ T
(that one uses here for the sake of simplicity), this current is not in general a
(0,m + M) current. The above inductive construction is independent of the
choice of the metrics | |j on the line bundles OX (∆j), but of course depends
on the ordering of the sequence of divisors {∆1, ...,∆m}. When the hyper-
surfaces s−1

j (0), j = 1, ...,m, define a complete intersection on V , this cur-
rent coincides with its ′D(0,M+m)(X ,

∧m
j=1OX (−∆j) ⊗ E) component, and

can be recovered in a robust way in a neighborhood of V ∩ s−1(0) as the
value at λ1 = · · · = λm = 0 of an holomorphic function in m variables
in a product of half planes Re λj > −η for some η > 0 (see Remark 1
above). The iterative construction is justified by the local structure theo-
rems for sections of the Coleff-Herrera sheaves CHX ,W (· ; ?S, E), where W
denotes a purely dimensional closed analytic subset of V and S a closed
hypersurface in a neighborhood of W in X such that W \ S = W . When
j = (j1, ..., jr) is a r-uplet (0 ≤ r ≤ m, j = ∅ if r = 0) of strictly increas-
ing integers 1 ≤ j1 < · · · < jr ≤ m, the component (

∧m
j=1 ∂(1/sj) ∧ T )j in

′D(0,M+r)(X ,
∧r

l=1OX (−∆jl
) ⊗ E) is a global section of the Coleff-Herrera

sheaf CHX ,Vj [s](· ; ?Sj [s], Ej), where Ej = Ej [∆, E] =
∧r

l=1OX (−∆jl
) ⊗ E,

Vj [s] is a purely (n−M − r)-dimensional closed subset of V and Sj [s] some
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closed hypersurface in a neighborhood of Vj [s] such that Vj [s] \ Sj [s] = Vj [s].
The construction of Vj [s] is carried through the procedure that leads to the
construction of the multi-cycle of contact (see [31]) between a given cycle
[V ] and a smooth closed submanifold Z ⊂ X contained in the intersection of
an ordered sequence H1, ...,Hm (m ≤ dim V ) of closed hypersurfaces. More
precisely, Vj [s] can be reached through the following iterated splitting oper-
ation : when W is a closed purely dimensional subset in X and S denotes
a closed hypersurface in a neighborhood of W , then W is (geometrically)
decomposed as

W = WS ∪WX\S , (12)

where WS denotes the union of irreducible components of W lying entirely
in S and WX\S the union of the remaining ones. The closed analytic set Vj [s]
appears then as the end term in the inductive sequence :

Vj,1[s] = V s−1
1 (0) if 1 /∈ {j1, ..., jr} ; else Vj,1[s] = V X\s−1

1 (0) ∩ s−1
1 (0);

. . . . . . . . .

Vj,k+1[s] = (Vj,k[s])s−1
k+1(0) if k + 1 /∈ {j1, ..., jr} ;

else Vj,k+1[s] = (Vj,k[s])X\s
−1
k+1(0) ∩ s−1

k+1(0);

. . . . . . . . .

Vj [s] = Vj,m[s] = (Vj,m−1[s])s−1
m (0) if m /∈ {j1, ..., jr} ;

else Vj [s] = Vj,m[s] = (Vj,m−1[s])X\s
−1
m (0) ∩ s−1

m (0).
(13)

If m ≤ n −M and r = m, V{1,...,m}[s] is the so-called essential intersection
(V ∩s−1

1 (0)∩· · ·∩s−1
m (0))ess while, if r = 0, V∅[s] is the union of the irreducible

components of V which lie entirely in the intersection s−1
1 (0)∩ · · · ∩ s−1

m (0).

The same iterative procedure allows also to define the Coleff-Herrera cur-
rent

∧m
j=1 ∂(1/sj)∧T , when T is a global section of the Coleff-Herrera sheaf

CHX ,V (· ; ?S, E) for some closed hypersurface S in a neighborhood of V

such that V \ S = V . As before, each component (
∧m

j=1 ∂(1/sj) ∧ T )j is
then a global section of the Coleff-Herrera sheaf CHX ,Vj [s](· ; ?Sj [s, S], Ej)
for some convenient hypersurface Sj [s, S] in a neighborhood of Vj [s] such
that Vj [s] \ Sj [s, S] = Vj [s]. One can point out (see [8]) that analytic contin-
uation with respect to a single complex parameter (as in Theorem 2) provides
a direct approach to such a current.

Proposition 1. Let X , V , the ∆j’s, the metrics | |j, the holomorphic sections
sj’s, and the Coleff-Herrera current T (with eventual poles) be as above. Let
γ1 > γ2 > · · · > γm ≥ 1 be m positive integers and ε > 0. Then the current-
valued map
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λ ∈
{

λ ∈ C ; |arg]π,π[(λ)| < π

2(γ1 + ε)
; |λ| >> 1

}
7−→

[ 1∧
j=m

(
1− |sj |2λγj

j +
1

2iπ
∂
( |sj |2λγj

j

sj

))]
∧ T

(14)

extends as a holomorphic map in an open neighborhood of the closed sector
{|arg]π,π[(λ)| ≤ π/(2γ1)}. Its value at λ = 0 equals the current

∧m
j=1 ∂(1/sj)∧

T .

We intend from now on to focus on the advantages (or disadvantages) that
carries the idea of averaging (as done in Section 1 when stating Theorem 1,
then Theorem 2) Coleff-Herrera residues of the form

∧m
j=1 ∂(1/sj) ∧ T or∧m

j=1 ∂(1/sj) ∧ T , when V is a purely dimension (n − M)-closed analytic
subset in a complex manifold X , s1, ..., sm, being holomorphic sections of
arbitrary Cartier divisors on X .

2.2 Vogel sequences and Vogel residue currents

The first positive point with respect to the averaging idea arises from the
theory of improper intersection on X , as developed in the algebraic context
in [30] (see also [24]), and in the analytic context in [31]. Let X and V be
as in Section 1, and I be a coherent ideal sheaf in OX , with Z(I) being
the support of the quotient sheaf OX /I. We recall that, at the local level,
a local Vogel sequence (in the geometric sense) at x ∈ V (for Ix, on the
germ of complex analytic space (Vx, (OV )x) is a sequence (s1,x, ..., sn−M,x)
in the ideal Ix such that there is a neighborhood Ux of x in X , together with
representatives s1,x, ..., sn−M,x of the germs in this neighborhood, with

codimV

[(
(Ux ∩ V ) \Z(I)

)
∩

l⋂
j=1

s−1
j,x(0)

]
= l or +∞, l = 1, ..., n−M. (15)

Such geometric conditions (15) (considered in the semi global setting) are
already sufficient in order to imply the following Proposition.

Proposition 2. Let U be an open set in Cn, V be a purely M -codimensional
closed analytic subset of U , I be an ideal in OCn(U) (with zero set Z(I) in
U and generators σ0, ..., σL). Let (s1, ..., sn) be a sequence of elements in I
such that

codimV

[(
V \ Z(I)

)
∩

l⋂
j=1

s−1
j (0)

]
= l or +∞, l = 1, ..., n−M. (16)

If T is an element in CHU,V (U, C), then
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n−M∧
j=1

∂
( 1

sj

)
∧ T = T|Z(I) +

n−M∑
l=1

T [s1, ..., sl]|Z(I), (17)

where T [s1, ..., sl] is defined inductively after l − 1 operations via

T [s1] =
1

(2iπ)

[
∂
( |s1|2λ

s1

)
∧ T|U\s−1

1 (0)

]
λ=0

T [s1, ..., sl′+1] =
1

(2iπ)

[
∂
( |sl′ |2λ

sl′

)
∧ T [s1, ..., sl′ ]|U\s−1

l′ (0)

]
λ=0

.

Moreover all currents T [s1, ..., sl], l = 1, ..., n−M , are ∂-closed, and thus are
Coleff-Herrera currents. Here T|Z(I) means [(1− |σ|2λ)T ]λ=0, while T|U\Z(I)

means [|σ|2λT ]λ=0, when T is a Coleff-Herrera current.

Remark 3. Formula (17) remains valid if T is replaced by a meromorphic
Coleff-Herrera current T ∈ CHU,V (U ; ?S, C) for some closed hypersurface S

in U such that V \ S = V . But the second assertion does not remain true.

Remark 4. All currents (T [s1, ..., sl])|Z(I) are supported, as the current T|Z(I),
by the closed analytic set V ∩Z(I). As noticed in [7], such a (0, l+M) current
(T [s1, ..., sl])|Z(I) vanishes as soon as l+M < codim(V ∩Z(I)), which means
that only the terms with index l between codim(V ∩ Z(I))−M and n−M
remain in the development (17). The first term T|Z(I) is of course only present
if codim (V ∩ Z(I)) = codimV = M .

Proof. Decompose T as

T =
[
(1− |s1|2λ) T

]
λ=0

+
[
|s1|2λ T

]
λ=0

= T|s−1
1 (0) + T|U\s−1

1 (0). (18)

The fact that T|s−1
1 (0) has its support included in V ∩ s−1

1 (0) implies

∂
( 1

s1

)
∧ T|s−1

1 (0) =

[(
1− |s1|2λ +

1
2iπ

∂
( |s1|2λ

s1

))
∧ Ts−1

1 (0)

]
λ=0

= T|s−1
1 (0).

Since TU\s−1
1 (0) is a Coleff-Herrera current with respect to V U\s−1

1 (0), one has

∂
( 1

s1

)
∧ T|U\s−1

1 (0) =
1

2iπ

[
∂
( |s1|2λ

s1

)
∧ TU\s−1

1 (0)

]
λ=0

= T [s1].

We now observe that, since all components in the support V s−1
1 (0) of T|s−1

1 (0)

lie in V ∩s−1
1 (0) and have codimension M as V , the geometric condition (16)

for l = 2 implies
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n−M∧
j=2

∂
( 1

sj

)
∧ T|s−1

1 (0) = T|s−1
1 (0) = T|Z(I).

It remains to continue the process to compute[(
1− |s2|2λ +

1
2iπ

∂
( |s2|2λ

s2

))
∧ T [s1]

]
λ=0

.

In order to do this, one decomposes T [s1] as in (18):

T [s1] =
[
(1−|s2|2λ)T [s1]

]
λ=0

+
[
|s2|2λT [s2]

]
λ=0

= T [s1]|s−1
2 (0)+T [s1]|U\s−1

2 (0).

The geometric condition (16) for l = 3 implies now that[(
1− |s2|2λ +

1
2iπ

∂
( |s2|2λ

s2

))
∧ T [s1]|s−1

2 (0)

]
λ=0

= T [s1]|Z(I).

The contribution[(
1− |s2|2λ +

1
2iπ

∂
( |s2|2λ

s2

))
∧ T [s1]|U\s−1

2 (0)

]
λ=0

,

equals, as for the first step,

1
(2iπ

[
∂
( |s2|2λ

s2

))
∧ T [s1]|U\s−1

2 (0)

]
λ=0

= T [s1, s2].

The procedure can be thus repeated, which leads to (17). In order to prove
that all T [s1, ..., sl] are ∂ closed, it is enough to prove it for T [s1] (then the
proof goes inductively). The result for T [s1] follows immediately from the
fact that

T [s1] =
1

(2iπ)

[
∂
( |s1|2µ

s1

)
∧

[
|s1|2λ T

]
λ=0

]
µ=0

, (19)

by computing ∂ of both sides in (19).

Proposition 3. Let U be an open set in Cn, M ≤ n, f1, ..., fM be M holo-
morphic functions in U , and T = T [f ] the (0,M)- Coleff-Herrera current

T [f ] =
( M∧

j=1

∂
( 1

fj

))
(0,M)

(with respect to (V [f ])ess = (f−1
1 (0) ∩ · · · ∩ f−1

M (0))ess). Let I be an ideal in
OX (U), such that (V [f ])ess \ Z(I) = (V [f ])ess, with generators (σ0, ..., σL). If
u1, ..., un−M , one after each other, in this order, are generic in PL(C), such
that in particular (s1, ...., sn−M ) := (〈u1, σ〉, ..., 〈un−M , σ〉) fulfills conditions
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(16) with V = (V [f ])ess, then the current

n−M∧
j=1

∂
( 1
〈uj , σ〉

)
∧ T [f ] (20)

is annihilated as a current by In−M .

Proof. Before presenting a sketch of the proof, let us focus on a simple sit-
uation (to which the general case will in fact be reduced). Suppose for the
moment that T ∈ CHU,V (U, C), and that σ and h are two holomorphic func-
tions in a neighborhood of V , such that (σ, h) defines a complete intersection
on V . Then, we claim that the current[[

∂
( |σh|2λ

σh

)
∧ T

]
λ=0

]
|σ−1(0)

=

[
(1− |σ|2µ)

[
∂
( |σh|2λ

σh

)
∧ T

]
λ=0

]
µ=0

is annihilated by σ. This follows from the fact that the map

(λ1, λ2) ∈ {Re λ1 >> 1,Re λ2 >> 1} 7−→ |h|2λ1

h
|σ|λ2 T

extends as an holomorphic function of two variables to a product of half
spaces {Re λ1 > −η} × {Re λ2 > −η} for some η > 0. Since V \ σ−1(0) =
V \ h−1(0) = V , it follows that[

∂
( |h|2λ1

h
|σ|2λ2 T

)]
λ1=λ2=0

=
[
∂
( |h|2λ

h

)
∧ T

]
λ=0

= ∂
(T

h

)
,

which is a Coleff-Herrera current on U with respect to V ∩ {h = 0}. Since σ
does not vanish identically on any component the set V ∩ {h = 0}, one has[

(1− |σ|2µ) ∂
(T

h

)]
µ=0

= 0,

which proves the claim.

Consider now the Coleff Herrera current T [f ]. Let Ũ
π→ U be the normalized

blowup of U along I and E(I) be its exceptional divisor (multiplicities be-
ing taken into account). Though Ũ is not smooth, one can (locally) consider
an embedding Ũ ⊂ Ω ⊂ CN and treat the current (

∧M
1 ∂(1/π∗[fj ]))(0,M)

as the ∂-closed (N − n, M + N − n) current (
∧M

1 ∂(1/π∗[fj ]))(0,M) ∧ [Ũ ]
in Ω. It factorizes in Ω as the product of a (0,M + N − n) Coleff-Herrera
current with eventual poles (with respect to some closed M -codimensional
analytic subset Ṽ [f ] of Ũ) times an holomorphic (N − n, 0) form. More-

over, Ṽ [f ] \ π−1(Z(I)) = Ṽ [f ]. Actually, one can approach the current
(
∧M

1 ∂(1/π∗[fj ]))(0,M) by χ‖π∗(σ)‖≥ε

∧M
1 ∂(1/π∗[fj ]) when ε > 0 tends to
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0, and χ denotes a smooth cutoff function as in [12]. The exceptional divi-
sor E(I) defines then a divisor E(I)|Ṽ [f ] on Ṽ [f ]. Choose u1 (generically)
such that π∗[s1]|Ṽ [f ] vanishes on each irreducible component of the sup-
port E(I)|Ṽ [f ] exactly at the multiplicity on this component of the divisor
E(I)|Ṽ [f ]. This means that π∗[s1]|Ṽ [f ] can be expressed locally about a point

x ∈ Ṽ ∩ π−1(Z(I)) as π∗[s1] = σ̃|Ṽ [f ]h1, where σ̃ is the generator at x for
the stalk of the principal sheaf ideal (π∗[σ0], ..., π∗[σL]), and {h1 = 0} defines
with σ̃ on Ṽ [f ] (about x) a complete intersection. Then it follows from the
case studied at the beginning that the current

T [f ][s1]|Z(I) =

[[
∂
( |s1|2λ

s1

)
∧ T [f ]

]
λ=0

]
|Z(I)

is annihilated by I. Suppose that l ≥ 2 and that we know that T [s1, ..., sl−1]
is annihilated by I l−1, once s1, ..., sl−1 have been conveniently chosen. Then
one has

I l−1T [f ][s1, s2, ..., sl−1]|Z(I) = 0,

which implies that if h ∈ I l−1, the current h T [f ][s1, s2, ..., sl−1]|U\Z(I) =
h T [f ][s1, s2, ..., sl−1] is a Coleff-Herrera current. Repeating the argument
used for l = 1, with T [f ] replaced by h T [f ][s1, ..., sl−1]|U\Z(I), one can
choose sl in a generic way (genericity depends here on the previous choices
of s1, ..., sl−1, but is independent of h), so that, for any h ∈ I l−1,

h T [f ][s1, ..., sl]|Z(I) =

[[
∂
( |sl|2λ

sl

)
∧ h T [f, s1, ..., sl−1]|U\Z(I)

]
λ=0

]
|Z(I)

is annihilated by I. It follows then that, with this convenient choice of sl, the
current (T [f ][s1, ..., sl])|Z(I) is annihilated by I l. That concludes the proof.

It is natural to call the sequence (〈u1, σ〉, ..., 〈un−M , σ〉) a Vogel sequence
for I with respect to the Coleff-Herrera current T [f ], if such a sequence
is constructed (in a generic way in terms of the uj) through the induc-
tive procedure described above step-by-step. The corresponding current∧n−M

1 ∂(1/〈uj , σ〉) ∧ T [f ] is then called a Vogel residue current (for I with
respect to T [f ]).

Remark 5. When [V ] is a purely dimensional cycle in X (here assimilated to
its associated integration current), and Z ⊂ X is a complex submanifold,
it is proved in [14], and reinterpreted in algebraic terms in [24], that the
(multi) cycle of intersection [V ] • Z, defined via the Vogel procedure from
a prescribed Vogel sequence, is such that its Chow ideal IChow([V ] • [Z])
(see [24] for the definition of this notion) lies in the integral closure of
the sheaf of ideals (I([V ]), IZ). Briançon-Skoda’s theorem then implies that
(IChow([V ] • [Z]))n ⊂ (I([V ]), IZ). Proposition 3 can thus be understood as
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an analog result, when [V ] is replaced by the Coleff-Herrera T [f ], and inter-
section theory transposed at the (algebraic) level of residue currents instead
of the (geometric) one of integration currents.

2.3 Averaging Vogel residue currents

Let X be a n-dimensional complex manifold, U be an open set in X , M ≤ n,
T be a (0,M) E-valued Coleff-Herrera current in U (or T a (0,M) E-valued
Coleff-Herrera current in U with poles), with respect to a closed analytic sub-
set V ⊂ U of pure codimension M . Let I be an ideal sheaf in OX (U). Assume
that σ0, ..., σL generate I(U) globally in U . One can think of (σ0, ..., σL) as
an holomorphic section of the trivial bundle Eσ = U ×CL+1, equipped with
its standard hermitian metric. It is natural to propose as an averaged current∫

(PL(C))m

[( m∧
j=1

∂
( 1
〈uj , σ〉

)
∧ (T or T )

]
dωL(u1)⊗ · · · ⊗ dωL(um) (21)

(where m = min(L + 1, n−M + 1), ωL denotes the Fubini metric on PL(C)
and 〈u, σ〉 =

∑L
0 ulσl for u = [u0 : · · · : uL] ∈ PL(C)), the current obtained

as the value at 0 of the
⊕n−M

r=0
′D(0,M+r)(X ,

∧r
E∗

σ ⊗E) current-valued map

λ 7−→
(
1−‖σ‖2λ +∂‖σ‖2λ∧

( dim V∑
r=1

1
(2iπ)r

σ∗ ∧ (∂σ∗)r−1

‖σ‖2r

))
∧(T or T ). (22)

Here σ∗ = σ =
∑L

0 σl ⊗ e∗l and dσ =
∑L

0 dσl ⊗ el (if (e0, ..., eL) denotes a
standard base of sections for Eσ = U ×CL+1). Because of the local structure
theorems for sections of the Coleff-Herrera sheaves (see [32]), this map is
holomorphic in some half-plane Re λ > −η for some η > 0. It was indeed
proved in [8], as a consequence of Crofton’s formula, that, if m = min(L +
1,dim V + 1), the averaging∫

(PL(C))m

[( m∧
j=1

∂
( 1
〈uj , σ〉

)
∧ [V ]

)
∧

m∧
j=1

d〈uj , σ〉
]
dωL(u1)⊗ · · · ⊗ dωL(um)

leads to the current

Mσ
V :=[

(1− ‖σ‖2λ + ∂‖σ‖2λ ∧
( dim V∑

r=1

1
(2iπ)r

σ∗ ∧ (∂σ∗)r−1

‖σ‖2r

))
∧ [V ]

]
λ=0

(dσ, ..., dσ).

(23)
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The action on (dσ, ..., dσ) corresponds here to the contraction operation be-
tween the

∧r
E∗

σ and Eσ as follows :

(Φ∗1 ∧ · · · ∧ Φ∗r) (dσ, ..., dσ) =

∧r
j=1 Φ∗j (dσ)

r!
, r = 1, ...,dim V,

for any Φ∗j of E∗
σ-valued currents. The current (23) is d-closed and positive in

this case. Even though it is not an integration current, the vector of the Le-
long numbers (e0(x), ..., en−M (x)) of its various components (from type (0, 0)
till type (n−M,n−M)), at any point x ∈ V ∩Z(I), coincides with the vector
of Segre numbers (see [22]) at x for Ix with respect to V , that is the minimum
(respect to lexicographic order) of all u-plets (degx γx,0, ...,degx γx,n−M ),
where γ is a Vogel cycle at x and γx,k, k = 0, ..., n−M , denotes its component
at x with codimension k in V (as a subcycle of Vx). Moreover, the relevant
part in the Siu decomposition of the averaged current Mσ is expressed as

Mσ
V,relevant =

dim V∑
k=0

∑
ι

βk
ι [Zk

ι ],

where the Zk
ι are the distinguished varieties of I with codimension k (distin-

guished varieties being defined as the images of the irreducible components
of the exceptional divisor E in the normalized blowup of U along the coherent
ideal sheaf I). Here the βk

ι are positive integer coefficients. This generalized
version of H. King’s formula is proved in [8]. This shows that, at the semi
global level, averaging Coleff-Herrera currents, once they are conveniently
multiplied in order to become intersection currents, is an operation that fits
well with improper intersection theory, such as implemented in [30, 31]. Note
that the Segre numbers remain unchanged if one replaces s = (σ0, ..., σL)
by some u-plet (σ̃0, ..., σ̃L̃) which generate in OX (U) an ideal with, locally
about each point, the same integral closure than I. This will emphasizes the
role of a current Mσ (or, to be more precise, residue currents involved in its
factorization) with respect to Briançon-Skoda’s type theorems.

In order to extend these ideas to the global setting, one assumes that the
coherent sheaf I is globally generated in X by holomorphic sections σ0, ..., σL

of the same line bundle OX (∆). Referring to Example 1, the holomorphic sec-
tions of OPm(n+1)−1(C)(1) defining the diagonal subspace Z in the join as a
complete intersection, provide a useful illustration of such a situation, the co-
herent sheaf I being in this case the radical sheaf IZ . Let Eσ =

⊕L+1OX (∆).
Choose a metric | | onOX (∆), that induces the metric ‖ ‖ = | |⊕· · ·⊕| | on Eσ.
Let E be a finite rank holomorphic bundle over X . When T (resp. T ) is an el-
ement in CHX ,V (X , E) (resp. in CHX ,V (X ; ?S, E)), it is natural to propose,
as the averaged current (21), the current obtained as the value at 0 of the⊕n−M

r=0
′D(0,M+r)(X ,

∧r
E∗

σ ⊗E) current-valued map (22), where σ∗ denotes
the conjugate section of σ respect to the metric on Eσ. If π : Ṽ −→ V de-
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notes the normalized blowup of the complex space (V, (OX )|V ) along the OV

ideal sheaf I|V , generated locally by the holomorphic sections x 7→ σl(ι(x))
(ι being the embedding V ⊂ X ), l = 0, ..., L, and E denotes the exceptional
divisor in this normalized blowup, then one can check that this averaging
leads, from the point of view of intersection theory: that is, when T or T are
replaced by the (M,M)-current [V ], to the construction of the Vogel current

VogV,σ,| | =[(
1− ‖σ‖2λ + ∂‖σ‖2λ ∧

( dim V∑
r=1

1
(2iπ)r

σ∗ ∧ (∂σ∗)r−1

‖σ‖2r

))
∧ [V ]

]
λ=0

(dσ, ..., dσ)

= [V Z(I)] +
dimV∑
r=1

π∗

(
[E ] ∧

(
c1

(
OṼ (−E)⊗ π∗[∆|V ]

))r−1)
=

dim V∑
r=0

Vog(...); r.

(24)

We denote as ∆|V the line bundle OV (∆). Here π∗[σ] = e[0] × τ , where τ is
an holomorphic non vanishing u-plet of sections of OṼ (−E) ⊗ π∗[∆|V ]. The
metric on OṼ (−E) is defined by |e[0]|E = ‖σ ◦ π‖. It induces a metric on the
divisor OṼ (−E)⊗ π∗((OX (∆))|V ), so that

ddc log |e[0]|2E = [E ] + c1(OṼ (−E)) = [E ] + ddc log ‖τ‖2 − π∗(c1(∆|V )),

that is

ddc log ‖τ‖2 = c1(π∗[∆|V ]) + c1(OṼ (−E))

= c1
(
OṼ (−E)⊗ π∗[∆|V ]

)
.

The current Vog(...) =
∑dim V

r=0 Vog(...); r (that can also be considered as a
current on (V,OV )) is related to the Segre current

SegV,σ,| | = [V Z(I)∩V ] +
dimV∑
r=1

π∗

(
[E ]∧

(
c1

(
OṼ (−E)

))r−1)
=

dimV∑
r=0

SegV,σ,| | ;r

(25)
thanks to the algebraic relations

VogV,σ,| | ; r =
r−1∑
l=0

(
r − 1

l

)
SegV,σ,| | ; r−l ∧

(
c1(∆|V )

)l
, r = 1, ...,dim V.

An important particular case occurs where T is a Coleff-Herrera residue
of the form

∧M
j=1 ∂(1/sj), s1, ..., sM being respective holomorphic sections

of Cartier divisors ∆j , j = 1, ...,M , on X , such that the s−1
j (0) define a
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complete intersection. In this particular case, one can consider the (M+L+1)-
holomorphic bundle E∆,σ =

⊕M
j=1OX (∆j) ⊕ Eσ, equipped with the metric⊕M

1 | |j ⊕ ‖ ‖ (where | |j denotes an hermitian metric on OX (∆j), j =
1, ...,M), and propose as an alternative averaged version for all Vogel residue
currents

m∧
j=1

∂
( 1
〈uj , σ〉

)
∧

M∧
j=1

∂
( 1

sj

)
, uj ∈ PL(C), 1 ≤ j ≤ m = min(L+1,dim V +1)

the current obtained (still through the analytic continuation process) as the
value at λ = 0 of the

⊕n−M
r=0

′D(0,M+r)(X ,
∧r

E∗
∆,σ) current-valued map

λ 7−→ 1−‖s⊕ σ‖2λ + ∂‖s⊕ σ‖2λ ∧
( dim V∑

r=1

1
(2iπ)r

(s⊕ σ)∗ ∧ (∂(s⊕ σ)∗)r−1

‖s⊕ σ‖2r

)
,

(26)
where s ⊕ σ = s1 ⊕ · · · ⊕ sM ⊕ σ and (s ⊕ σ)∗ denotes its conjugate section
respect to the metric which has been chosen on E∆,σ. The two currents, which
belong to

⊕n−M
r=0

′D(0,M+r)(X ,
∧r

E∗
∆,σ),

[(
1− ‖σ‖2λ + ∂‖σ‖2λ ∧

( dim V∑
r=1

1
(2iπ)r

σ∗ ∧ (∂σ∗)r−1

‖σ‖2r

))
∧

M∧
j=1

∂(1/sj)
]

λ=0

and[
1− ‖s⊕ σ‖2λ + ∂‖s⊕ σ‖2λ ∧

( dim V∑
r=1

1
(2iπ)r

(s⊕ σ)∗ ∧ (∂(s⊕ σ)∗)r−1

‖s⊕ σ‖2r

)]
λ=0

(27)

coincide when codim (s−1(0) ∩ σ−1(0)) = M + L + 1, see [34], but differ
in general. They can both be used (see [3, 7]) to materialize the residual
obstruction for the exactness of the generically exact Koszul complex

0 →
M+L+1∧

E∗
∆,σ

cs⊕σ−→
M+L∧

E∗
∆,σ −→ · · ·

cs⊕σ−→
l+1∧

E∗
∆,σ

cs⊕σ−→
l∧

E∗
∆,σ −→ · · ·

cs⊕σ−→ E∗
∆,σ

cs⊕σ−→ X × C,

(28)

since they are both annihilated (as currents) by the operator 2iπ cs⊕σ − ∂,
where cs⊕σ denotes the interior multiplication by the holomorphic section
s⊕ σ of E∆,σ.
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3 About a result by M. Hickel, M. Andersson and E.
Götmark

In order to emphasize what averaged Vogel residue currents introduced in
Section 2 could be useful for, and, in parallel, to illustrate how far using
their use reveals to be successful, let us focus on the effective geometric
global formulation of Briançon-Skoda’s theorem in C[X1, ..., Xn], as obtained
first by M. Hickel in [20], and then reformulated (and thus reproved), using
the frame developed above, by M. Andersson and E. Götmark in [5]. Before
stating the result, one needs to recall basic facts about Lojasiewicz exponents
at infinity in Cn ⊂ Pn(C) = Cn ∪ {z0 = 0}. Let p1, ..., pm be m polynomials
in C[X1, ..., Xn], together with their homogenizations P1, ..., Pm, considered
as respective holomorphic sections of the Cartier divisors OPn(C)(deg pj). Let
E =

⋃
ι Eι be the (reduced) exceptional divisor of the normalized blowup

P̃n(C) π−→ Pn(C) of Pn(C) along the coherent ideal sheaf I(P ), generated
locally by the holomorphic sections P1, ..., Pm. Let µι(P ) be the multiplicity
of I(P ) · OP̃n(C), and µι(z0) be the multiplicity of I{z0=0} · OP̃n(C) along the
same component. The Lojaciewicz exponent ν∞(P ) is defined as

ν∞(P ) = sup
ι

( µι(P )
µι(z0)

)
.

In the special case where m = n and dimCn p−1(0) ≤ 0, one has the Lo-
jasiewicz inequality at infinity in Cn ⊂ Pn(C), namely

n∑
j=1

|pj(ζ)|
|ζ|deg pj

≥ κ

|ζ|ν∞(P )
, |ζ| >> 1, (29)

for some strictly positive constant κ. In particular, for p to be in this case a
proper map from Cn into Cn, it is enough that ν∞(P ) < deg pj , j = 1, ...,m.
Notice that, when m = n and dimCn p−1(0) ≤ 0, the current[

n∧
1

∂
( 1

Pj

)]
|{z0=0}

is annihilated by z
nν∞(P )
0 . This can be seen using (as in the proof of Proposi-

tion 3) the normalized blowup of Pn(C) along the coherent ideal sheaf I{z0=0}.
On the other hand, the current[

n∧
1

∂
( 1

Pj

)]
|Cn
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is annihilated by any homogeneous polynomial of the form Q such that the
map ζ 7→ Q(1, ζ)/‖p(ζ)‖n is locally bounded in Cn (see [5]).

M. Hickel’s result ([20], revisited with the analytic methods presented
above in [5]) can be stated as follows (we just mention here the result when
m ≤ n).

Theorem 4 ([5, 20]). Assume m ≤ n and let p1, ..., pm be m polynomials in
C[X1, ..., Xn]. Let q be a polynomial in C[X1, ..., Xn] such that the function
|q|/|p|m is locally bounded in Cn. Then, there exist polynomials a1, ..., am ∈
C[X1, ..., Xn] such that q ≡

∑m
j=1 ajpj with deg ajpj ≤ deg q + [mν∞(p)] + 1,

where [γ] denotes the integer part of the rational number γ.

As a consequence of this theorem, it appears that the effective realization
of the global Briançon-Skoda theorem (q being in the ideal (p1, ..., pm) in
C[X1, ..., Xn] if the germ qζ , for each ζ ∈ p−1(0), lies in the m-power of
the integral closure of the ideal (p1,ζ , ..., p,ζ) in the local ring OCn,ζ) can
be achieved with degree estimates for the quotients aj controlled by the
geometric Bézout theorem, which means that the effectivity of the problem
is governed by geometric intersection theory.

The proof of Theorem 4 relies on the use of the averaged Bochner-
Martinelli version (22) (Eσ =

⊕m
1 OPn(C)(dj) with the Fubini-Study metric

on each component, σ = P , V = Pn(C) = X ), of all currents

m∧
1

∂
( 1
〈uj , Pj〉

)
,

u1, ..., um ∈ Pm−1(C), m = min(dim({P = 0}) + 1,m), with respect to the
tensorized Fubini Study metric on Pm−1(C) ⊗ · · · ⊗ Pm−1(C) (m times). As
pointed out in [24], when dealing with intersection problems involving arith-
metic aspects, it is more adequate to use a specific Vogel cycle of intersection
instead of what could be understood as an averaged version, for example the
intersection cycle constructed in [31] and reinterpreted in [8] in the currential
setting. The methods presented here (end of Section 1 and subsection 2.2)
aim precisely to give some support to the following conjecture :

Conjecture 1 (Global arithmetic Briançon-Skoda) Let p1, ..., pm be m
polynomials in Z[X1, ..., Xn] with degrees bounded by d and logarithmic sizes
bounded by h. Let q ∈ Z[X1, ..., Xn] be such the function q/|p|min(m,n) is locally
bounded in Cn. Then, one can find δ ∈ N∗, a1, ..., am ∈ Z[X1, ..., Xn] such that

δ qκ(n) =
m∑

j=1

ajpj , max
j

(
deg(ajpj)

)
≤ κ(n) deg q + κ0(n) dγ0 min(n,m)

max
j

(
h(δ), h(ajpj)

)
≤ κ(n) h(q) + κ1(n) (h + log m) dγ1 min(n+1,m),

(30)
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where κ(n), κ0(n), κ1(n) are numerical constants depending only on the num-
ber n of variables, γ0, γ1 being universal constants (idealistically κ(n) = 1,
κ0(n) = n, γ0 = γ1 = 1).

This result was obtained by M. Elkadi in [16] when dim(p−1(0)) = 0.
On the other hand, the arithmetic membership problem can be solved with
such bounds (30) when m ≤ n and (p1, ..., pm) defines a complete intersec-
tion in Cn (see [17]), which includes in particular the case of the arithmetic
nullstellensatz ([10], [25], [15]). This fits well with the ideas that govern the
construction of Vogel sequences. Nevertheless, it is known now that methods
based on multidimensional residue calculus (relying essentially on Cauchy-
Weil integral formula and associated Bergman-Weil developments) do not
provide the sharpest bounds for the arithmetic nullstellensatz, which is truly
a problem related to arithmetic intersection theory (see the recent approach
in [15], based on a arithmetic version of O. Perron’s theorem used for the
algebraic nullstellensatz in [21]). As a consequence, this makes more clear
that such methods were in fact more in the spirit of Conjecture 1. Using the
Stückrad-Vogel approach [30], combined with a precise analysis of the Vogel
residue currents involved (description of their annihilators, explicit computa-
tions of the restrictions to Cn of the auxiliary Coleff-Herrera currents involved
in their expansion, see Propositions 2 and 3 above, together with the con-
cluding comments in Section 1), seems to be a natural way to tackle such a
conjecture. It is indeed necessary to overcome the difficulty which is inherent
to the fact that averaging such Vogel residue currents in order to get suitable
Bochner-Martinelli currents (for control of the degree in effectivity questions)
does not preserve the arithmetic structure of the data (which would be neces-
sary in order to get in parallel control on the heights). It seems also opportune
to mention that the initial approach to Theorem 4 by F. Amoroso in [2] re-
lies on the Northcott-Rees notion of superficial elements in ideals, that is also
present in the construction of Vogel sequences (more specifically of filtered
sequences, see [1]).

This presentation of the Coleff-Herrera machinery, combined in subsection
2.2 with that of the Stückrad-Vogel approach [30, 31, 8], transposed to the
context of residue currents instead of integration currents on cycles, intends
to be a modest invitation towards such an approach to effectivity questions in
arithmetic polynomial geometry, when they require operational tools related
to duality, such as Briançon-Skoda’s theorem or multidimensional operational
residue calculus.
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Sci. École Norm. Sup. 40, 985–1007 (2007)

7. Andersson, M., Wulcan, E. : Decomposition of residue currents. J. Reine Angew Math.

638, 103–118 (2010)
8. Andersson, M., Samuelsson, H., Wulcan, E., Yger, A. : Nonproper intersection theory

and positive currents I, local aspects. Preprint (2010), available at arXiv : 1009.2458
9. Berenstein, C. A., Gay, R., Vidras, A., Yger, A.: Residue currents and Bézout iden-
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Acad. Sci. Paris Sér. A-B 284 no. 17, pp. A1061–A1064 (1977)
30. Stückrad, J., Vogel, W. : An algebraic approach to the intersection theory. Queen’s

Papers in Pure and Appl. Math. 61, 1–32 (1982)

31. Tworzewski, P. : Intersection theory in complex analytic geometry, Ann. Polon. Math.
62, 177–191 (1995)

32. Vidras A., Yger A. : Coleff-Herrera currents revisited. In : Sabadini I., Struppa D.C.
(eds.) The Mathematical Legacy of Leon Ehrenpreis, 1930-2010, pp. ..., Springer

(2011)
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