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Chapter 1

Lesson 1 : Macaulay versus
Kronecker

1.1 Why does complex analysis interfere with al-

gebraic problems ?

A large part of this course will be devoted to commutative polynomial algebra
in K[X1, ..., Xn], where K is field. We will essentially be interested into effective
geometric problems :

• describe in terms of its generators the zero set in Kn
(where K denotes an

algebraic closure of K) of an ideal I ⊂ K[X1, ..., Xn] ;

• estimate some geometric invariants related to this set from the geometric point
of view) ;

• exhibit an effective solution for algebraic division or interpolation problems
(degree estimates in Hilbert’s nullstellensatz, membership to an ideal , to its
integral closure, or to the Chow ideal of an algebraic cycle1).

When K has characteristic zero, we can in fact reduce ourselves to the case when
K = C and profit from the tools involved in analysis in n complex variables analysis.

When K has positive characteristic, some of the ideas introduced dealing with the
K = C situation can be (at least partially) imitated and suggest hints to deal with
the questions mentioned above.

When K is a number field (or simply K = Q), one can also study effectivity not only
from the geometric or algebraic points of view (the natural “indicator” being the
degree), but also from the arithmetic point of view (the indicators being both the
degree and the notion of “height” for the polynomials or ideals involved). We will
show here also, because of the well known “product formula” 2 in arithmetics, that
the pairing between arithmetic objects and analytic ones appears as a necessity ;
note for example that the Mahler measure of a polynomial in Z[X1, ..., Xn], namely

1

(2π)n

∫

[0,2π]n
log |P (eiθ1 , ..., eiθn)| dθ1 · · · dθn

1All these notions will of course be defined all along this course.
2When a is a non zero rational number, the product of all absolute values of a equals 1, but we

have to take into account both archimedian (linked with arithmetics) and non archimedian (linked
with analysis) valuations ; this holds also when a belongs to a number field.

3



4 Lesson 1 : Macaulay versus Kronecker

(deeply connected with Jensen’s formula or Nevanlinna theory) is indeed an ana-
lytic object ! Such a measure will play an important role in the definition of the
logarithmic height of polynomials with coefficients in a number field.

In Cn, we have at our disposal n complex variables z1, ..., zn, which appear as the
natural “specializations” of the generators X1, ..., Xn of C[X1, ..., Xn]. But it is
important not to forget, besides this, that Cn ' R2n, and therefore that we may
use in fact 2n real variables x1, y1, x2, y2, ..., xn, yn, linked with the zj through the
relations

zj = xj + iyj , j = 1, ..., n .

This allows much more freedom ! For example, it is possible to realize locally finite
partitions of unity

1 =
∑

ι

ϕι

with smooth (that is C∞) functions ϕι localized ad-hoc, which is totally impossible
with such “rigid” objects as polynomials in z1, ..., zn, or more generally holomorphic
functions in the n complex variables z1, ..., zn.

Usually Cn is oriented so that the 2n differential form

dx1 ∧ dy1 ∧ · · · dxn ∧ dyn

is positive (this is just a convention) and, instead of using x1, y1, ..., xn, yn as “vari-
ables” in Cn, it is more clever to use z1, ..., zn, z1, ..., zn, where

zj := xj − iyj .

Related to that choice, the linear differential operators (with complex coefficients)
that we will use will be

∂

∂zj

:=
1

2

( ∂

∂xj

− i
∂

∂xj

)
, j = 1, ..., n

∂

∂zj

:=
1

2

( ∂

∂xj

+ i
∂

∂xj

)
, j = 1, ..., n .

One way to solve algebraic problems involving the polynomial algebra C[X1, ..., Xn]
with analytic techniques is to try to solve them using all the variables

z1, z2, ..., zn, z1, ..., zn

and then (in a second step), show that in the solution which has been proposed, the
“antiholomorphic” variables z1, ..., zn play some neutral role (namely, are treated
just as constants playing the role of irrelevant parameters). This “philosophy” will
be the central philosophy of this course.

A key reason why the antiholomorphic variables are so useful is that they are es-
sential in order to materialize the crucial notion of positivity in Cn. Positivity is
indeed an essential property when one has in mind to establish estimates (which is
the final goal of effectivity in polynomial algebra, algebraic or arithmetic geometry).
The trivial inequality

n∑
j=1

zjzj ≥ 0 , ∀z ∈ Cn
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is a capital one, together with the positivity of the differential form

(−1)n(n−1)/2(2i)−ndz ∧ dz ,

where

dz :=
n∧

j=1

dzj

dz =
n∧

j=1

dzj

(taking into account the convention about the orientation of Cn).

The notion of distribution (introduced by physicists like Paul Dirac around 1920)
and formalized by L. Schwartz [Sch], will be for us an essential tool in order to profit
of the “smoothness” of analysis (2n degrees of freedom instead of n) compared to the
“rigidity” of polynomial algebra or even analytic geometry (involving holomorphic
objects, that is objects depending in a true sense only of the holomorphic variables
z1, ..., zn).

When U is an open subset in Cn ' R2n, the vectorial space

D(U) := {ϕ : U −→ C ; Supp ϕ ⊂⊂ U , ϕ is C∞}

(called space of test functions in U) can be equipped with an inductive limit topology.
We will not describe precisely this topology here (refer to the text book [Y] for more
details) ; it will be enough for our purpose to say what mean the convergence of a
sequence (ϕn)n toward a function ϕ when n tends to infinity. It means :

• that, for n large enough, all sets Supp ϕn are included in some compact subset
K of U (so for the support of the limit function ϕ) ;

• The convergence of (ϕn)n toward ϕ on K is the uniform convergence (on the
compact K) of any sequence of derivatives (at any order) (Dl ϕn)n toward the
test function Dl ϕ, for any l ∈ N2n.

It will be enough for us to formulate the definition of a distribution in U as follows :

Definition 1.1 A distribution T ∈ D′(U) is a continuous linear form on D(U)
when D(U) is equipped with the above topology.

An important “prototype” of distribution is the Dirac mass as the origin, defined
by the duality bracket

〈δ0 , ϕ〉 := ϕ(0) .

Radon measures

ϕ 7−→ 〈T , ϕ〉 :=

∫
ϕdµ

are examples of distributions (one says such particular distributions have order 0
since their action on a test function does not imply any true derivative of the test
function).
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Distributions in some open subset U of Cn may be differentiated (at any order)
through repetitions of the duality formulas

〈 ∂T

∂xj

, ϕ
〉

:= −
〈
T ,

∂ϕ

∂xj

〉
, j = 1, ..., n

〈 ∂T

∂yj

, ϕ
〉

:= −
〈
T ,

∂ϕ

∂yj

〉
, j = 1, ..., n

(the sign being here to mimic the process of integration by parts).

The concept of current3 (since it allows to take more into account the notion of
positivity) will be more important for us than the concept of distribution. It has been
essentially introduced by P. Lelong [Lel] who realized the major fact that represents
the notion of positivity in Cn. It will be enough for us to know that a (p, q) current is
an open subset U of C is just a (p, q) differential from with distribution coefficients,
that is some object denoted as

T =
∑

1≤k1<k2<···<kp≤n

∑

1≤l1<l2<···<lq≤n

Tk , l

p∧
j=1

dzkj
∧

q∧
j=1

dzlj ,

where the coefficients Tk , l are distributions in U . This just means that T is a
linear continuous form on the space of (n− p, n− q) test forms with test functions
coefficients as follows : if

{1, ..., n} \ {k1, ..., kp} = {κ1, ..., κn−p}
{1, ..., n} \ {l1, ..., lq} = {λ1, ..., λn−q}

(in increasing order), the action of such T (as above) on the smooth form

ϕ

n−p∧
j=1

dzκj
∧

n−q∧
j=1

dzλj
, ϕ ∈ D(U) ,

is just
±(2i)n〈Tk , l , ϕ〉

the sign corresponding to the signature of the permutation that transform

p∧
j=1

dzkj
∧

q∧
j=1

dzlj ∧
n−p∧
j=1

dzκj
∧

n−q∧
j=1

dzλj

into
n∧

j=1

(dzj ∧ dzj) = (2i)ndx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn .

Currents may be differentiated through the differential operators ∂d and ∂, with the
convention

∂
[
Tk , l

p∧
j=1

dzkj
∧

q∧
j=1

dzlj

]
=

( n∑
j=1

∂Tk , l

∂zj

dzj

)
∧

p∧
j=1

dzkj
∧

q∧
j=1

dzlj

∂
[
Tk , l

p∧
j=1

dzkj
∧

q∧
j=1

dzlj

]
=

( n∑
j=1

∂Tk , l

∂zj

dzj

)
∧

p∧
j=1

dzkj
∧

q∧
j=1

dzlj .

3There will be a lecture introducing the notions of current, positive current, Lelong number of
a positive current, integration current on an analytic set, in the “Atelier” for students, starting
with the presentation in [Lel].
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1.2 Some examples of classical division problems

in K[X1, ..., Xn]

1.2.1 Bézout identity

One of the most important questions (for robotics, control theory, recovering of
blurred data) related to division problems in the polynomial algebra K is the search
(when it is possible) for a Bézout type identity involving polynomial entries P1, ..., Pm

in K[X1, ..., Xn]. Let us state first the fundamental result :

Theorem 1.1 [G. Hermann, 1929] Let P1, ..., Pm m polynomials in the poly-
nomial algebra K[X1, ..., Xn], where K is an arbitrary commutative field. Assume
P1, ..., Pm have no common zero in Kn

, where K is some integral closure of K. Then,
there are polynomials A1, ..., Am in K[X1, ..., Xn] such that

1 = A1P1 + · · ·+ AmPm (1.1)

and

max(deg Aj) ≤ 2(2D)2n−1

. (1.2)

Sketch of the proof. The original reference for G. Hermann’s algorithmic proof is
[Her] ; there is also a modern version in [MW]. Since we will see later in this course
that the degree estimates (1.2) have been drastically sharpened 4 around 1985-1995,
we will not insist here on the precise proof. We just present here the general line
of ideas (inspired by elimination theory ideas) which sustain the construction of
G. Hermann’s algorithm. Our reference will be [VdW], volume II, chapter 11, satz
77-78-79 (see also [L], chapter IX)5.

We may assume K is infinite (just add a transcendental parameter t in order to
work in K(t) and get rid of he parameter at the end). One can perform a linear
(invertible) change of coordinates X = AY (with coefficients in K) so that in the
new set of coordinates Y1, ..., Yn, one has (if dj = deg Pj, j = 1, ..., m)

Pj(Y ) = Y
dj

1 +

dj∑

k=1

Y
dj−k
1 pj,k(Y2, ..., Yn)

with deg pj,k ≤ k. In order to do that, it is enough to choose the first column vector
(ξ1, ..., ξn) of A such that the product of the homogeneous parts of higher degree of
P1, ..., Pn does not vanish at the point ξ ; then, complete the matrix using just the
incomplete basis theorem.

We now take P1 as the polynomial of higher degree in the list and introduce addi-
tional transcendental parameters λ2, ..., λn ; then, we form the Sylvester resultant of
P1 and P1 +λ2P2 + · · ·+λmPm (see section 1.3 for a brief recall and references about
such notion), considered as polynomials in the single variable Y1. This is a 2d1×2d1

determinant, which appears as a polynomial in the variables λ2, ..., λn, Y2, ..., Yn,

4Originally, precisely under the impulsion of ideas inspired by analysis.
5A detailed presentation of Hermann’s proof (actualized in [MW]) and [VdW] approach toward

elimination theory through resultant systems will be the theme of a lecture by the students in the
“Atelier”.
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with coefficients in Z[coefficients of P1, ..., Pm]. This Sylvester determinant can be
written as

R1(λ, Y2, ..., Yn) =
∑

α∈Nm−1

λα2
2 · · ·λαm

m R1 , α(Y2, ..., Yn) .

Each of the R1,α (there are only a finite number of them which are non zero since
R1 is polynomial in λ) can be written as

R1 , α =
m∑

j=1

Uα,jPj , (1.3)

where the Uα,j are polynomials (with integer coefficients) in the coefficients of
P1, ..., Pm. Moreover, if the polynomials R1 , α have a common root (ξ2, ..., ξn) in

Kn−1
, then, for generic values of λ, the polynomials P1(Y1, ξ) and

λ2P2(Y1, ξ) + · · ·+ λmPm(Y1, ξ)

have a common root. If we specialize λ2, ..., λm to particular values in K (remember
K is assumed to be infinite), we can see (because of the “box principle”6) that
the polynomials P1(Y1, ξ), ..., Pm(Y1, ξ) should have a common zero. Since this is
impossible, the system (R1 ,,α)α is a collection of polynomials with coefficients in

K,in n − 1 variables Y2, ..., Yn, with no common zero in Kn
. One can repeat the

procedure with this new system instead of the original one (P1, ..., Pm) and continue
that way ; if we get an identity

1 =
∑

α

A1,αR1 , α ,

then an identity 1 = A1P1 + · · · + AmPm will follow because of the relations (1.3).
This ends the synopsis of the proof. Hermann’s bounds follow when one analyzes
precisely the control of degree estimates all along the procedure (as done in details
in [MW] for example)7. ♦
Methods presented here are based on elimination theory, which was extensively de-
veloped at the end of the XIX-th century and culminated at the beginning of the
XX-th century with the work of F. Macaulay (see for example [Mac]). Sylvester
resultant appears as a particular case of the notion of resultant R(F0, ..., Fn) of
n + 1 homogeneous forms (with respective degrees d0, d1, ..., dn) in the n + 1 vari-
ables X0, ..., Xn. Such a resultant is an irreducible multi homogeneous polynomial
with integer coefficients, homogeneous with degree

∏
l 6=j dl in the coefficients of the

polynomial Fj. The non vanishing of R(F
(ξ)
0 , ..., F

(ξ)
n+1) for specialized coefficients

ξ in the homogeneous forms Fj means precisely that the corresponding projective
algebraic sets

{[z0 : z1 : · · · : zn] ∈ Pn(K) ; F
(ξ)
j (z0, ..., zn) = 0} , j = 0, ..., n

6This principle, which was popularized by C. L. Siegel (following Dirichlet), is the following :
if we have to organize the repartition of M matches in N boxes (with M > N), any configuration
will be such that there are at least two matches in at least one among the boxes !

7Note that, as soon as the degree of the Aj can be predicted, the search for A1, ..., Am can be
done solving a system of linear equations which is known to be compatible.
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do not intersect in Pn(K). Moreover, there is a formula

R(F0, ..., Fn+1) =
n∑

j=0

Rj(X0, ..., Xn)Fj(X0, ..., Xn) ,

such that the coefficients of the Rj are polynomials (with integer coefficients) in the
coefficients of the homogeneous forms F0, ..., Fn. For elimination theory following
Macaulay, see for example the introductive presentation in [L], chapter IX.

1.2.2 Hilbert’s nullstellensatz

Let K a commutative field and I is an ideal in K[X1, ..., Xn]. The radical of I (
√

I)
is defined as the set of polynomials Q in K[X1, ..., Xn] such that Q vanishes on the
zero set of I

V (I) := {z ∈ Kn
; P (z) = 0 , ∀P ∈ I} ⊂ Kn

,

which is an affine algebraic subspace in Kn
. The radical

√
I contains I, but the

inclusion
I ⊂

√
I

is in general strict. A radical ideal is an ideal which equals its radical, a prime ideal
is an ideal I such that

PQ ∈ I =⇒ (P ∈ I) ∨ (Q ∈ I) ;

a primary ideal is a ideal whose radical is prime.

A geometric approach (as we will see in this course) toward an ideal I will only pro-
vide information on the radical of I ; combined with analytic techniques involving
Lelong numbers for positive currents 8, we will see in this course that such geometric
approach carries information about “multiplicities” attached to irreducible compo-
nents of the algebraic set V (I) (we will explain later “multiplicities” in which sense).
Neither geometric nor analytic approach can allow a complete vision of the algebraic
setting. In fact, any ideal in K[X1, ..., Xn] admits a primary decomposition

I =
⋂

k

Qk

where Qk is a primary ideal (see [Mat] for example, this is a consequence of finitely
generated modules theory) ; though such a decomposition is not unique, the list
Ass (K[X1, ..., Xn]/I) of prime ideals involved in such decomposition is uniquely
determined by I. The associated primes P of an ideal can be organized respect to
the order

P1 ≤ P2 =⇒ P1 ⊂ P2 .

The minimal primes in the family Ass (I) are called the isolated associated primes
of I ; the other ones are called the embedded ones. For example

(X1, X1X2) = (X1) ∩ (X1, X2) ,

so that here the principal ideal (X1) is an isolated associated prime, the ideal
(X1, X2) being a non-isolated associated one. The geometric approach leads to

8All these notions will be defined later on.
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the identification of the zero sets of the isolated primes (called the isolated compo-
nents) in the decomposition of V (I) ; it does not provide any information about the
non-isolated ones. One of the purposes of this course is to show that the analytic
approach, though it is unable to carry all the information related to the embedded
components, carries some information on ideals I and IChow which are intermediate
between I and

√
I (I ⊂ I ⊂ √

I, I ⊂ IChow ⊂ √
I). Such information will deeply

help for the effectiveness of the Hilbert’s nullstellensatz we formulate below :

Theorem 1.2 [D. Hilbert’s nullstellensatz] Let I = (P1, ..., Pm) be a finitely
generated ideal in K[X1, ..., Xn] (K being a commutative field). There exists an
integer q (depending on I) such that (

√
I)q ⊂ I.

Proof. The proof is based on Bézout identity combined with the ingenious Rabi-
novitch’s trick. Let us take Q in

√
(P1, ..., Pm) and let X0 be an additional variable.

Consider in K(X0, X1, ..., Xn] the m + 1 polynomials

P1(X1, ..., Xn), ..., Pm(X1, ..., Xn), 1−X0Q(X1, ..., Xn) .

Since Q ∈ √I, these polynomials have no common zero in Kn+1
. So, one can apply

theorem 1.1 and get polynomials A0(X0, ..., Xn), ..., Am(X0, X1, ..., Xn) such that

1 = (1−X0Q(X1, ..., Xn))A0(X0, X1, ..., Xn)+
m∑

j=1

Aj(X0, X1, ..., Xn)Pj(X1, ..., Xn) .

From such a polynomial identity, we get, if we specialize X0 = 1/Q, the following
rational identity :

1 =
m∑

j=1

Aj

( 1

Q(X1, ..., Xn)
, X1, ..., Xn

)
Pj(X1, ..., Xn) ;

raising denominators, we show there exists some exponent q such that

Qq ∈
√

I .

The result is proved ; how efficient q can be depends of course on the degree
estimates for Bézout identity9. ♦

1.2.3 The intrinsic hardness of the “membership” problem

Another important example of division problem in polynomial algebra is the mem-
bership problem : given an ideal I = (P1, ..., Pm) in K[X1, ..., Xn] (K being a com-
mutative field) and a polynomial Q which is known to lie in I, how intrinsically
difficult is it to express it explicitly as

Q = Q1P1 + · · ·+ QmPm .

9The reason why Hilbert’s nullstellensatz happens to be so important (not only in mathematics,
but also in computer science and logic), is that this problem is known to be an NP complete one (for
the basic notions about the classes of complexity problems P or NP and adequate references, we
refer for example to the survey presentation in [Y7]). The problem to decide whether the Hilbert’s
nullstellensatz over C can be solved in polynomial time is still not known (if it was not, it would
answer the conjecture P 6= NP over C). The classical P 6= NP conjecture can be reformulated
saying that the algebraic nullstellensatz over F2 cannot be solved in polynomial time ; this is
another challenge, which of course remains also today still unknown.
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A disappointing result about this question came in 1988, when computer scientists
E. Mayr and A. Meyer constructed in [MM], for each integer D ≥ 5, for each integer
k > 1, a collection F1, ..., F10k+1 binomials in n variables (with integer coefficients)
such that X1 ∈ (F1, ..., F10k+1) and the minimum of the degrees of the Qj, j =
1, ..., 10k + 1, in any polynomial identity

X1 = Q1F1 + · · ·+ Q10k+1F10k+1

is greater than (D − 2)2k−1
; it means there is no hope to solve the membership

problem under double exponential time ! This does not mean of course that special
cases of the membership problem (such as Bézout identity or the closely related
Hilbert’s nullstellensatz) could not be solved with much better bounds (in fact, we
will see they may be).

1.3 Several ways to solve the Bézout identity in

dimension 1

Let us point out at the beginning of this course that there are (at least) four methods
(which are intrinsically different) in order to solve the famous Bézout identity (with
two polynomials) in the polynomial algebra C[X] ; namely, given two polynomials
P1 and P2 with no common zero in C, construct two polynomials A1 and A2 (with
respective degrees deg P2 − 1 and deg P1 − 1) such that

A1P1 + A2P2 ≡ 1 .

The first method lies on the use of Euclidean division algorithm, following back
the computations that lead to the GCD (here 1) of P1 and P2. What makes the
advantage of this method (among all others we will present here) is that it is the
only one which is algorithmic. It works when P1 and P2 have coefficients in any field
K.

Besides this method, one can use basic elimination theory (as in the G. Hermann’s
algorithm, see [Her, VdW]) : if P1 and P2 are two polynomials in K[X1], such that P1

and P2 have no common zero in some algebraic closure K of K, such that deg P1 = p,
deg P2 = q and

P1(X) = a0X
p + a1X

p−1 + · · ·+ ap

P2(X) = b0X
q + b1X

q−1 + · · ·+ bq ,

one can form the Sylvester resultant, that is the (p + q, p + q) determinant.

R(P1, P2) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . ap 0 . . . 0 0
0 a0 . . . ap−1 ap . . . 0 0
...

...
...

...
...

...
...

...
0 0 . . . . . . . . . . . . ap 0
0 0 . . . . . . . . . . . . ap−1 ap

b0 b1 · · · · · · · · · · · · 0 0
...

...
...

...
...

...
...

...
0 · · · · · · · · · · · · · · · bq−1 bq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Linear algebra manipulations show such resultant can be expressed in the ideal
generated by (P1, P2) in K[X] as

R(P1, P2) = U1(X)P1(X) + U2(X)P2(X)

(note that U1 and U2 have coefficients which can be expressed as polynomial expres-
sions with integer coefficients of the coefficients of P1, P2). Moreover, R(P1, P2) 6= 0
is equivalent to the fact that P1 and P2 are co prime in K[X] (that is, have no
common zero in an algebraic closure K of K) ; for an elementary approach of such
basic results in elimination theory, one can for example refer to the textbook of J.M.
Arnaudiès and J. Lelong-Ferrand [ArnLF] or to the recent textbook by F. Apéry
and J.P. Jouanolou [ApJ]. This second method is intrinsically different from the first
one since it is based on a formula instead of an algorithm.

The third method is based on also on a formula, but it lies on a more analytic idea,
the use of Lagrange interpolation formula. When P1 and P2 have simple zeroes, one
can take as

A1(X) :=
∑

P2(β)=0

1

P1(β)P ′
2(β)

P2(X)

X − β

A2(X) :=
∑

P1(α)=0

1

P ′
1(α)P2(α)

P1(X)

X − α
;

when the zeroes of P1 or P2 are not simple simple anymore, Lagrange interpolators
are more involved and one needs to take

A1(X) := Res

[
1

P1(ζ)
P2(X)−P2(ζ)

X−ζ
dζ

P2(ζ)

]

A2(X) := Res

[
1

P2(ζ)
P1(X)−P1(ζ)

X−ζ
dζ

P1(ζ)

]
,

where the notation

Res

[
R(ζ) dζ
Q(ζ)

]

denotes (when R is a rational function and Q a polynomial such that R is regular
on {P = 0}), the total sum of residues (at all zeroes of Q) of the (1, 0)-rational form

ω(ζ) =
R(ζ)

Q(ζ)
dζ .

Of course, formula 1 ≡ A1P1 + A2P2 is easy to check since 1 − (A1P1 + A2P2)
appears as a polynomial with degree deg P1 + deg P2 − 1 which vanishes at exactly
deg P1 + deg P2 points (namely the zeroes of P1 and P2 counted with multiplicities)
in the algebraic closure K of K.

The last method we propose here (when K = C, that is in fact, for any K with
characteristic zero) is deeply connected with the central formula in one variable
complex analysis that is Cauchy formula :

1 =
1

2iπ

∫

|ζ|=R

dζ

ζ − z
, ∀z , |z| < R . (1.4)
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Though such a formula looks an analytic formula at first glance, note that the
integral symbol has just a formal meaning, since one knows that it can be replaced
by any symbol ∫

γz

where γz is a closed loop with support in C \ {z} such that Ind(γ, z) = 1 ; never-
theless, we will use here the analytic model since it will appear as very convenient.
We take for the moment R strictly bigger than the modulus of all zeroes of P1 (we
assume deg P1 ≥ 1, otherwise Bézout identity 1 = A1P1 + A2P2 can be trivially
realized), so that the open disk D(0, R) contains all zeroes of P1. Let us write

P1(ζ)− P1(z) = g1(ζ, z)(ζ − z) ,

where g1 is a polynomial in the two variables ζ and z (this can be done using the well
known identities ζk−zk = (ζ−z)(ζk−1 + · · ·+zk−1), note that such trivial identities
will be a key ingredient several times in this course). Then, one can rewrite (1.4) as

1 =
1

2iπ

∫

|ζ|=R

g1(ζ, z) dζ

P1(ζ)− P1(z)
.

If z is sufficiently closed from one particular zero of P1 (let us say for example α),
one can assume

|P1(z)| < min
|ζ|=R

|P1(ζ)|

and therefore develop
1

P1(ζ)− P1(z)

as

∞∑

k=0

(P1(z))k

(P1(ζ))k+1
(1.5)

for any ζ with |ζ| = R, the convergence of the series in (1.5) being uniform on the
circle {|ζ| = R}. It follows that for such z close to α, one can write

1 =
∞∑

k=0

( 1

2iπ

∫

|ζ|=R

g1(ζ, z) dζ

(P1(ζ))k+1

)
(P1(z))k . (1.6)

Thanks to residue formula (again an analytic tool !), formula (1.6) can be rewritten
as

1 =
∞∑

k=0

Res

[
g1(ζ, X) dζ
P k+1

1 (ζ)

]
P k

1 (z) . (1.7)

Here comes another crucial remark, due also to Lagrange : when N and D are two
polynomials in C[X] such that deg N ≤ deg D− 2, then the total sum of residues of
the rational form

N(ζ)dζ

D(ζ)
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at all its poles is zero ; this can be checked either estimating (for r >> 1) the integral

∣∣∣
∫

|ζ|=r

N(ζ) dζ

D(ζ)

∣∣∣

and letting r tend to infinity, either using the decomposition of the rational function
N/D in simple elements in C[X] ; note that if D(X) = δ0X

d + · · ·+ δd, and

[N : D] = u0X
d−1 + · · ·+ ud−1

(the remainder in Euclidean division of N by D), then

Res

[
N(ζ) dζ
D(ζ)

]
= u0/d0

(check that as an exercise, which show again that if deg N ≤ deg D−2, then u0 = 0,
so that the total sum of residues of N dζ/D equals zero). This remark ensures us
that formula (1.7) (still for z close to α) can be reduced just to to

1 = Res

[
g1(ζ, X) dζ

P1(ζ)

]
. (1.8)

Let us introduce now the second polynomial P2, together with g2(z, ζ) such that

P2(ζ)− P2(z) = g2(ζ, X) (ζ − z) .

One can write the polynomial identity

∣∣∣∣
g1(ζ, X) g2(ζ,X)

0 P2(ζ)

∣∣∣∣ =

∣∣∣∣
g1(ζ,X) g2(ζ,X)

P1(X)− P1(ζ) P2(X)

∣∣∣∣ .

If we inject such an identity in (1.8), one gets (still for z close to α),

1 = Res


 1

P2(ζ)

∣∣∣∣
g1(ζ, z) g2(ζ, z)
P1(z) P2(z)

∣∣∣∣ dζ

P1(ζ)


 ,

which is a Bézout identity 1 = A1(z)P1(z) + A2(z)P2(z) valid at least for z close to
α ; since it is an algebraic identity, it is valid everywhere and we are done ! The
Bézout identity we obtained this way is

1 = Res


 1

P2(ζ)

∣∣∣∣
g1(ζ,X) g2(ζ, X)
P1(X) P2(X)

∣∣∣∣ dζ

P1(ζ)


 . (1.9)

If P1, p2, ..., pm are m polynomials in K[X] with no common zero and if K is as-
sumed to be infinite (which one may assume, introducing artificially an auxiliary
transcendental parameter t, so that we work in K(t) instead of K), one can find a
linear combination (with coefficients in K)

P2 := λ1P1 + λ2p2 + · · ·+ λmpm
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such that P1 and P2 have no common zero. This remark is based on the use of
the ”box principle” (as in the proof of theorem 1.1) 10. The four methods which
have been proposed below (dealing with two polynomials) can be used to recover a
Bézout identity

a1P1 + a2p2 + · · ·+ ampm = 1 .

The last one is deeply inspired by L. Kronecker’s and C. Jacobi’s approach (follow-
ing in fact Bézout, see [Alf]) toward such questions (in the XIX-th century). What
makes the last approach (as well as the approach based on the use of Lagrange’s in-
terpolation formula) intrinsically different from the approach based on the euclidean
algorithm is that, in order to express A1 and A2, one uses the action of a linear form

ResP : R dζ 7−→
[

R dζ
P1

]

(acting here on the C-vectorial space of rational forms Rdζ with no poles on the
algebraic set {P1 = 0}).
Formula (1.8) will be interpreted as a trace formula (the right-hand side will be
interpreted later as the trace of a linear operator from a finite dimensional C-vectorial
space into itself).

10Suggestion of exercise : complete for example here the exercise consisting in writing precisely
the argument that leads from the box principle to the construction of P2 ; explain also how one can
get rid of the auxiliary parameter t when the field K is not infinity.
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Chapter 2

Lesson 2 : the notion of
multidimensional residue

2.1 The case n = 1

When f and g are germs of holomorphic functions at the origin in one complex
variable z (f, g ∈ 0O1), such that

f(z) =
∞∑

k=m

akz
k

with m ≥ 0 and am 6= 0, one defines the local residue at the origin of the germ of

meromorphic differential
g(ζ)

f(ζ)
dζ as

Res0

( g(ζ)

f(ζ)
dζ

)
=

[
g(ζ) dζ
f(ζ)

]

0

:=
1

2iπ

∫

|ζ|=ε

g(ζ)

f(ζ)
dζ ,

where one takes representatives for the germs f and g in D(0, r), ε being small
enough so that 0 is the only (eventual) zero of f in D(0, ε) .

We need to make several remarks :

1. The reason why one considers the residue of a (1, 0)-germ of meromorphic form
(instead of the residue of a germ of meromorphic function) is inherent to the
geometric signification of the local residue at the origin ; the local residue

[
g(ζ) dζ
f(ζ)

]

0

materializes the obstruction for the (1, 0) holomorphic form ω = f(ζ)/g(ζ) dζ
in D(0, ε) \ {0} to be exact in D(0, ε) \ {0}, since the residue map induces an
isomorphism

ω̇ ∈ Z1
abel(D(0, ε) \ {0})

B1
abel(D(0, ε) \ {0}) 7−→ Res0 ω ∈ C

(here Z1
abel(U) denotes the C-vectorial space of holomorphic – or abelian –

(1, 0) forms in the open set U , B1
abel(U) the C-vectorial subspace of d-exact

holomorphic – or abelian – ones).

17
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2. The local residue Res0(g(ζ) dζ/f(ζ) is the Laurent coefficient a−1 in the Lau-
rent development

g(ζ)

f(ζ)
=

∞∑
−m

akζ
−k

of the meromorphic function g/f about the origin ; when m = 1 (the pole is
simple), one has [

g(ζ) dζ
f(ζ)

]

0

=
g(0)

f ′(0)
,

while [
g(ζ) dζ
f(ζ)

]

0

=
1

(m− 1)!

( d

dζ

)m−1[
ζm g(ζ)

f(ζ)

]
ζ=0

in the general case1 ; in fact, the notion at a point of residue of a (1, 0)-germ
of meromorphic form makes when the germ of form is a germ of (1.0) form at
a point z0 on some Riemann surface S2.

3. We have the formula
[

df(ζ)
f(ζ)

]

0

=

[
f ′(ζ) dζ

f(ζ)

]

0

= m,

m being the order of vanishing of f at 0, that is m = mult0(f) ; such a formula
will be quite important not only in algebra, but also dealing with arithmetics
(we will see its role in Arakelov theory [L]).

2.2 The notion of regular sequence in On

In this section, we will deal with sequences (f1, ..., fn) of elements in the local ring On

of germs of holomorphic functions about the origin in Cn. Recall that the maximal
ring of On (which is a local ring) is the ring (ζ1, ..., ζn).

Definition 2.1 A sequence (f1, ..., fk), k ≤ n, of elements in On is called weakly
regular if and only if f1 6≡ 0 and, for any j = 1, ..., k − 1, fj+1 is not zero-divisor in
the quotient ring On/(f1, ..., fj), which means

fj+1 h ∈ (f1, ..., fj) =⇒ h ∈ (f1, ..., fj) .

It is called regular if, in addition

(f1, ..., fk)On

is a proper ideal in On.

1In fact, it is better to forget such a formula since it could give the false idea that residue
calculus would not make sense in the positive characteristic context ; the division by (m − 1)! is
here a fictive division.

2When the form is expressed in a local coordinate w on S centered at z0, the coefficient a−1

in the Laurent development (about the origin) of the form expressed in w appears as the only
Laurent coefficient (among all the ak’s) which has an intrinsic geometric definition, that is does
not depend on the choice of the local coordinate w.
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For references about the notion of regular sequence (called also M -sequence) in a
commutative ring R, we refer for example to ([Eis], [Ha1], [Mat], [North]).

When R is a n-dimensional local ring (such as On) with maximal ideal M, the notion
of regularity for a sequence (f1, ..., fk), k ≤ n, does not depend on the order3. This
may be false when R is not local : for example, in C[X1, X2, X3], the sequence

(X1(1−X3), X2(1−X3), X3)

is not regular (when taken in this order) since

X2(1−X3)×X1 ∈
(
X1(1−X3)

)

and X1 is not in the ideal (X1(1 − X3)) ! Nevertheless, when taken in the order
(X1(1−X3), X3, X2(1−X3), it happens to be regular in C[X1, X2, X3].

When R is a local ring, a necessary and sufficient condition for a sequence (f1, ..., fk)
of elements in the maximal ideal M to be regular is that the Koszul complex built
from the sequence (f1, ..., fk) is exact at any degree.

Koszul complex (a short presentation) : Let R be a commutative ring and M be a R-module ;
let a1, ..., ak be k elements in R ; for any j ∈ {0, ..., k}, consider the module

( ∧

j

Rk
)
⊗M =

⊕

1≤i1<···<ij≤k

(ei1R ∧ · · · ∧ eij R)⊗M ,

e1, ..., ek being the canonical basis of Rk, with the convention
( ∧

0

Rk
)
⊗M = M .

The Koszul complex K(a1, ..., ak |M) attached to (a1, ..., ak) in reference to M is the complex

dk+1 dj d0

0 −→ M · · · −→
( ∧

j

Rk
)
⊗M −→

( ∧
j−1

Rk
)
⊗M −→ · · · M −→ 0

where

dj :
p∧

l=1

eil
7−→

p∑

l=1

(−1)l−1ail
ei1 ∧ · · · ∧ êil

∧ · · · ∧ eip ,

the symbol ·̂ meaning the element is deleted. When M = R is a nœtherian ring, and a1, ..., ak lie
in the Jacobson radical of R (namely the intersection of all maximal ideals), the regularity of the
sequence a1, ..., ak is equivalent to the fact that all obstructions

Hj(K∗(a1, ..., ak |R) , j > 0

equal zero4(for a proof of this result, see for example [North], section 8.5).

The notion of quasi-regularity will be also interesting for us (outside the setting of
local rings) since it does not depend on the order.

Definition 2.2 Let (a1, ..., ak) a sequence of elements in a commutative ring R ;
the sequence (a1, ..., ak) is called quasi-regular if and only if, for any p ∈ N, any
relation ∑

{α∈Nk ; α1+···+αk=p}
rα aα1

1 · · · aαk
k ∈ (f1, ..., fk)

p+1

implies that the coefficients rα all lie in (a1, ..., ak).

3Note that necessarily, the fj all lie in M if (f1, ..., fk) is regular.
4It is enough to set ensure it for j = 1.
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The notion of quasi-regularity clearly does not depend on the ordering of the list
(a1, ..., ak) (which is not the case for the notion of regularity).

The regularity of a sequence (f1, ..., fk) (k ≤ n) in the local ring On is equivalent
to the fact that all fj lie in the maximal ideal M and that the dimension of any
irreducible component of the germ of analytic set

{ζ ; f1(ζ) = · · · = fj(ζ) = 0}
equals n− j (in fact, it is enough to ensure this for the extreme case j = k).

The circularity of a sequence (P1, ..., Pk), k ≤ n in K[X1, ..., Xn], where K is any
commutative field, is equivalent to the fact that all irreducible components of the
algebraic set

{z ∈ Kn
; P1(z) = · · · = Pk(z) = 0} ⊂ Kn

have pure dimension equal to n−k (or, which is equivalent, that all isolated5 primes
in Ass(K[X1, ..., Xn]/(P1, ..., Pk)) have Krull dimension equal to n−k). For example,
the sequence (X1(1 − X3), X2(1 − X3), X3) is quasi-regular in K[X1, X2, X3]). We
say in such a case that the k-uplet (P1, ..., Pk) defines a complete intersection in Kn

.

The notion of complete intersection can be extended to a larger (geometric) context :
given k ≤ n holomorphic functions f1, ..., fk in some open subset U ⊂ X, where X

denotes a n-dimensional complex manifold, the k-uplet (f1, ..., fk) defines a complete
intersection in U if and only if the closed analytic subset

V (f) := {x ∈ U ; f1(x) = · · · = fk(x) = 0}
has dimension at most n − k ; this is equivalent to say that at any point x0 in
V (f), the local complex dimension of the germ of analytic set defined by the germs
f1,x0 , ..., fk,x0 in Ox0(X) equals exactly n− k. When U is a Stein manifold 6, this is
equivalent to say (this is an algebraic formulation instead of a geometric one) that
(f1, ..., fk) defines a quasi-regular sequence in the ring O(U)7.

When (P1, ..., Pk) defines a quasi-regular sequence in the nœtherian polynomial alge-
bra K[X1, ..., Xn], one can say more about the primary decomposition of (P1, ..., Pk).
It is a classical fact from commutative algebra (see for example [Mat]) that any
proper ideal I in K[X1, ..., Xn] can be decomposed as

I =
l⋂

j=1

Qj , (2.1)

where Q1, ..., Ql are primary ideals, with radicals the prime distinct ideals P1, ..., Pl

(that is, for any j = 1, ..., l, there is some integer νj ∈ N∗ such that P
νj

j ⊂ Qj), in

5All this terminology will be clarified below.
6For the definition of a Stein manifold, we refer for example to [GR] ; what is enough for us

here is to know in this case that a function f ∈ O(U) lies in the ideal generated by (f1, ..., fk) in
O(U) if and only if for any x0 ∈ U , the germ fz0 of f in the local ring Ox0(U) lies in the ideal
generated in Ox0(U) by the germs f1,x0 , ..., fk,x0 , this follows from H. Cartan’s theorem A (see
[GR]) ; a n-dimensional Stein manifold can be embedded via a proper biholomorphic mapping in
C2n+1.

7It is significant to note here that the “algebraic” characterization (the quasi regularity of the
sequence) looks much more precise (and rich of information) than its “geometric” pendant (namely
that (f1, ..., fk) defines a complete intersection in U) ; nevertheless, these two properties of the
system (f1, ..., fk) in O(U) are equivalent when U is a Stein manifold.
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such a way that for any j = 1, ..., l,

l⋂
j=1

l 6=j

Ql 6⊂ Qj , j = 1, ..., l .

Such a result could be the pendant in the nœtherian ring K[X1, ..., Xn] of the fun-
damental theorem of arithmetic : any integer such that |n| ≥ 2 can be decomposed
in a unique way as

n = ±
l∏

j=1

p
νj

j ,

where p1, ..., pl are distinct prime numbers. The major stumbling block here (which
makes a crucial difference between the arithmetic situation in Z and the situation in
K[X1, ..., Xn]) is that such a decomposition (2.1) is not unique ! For example, one
has in K[X,Y ] :

(X2, XY ) = (X) ∩ (X,Y )2 = (X) ∩ (X2, Y ) ; (2.2)

the two inclusions (X2, XY ) ⊂ (X) ∩ (X,Y )2 and (X2, XY ) ⊂ (X) ∩ (X2, Y ) are
trivial ; if P = aX = αX2+βXY +γY 2 is in (X)∩(X, Y )2, one can see immediately
that X divides γ by Gauss lemma, so that P ∈ (X2, XY ) ; on the other hand, if
P = aX = αX2 + βY , X divides β for the same reason, so that P ∈ (X2, XY ) and
the equalities (2.2) are proved.

What is unique in decomposition (2.1) is the list of distinct prime ideals P1, ..., Pl in-
volved in the decomposition (2.1) as radicals of the primary factors. The prime ideals
P1, ..., Pl which are uniquely associated to I through such a primary decomposition
(of the form (2.1)) form the list of prime ideals associated with K[X1, ..., Xn]/I :

Ass (K[X1, ..., Xn]/I) = {P1 , ..., Pl} .

The elements of Ass (K[X1, ..., Xn]/I) can be compared respect to the inclusion
order ; the minimal elements of the list are called the isolated primes associated
with K[X1, ..., Xn]/I ; the other ones are called the embedded primes associated
with K[X1, ..., Xn]/I. Note that the affine algebraic variety V (I) ⊂ Kn

defined as

V (I) := {x ∈ Kn
; P (x) = 0 , ∀P ∈ I}

can be described as

V (I) =
⋃

{P isolated (K[X1,...,Xn]/I)}
V (P) .

The geometric point of view does not provide any information on the embedded
primes (and corresponding embedded components, zero loci of such primes) ; this is
a basic fact, namely that we loose any information about embedded objects when
keeping to the geometric approach (and forgetting about the algebraic one). We
will see in this course that the analytic point of view could help to get at least
some partial information on the embedded world ; it will play the role of some
kind of “compromise”. The optimum exponents νj attached to primary ideal Qj (in
decomposition 2.1) related to isolated primes through

νj = inf{ν ∈ N∗ ; Pν
j ⊂ Qj}



22 Lesson 2 : the notion of multidimensional residue

will of course be reachable through analytic techniques (they will appear as Lelong
numbers and will play the role of multiplicities) but analysis will also provide some
insight about such νj related to embedded primes (though the decomposition of I

is not unique !).

If (P1, ..., Pk) (k ≤ n) is a quasi-regular sequence in C[X1, ..., Xn], then all associ-
ated primes with C[X1, ..., Xn]/(P1, ..., Pk) are isolated. This follows from the local
result : in the local nœtherian ring On (where the primary decomposition and the
classification of associated primes in isolated and embedded can be carried exactly
in the same way), there is no embedded prime attached to On/(f1, ..., fk) whenever
f1, ..., fk is a regular sequence in On (this follows from the so-called Macaulay un-
mixed theorem, see theorem 17.3 page 134 in [Mat]). The same is true if C is replaced
by any commutative field K (whatever the characteristic is)8.

2.3 The absolute case k = n in On

2.3.1 The local Grothendieck residue : an analytic approach

In this section, we deal with n germs f1, ..., fn defining a regular sequence in the
local ring On. We will denote M the maximal ideal (ζ1, ..., ζn).

Since (f1, ..., fn) is a regular sequence, all fj lie in M. Let J(f1, ..., fn) be the
Jacobian determinant of (f1, ..., fn) that is

J(f1, ..., fn) = J(f) := det
[∂fk

∂ζl

]
1≤k,l≤n

.

Moreover 0 is the only common zero of f1, ..., fn in a small neighborhood of the
origin where we have selected representative for the germs ḟj, j = 1, ..., n.

When J(f)(0) 6= 0, it follows from the local inversion theorem that there exists a
local biholomorphism ζ 7−→ w = ϕ(ζ) between two neighborhoods of 0 such that

f ◦ ϕ−1 : (w1, ..., wn) 7−→ (w1, ..., wn) .

The ideal (f1, ..., fn) coincides in this case with M and, up to a change of coordi-
nates9, we may assume that f1, ..., fn are just the coordinate functions w1, ..., wn.
The situation therefore is well known and we will not be interested in this case for
the moment.

Much more interesting is the case when J(f)(0) = 0. Our objective in this section
is to divide by J(f), exactly as we where trying to do it sideways when writing (in
the one variable setting)

Res0

( g(ζ)

f(ζ)
dζ

)
=

[
g(ζ) dζ
f(ζ)

]

0

:=
1

2iπ

∫

|ζ|=ε

g(ζ)

f(ζ)
dζ

8This follows from the fact that a sequence (P1, ..., Pk) in K[X1, ..., Xn] is quasi-regular if and
only if its image φ(P ) in any localization K[X1, ..., Xn]P (where P is a maximal (resp. prime)
ideal containing (P1, ..., Pk)) is regular ; this is in fact a general fact, valid in any commutative ring
R instead of K[X1, ..., Xn]. The unmixed Macaulay theorem, theorem 17.3, page 134 in [Mat] for
regular sequences in a nœtherian ring (here any of the localizations K[X1, ..., Xn]P) can be applied
here to confirm the absence of embedded associated primes with K[X1, ..., Xn]P/φ(P ).

9A base change if one follows the algebraic terminology.
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when 0 is a multiple zero of f , so that the usual definition of the residue for simple
poles, that is g(0)/f ′(0) = g(0)/J(f)(0) does not make sense anymore. We will do
it analytically first, then algebraically next (and we will see the algebraic procedure
seems more interesting respect to its consequences).

We will consider the real setting and introduce the germ of C∞ map from R2n itself
(at the origin)

F : (x1, y1, ..., xn, yn) 7→
(
Re f1(x+ iy), Im f(x+ iy), ..., Re f(x+ iy), Im f(x+ iy)

)
.

The determinant of the jacobian matrix of this map equals (thanks to the Cauchy-
Riemann equations) |J(f)(x + iy)|2. Critical points of a C∞ map from an open
set U ⊂ Rm1 with values in Rm2 are by definition the points where the rank of
the jacobian matrix is strictly less than m2 ; the so called critical values are by
definition the images of critical points. In our situation, critical points are the
points (ζ1, ..., ζn) = ζ such that J(f)(ζ) = 0.

A major result in differential geometry, A. Sard’s lemma10, asserts that the set of
critical values (not of course of critical points !) of a C∞ map

F : U ⊂ Rm1 −→ Rm2

has Lebesgue measure equal to 0 in Rm2 (the result is even more precise, in terms of
Hausdorff measure). As a consequence, we can ensure here that, despite J(f)(0) = 0,
almost all u1, ..., un close to zero are non critical values of F , which means that for
all pre-images ξ such that f1(ξ) = u1, ..., fn(ξ) = un, the jacobian J(f)(ξ) does not
vanish.

We will show next two important facts :

• the cardinal of f−1(u) remains finite and constant (equal to some µ > 1 which
is precisely the topological degree of F as we will see) when u remains close
to the origin11 ;

• the function
u 7−→

∏

f(ξ)=u

J(f)(ξ) = δ(u)

is a non zero analytic function of u 12 ; such a function will be called the
discriminant of f .

If g denotes some element in On, It makes sense to define, for almost all u close to
zero, the trace function13

T [g dζ; f ] : (u1, ..., un) 7−→
∑

f(ξ)=u

g(ξ)

J(f)(ξ)

10See [Sa] for the original statement or also [HenY] (exercise 1.5 and its correction) for a detailed
proof in the case m1 = m2 which interests us ; in fact, A. Sard’s lemma is the analytic substitute
for Bertini’s result (see [Jo]) in algebraic geometry.

11Think for example about Rouché’s theorem in the one dimensional situation.
12Note that this confirms indeed Sard’s lemma, since an analytic hypersurface in U ⊂ Cn has

Lebesgue measure zero
13The terminology used here will be justified later on by algebraic considerations.
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This occurs to be in fact a meromorphic function with δ as denominator. In order
to compute its “value” at the origin (note the origin is a pole, so we cannot do that
abruptly !), we notice that, if one chooses conveniently (η1, ..., ηn) so that all values
(η1e

iθ1 , ..., ηneiθn), θ ∈ Rn are non critical for the map

F̃ : (x1, y1, ..., xn, yn) ∈ R2n 7−→ (|f1(x + iy)|2, ..., |fn(x + iy)|2) ∈ Rn

(such a choice is possible and implies that any (η1e
iθ1 , ..., ηne

iθn) is in fact non critical
for F ), then it follows from Fubini’s and Lebesgue’s dominated convergence theorems
that

1

(2iπ)n

∫

|u1| = η1
...

|un| = ηn

T [g dζ; f ](u)
n∧

j=1

duj

uj

=
1

(2iπ)n

∫

|f1| = η1
...

|fn| = ηn

g(ζ) dζ

f1(ζ) · · · fn(ζ)
,

(2.3)

where

dζ :=
n∧

j=1

dζj .

Here the orientation of the n-dimensional cycle

{|u1| = η1, ..., |un| = ηn}
is the standard one in order that Cauchy formula holds ; the cycle in the left-hand
side integral in (2.3) is parametrized by

uj = ηje
iθj , θj ∈ [0, 2π] , j = 1, ..., n ,

so that

1

(2iπ)n

∫

|u1| = η1
...

|un| = ηn

T [g dζ; f ](u)
n∧

j=1

duj

uj

=
1

(2π)n

∫

[0,2π]n
T [g dζ; f ](η1e

iθ1 , ..., ηne
iθn) dθ1 . . . dθn .

By Stokes’s theorem, this defines (almost everywhere) a function of η which happens
to be locally constant ; in fact, it will even appear as globally constant14 (taking
into account that is only defined for almost all η), we will prove it below, and its
value will be our definition of the local Grothendieck residue

Res

[
g(ζ) dζ
f1, ..., fn

]

0

.

14This confirms here the fact that the integral symbol in the right-hand side integral in (2.3)
has more some formal meaning than really some analytic one ; nevertheless, it will be sometimes
useful to profit of such an integral symbol just as if it had some true analytic meaning (we will see
examples later in the course).
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This will be our “trick” to turn around the division by the jacobian and define
sideways nevertheless T [gdζ; f ](0) though 0 is known to be a critical value of F !

Let us proof first (as a consequence of Stokes’s theorem) that, for any (generic)
choices of (η1, ..., ηn) and (η̃1, ..., η̃n), one has

1

(2iπ)n

∫

|f1| = η1
...

|fn| = ηn

g(ζ) dζ

f1(ζ) · · · fn(ζ)
=

1

(2iπ)n

∫

|f1| = η̃1
...

|fn| = η̃n

g(ζ) dζ

f1(ζ) · · · fn(ζ)
. (2.4)

It is enough to prove this result when η2 = η̃2, ..., ηn = η̃n, and η1 < η̃1, since after
this step, one can prove it for distinct η2 and η̃2, and so on ... The 2n − (n − 1)-
dimensional “annulus ”, considered as a n + 1-dimensional cycle γ

{η1 ≤ |f1| ≤ η̃1 , |f2| = η2 , · · · , |fn| = ηn}

has for boundary ∂γ the n-cycle

{|f1| = η̃1 , |f2| = η2, . . . , |fn| = ηn} − {|f1| = η1 , |f2| = η2, . . . , |fn| = ηn} .

Since the (n, 0)-differential form

ω(ζ) :=
g(ζ) dζ

f1(ζ) · · · fn(ζ)

is d-closed in a neighborhood of the cycle γ,

∫

∂γ

ω =

∫

|f1| = η1
...

|fn| = ηn

g(ζ) dζ

f1(ζ) · · · fn(ζ)
−

∫

|f1| = η̃1
...

|fn| = ηn

g(ζ) dζ

f1(ζ) · · · fn(ζ)

=

∫

γ

dω = 0 .

This proves (2.4) when η̃2 = η2,...,η̃n = ηn and therefore completes the definition of
the local residue.

Definition 2.3 Let f1, ..., fn be n elements defining a regular sequence in On. Let
g ∈ On. The mapping

(ε1, ..., εn) 7−→ 1

(2iπ)n

∫

|f1| = ε1
...

|fn| = εn

g(ζ) dζ

f1(ζ) · · · fn(ζ)

is almost everywhere defined (and constant) for (ε1, ..., εn) sufficiently close to zero
(depending of the representative which have been chosen for the classes ḟ1, ..., ḟn, ġ).
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Its value is the Grothendieck local residue15, which will be denotes as

Res0

( g(ζ)dζ

f1(ζ) · · · fn(ζ)

)
or Res

[
g(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

.

The first notation is more familiar to analytic geometers, the second one to alge-
braists.

Moreover, Let µ denote the topological degree of the map F , that is precisely the
degree of the map

F : x ∈ S2n−1 7−→ F (ρx)

‖F (ρx)‖ ∈ S
2n−1

when ρ > 0 is sufficiently small. This map is a smooth morphism from a compact
manifold (the unit sphere in C2n) into itself ; choosing an orientation on S2n−1

(which is equivalent to choose a 2n − 1 volume form Ω2n−1), we recall that the
degree of F is defined as the positive16 integer µ such that the pull-back F ∗[Ω2n−1]
equals µΩ2n−1 (for a brief presentation of degree theory from the point of view of
differential geometry, see for example [HenY], section 3.6.2). It follows from the
degree theorem ([HenY], theorem 3.5 for example) that µ is also the cardinal of
the set f−1(u) for (u1, ..., un) generic and close to (0, ..., 0). Therefore, we have the
following immediate result :

Proposition 2.1 For any g ∈ On, one has

Res

[
g(ζ) df1 ∧ . . . ∧ dfn

f1(ζ) , ..., fn(ζ)

]

0

= µg(0) .

Proof. This follows from the fact that for (u1, ..., un) generic

Tr (g(ζ)J(f)(ζ) dζ; u) =
∑

ξ∈f−1(u)

g(ξ)J(f)(ξ)

J(f)(ξ)
=

∑

ξ∈f−1(u)

g(ξ) , (2.5)

which takes the value µg(0) when u = 0. ♦
Remark. Formula (2.5) will be interpreted later as some factorization formula for the integration
current on an analytic set (multiplicities being taken into account) as the product of the “residue
current” and the jacobian differential form df1 ∧ · · · ∧ dfn.

Another key immediate property of the Grothendieck residue is the following :

Proposition 2.2 If h lies in the ideal generated by (f1, ..., fn) in On, then

∀g ∈ On , Res

[
g(ζ)h(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

= 0 . (2.6)

15The concept was introduced by Grothendieck from the formal point of view (it is hard to find
here a precise reference, it seems to more an oral presentation) toward the realization of duality
theory, but it was essentially presented in such a way by P. Griffiths ([Gr2] and [GH], chapter 6)
following the analytic geometric point of view and by R. Hartshorne [Ha2], E. Kunz [Ku0] and
later by J. Lipman [Li] following an algebraic point of view.

16It is automatically strictly positive since f1, ..., fn are holomorphic functions and the real
jacobian of a n-valued holomorphic map is always positive.
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Proof. It is enough to prove this result when h = af1, with a ∈ On. Let (ε1, ..., εn)
generic in (R+∗)n, such that

Res

[
g(ζ)a(ζ)f1(ζ)g(ζ)(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

=
1

(2iπ)n

∫

|f1| = ε1
...

|fn| = εn

a(ζ)g(ζ) dζ

f2(ζ) · · · fn(ζ)
.

Consider the 2n− (n− 1) = n + 1 cycle γ

{|f1| ≤ ε1, |f2| = ε2, ..., |fn| = εn} .

One has, by Stokes’s theorem again,
∫

∂γ

a(ζ)g(ζ)dζ

f2(ζ)...fn(ζ)
=

∫

γ

d
[ a(ζ)g(ζ)dζ

f2(ζ)...fn(ζ)

]
= 0

since the integrand form is closed on the interior of the support of γ. ♦
The main theorem we will establish later (that is the duality theorem) can be stated
as follows :

Theorem 2.1 [local duality theorem] Let f1, ..., fn be a regular sequence in On.
An element h ∈ On lies in the ideal (f1, ..., fn) if and only if, for any g ∈ On, one
has

Res

[
g(ζ)h(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

.

Remark. When n = 1 and f(ζ) = ζm, the result is clear : if

h(ζ) =
∞∑

α=0

aαζα ,

then for any k ∈ N,

Res
[

ζkh(ζ) dζ
ζm

]
= am−1−k ;

if all such numbers are 0, h is in the ideal (ζm). Of course, the single condition

Res
[

h(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

does not imply anything relatively to the membership of h to the ideal (f1, ..., fn) !

Before ending this section, we would like to mention that the topological degree
µ of the morphism F is always smaller than the product m(f1) × · · · × m(fn) of
multiplicities at the origin of f1, ..., fn. We recall here that m(fj), j = 1, ..., n is
defined as the degree of the homogeneous part f init

j of lowest degree in the Taylor
expansion

fj(ζ) =
∑

α∈Nn

aα(f)ζα1
1 · · · ζαn

n

of fj about the origin. Define the tangent cone C(fj) to the hypersurface {fj = 0}
at the origin as the projective hypersurface

C(fj) := {[ζ1 : ... : ζn] ∈ Pn−1(C) ; f init
j (ζ) = 0} , j = 1, ..., n
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(in the particular case n = 2, Cj is a finite set of points in P1(C)). Assume that

C(f1) ∩ C(f2) ∩ · · · ∩ C(fn) = ∅ . (2.7)

This is generically the case since n homogeneous forms (ϕ1, ..., ϕn) of respective
degrees

m(f1), ..., m(fn)

in n variables define a non-empty set in Pn−1(C) if and only if the resultant

Rm(f1),...,m(fn)(ϕ1, ..., ϕn)

specialized at their coefficients, is zero (see for example [L2], elimination theory).
One can show in such case that the topological degree µ of the morphism F equals
exactly

µ = m(f1)× · · · ×m(fn) .

(see for example proposition 5.10 in [HenY] for an “analytic” proof of this result
which is in the spirit of this course). This is a local version of Bézout theorem since µ
is also called the intersection multiplicity at the origin of the germs of hypersurfaces
(considered taking into account multiplicities) {f1 = 0}, ..., {fn = 0}. In general,
adapting the deformation argument used in the proof of proposition 5.10 in [HenY],
one can show that in general (if hypothesis (2.7) is not fulfilled) , one has always
the inequality

µ ≤ m(f1)× · · · ×m(fn) ,

the inequality being strict if and only if the tangent cones C(fj), j = 1, ..., n, intersect
in Pn−1(C).

Of course, in order to profit completely from the fact that in Cn = R2n, one has
2n-real degrees of freedom, it will be quite important in the future to extend the
action of the residue to germs of C∞ functions

ζ 7−→ ϕ(ζ, ζ)

and be able to define

Res

[
ϕ(ζ, ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

.

Of course, Stokes’s theorem cannot be applied anymore in order to show that the
function

(ε1, ..., εn) 7−→ 1

(2iπ)n

∫

|f1| = ε1
...

|fn| = εn

ϕ(ζ, ζ) dζ

f1(ζ) · · · fn(ζ)

is locally constant ! Nevertheless, if one is very careful and take the “limit” when
(ε1, ..., εn) tends to 0 in some particular way, we will see (our algebraic presentation
in the next section will help us for this) that the limit exists, is independent of the
path used to approach the origin (once such path is “admissible”) and deals with
the ϕ just as if ϕ was considered as the holomorphic function

ζ 7−→ ϕ(ζ, 0)
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(that is, anti-holomorphic coordinates ζj, j = 1, ..., n, play only some “neutral” role
and are treated as constants). This is known to be the case already in the one
variable case, where one knows that if

ϕ(ζ, ζ) =
∑

α

∑

β

aα,βζαζ
β
,

then

lim
ε→0

( 1

2iπ

∫

|ζ|=ε

ϕ(ζ, ζ) dζ

ζm

)
= Res

[( ∑
α

aα,0ζ
α
)

dζ

ζm

]
= am−1,0

(check this just using the parametrization of |ζ| = ε by ζ = εeiθ, θ ∈ [0, 2π]).

Once this will be achieved, the action of the residue on germs of (n, 0) test-forms
ϕdζ will make sense and define the action of a (0, n) current that will be denoted
(for natural reasons that we will explain later)

n∧
j=1

∂(1/fj) .

The result established in proposition 4.2 will become a particular case of a funda-
mental formula, Lelong-Poincaré formula, which says that the integration current
[f = 0] on the analytic set {f = 0} (considered with multiplicities taken into ac-
count)

ϕ ∈ C∞
0 (Cn) 7−→ µ

∫

{f=0}
ϕ(ζ)dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

can be factorized as

[f = 0] =
( n∧

j=1

∂(1/fj)
)
∧ df1 ∧ . . . ∧ dfn . (2.8)

Here C∞
0 (Cn) denotes the germs at the origin of C∞ functions from Cn to C.

2.3.2 The local Grothendieck residue : an algebraic approach

2.3.4
The definition of the Grothendieck residue symbol (which has been given in 2.3)

is a local one, but, since it involves integration on the n-dimensional cycle

{|f1| = ε1, ..., |fn| = εn}

(which support lies in a neighborhood of the origin), it also carries some semi-local
aspects. Playing with both contexts (local and semi-local) will be essential to settle
the main properties of the Grothendieck residue symbol.

We will present here the approach developed by J. Lipman in [Li], chapter 3, which
leads to the simultaneous definition of all residue symbols

Res

[
h(ζ) dζ1 ∧ . . . ∧ dζn

fk1+1
1 (ζ) , ..., fkn+1

n (ζ)

]

0
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for h ∈ On, (f1, ..., fn) being a regular sequence in On.

The general frame will be the frame of a commutative A-algebra R over a commu-
tative ring A. In our context R will be the local ring On and A ' C its quotient
field On/M.

Let f1, ..., fn be a quasi-regular sequence in R (in our context, a quasi-regular se-
quence inOn

17). So, we will retain that the sequence f1, ..., fn satisfies the following :
for any m ∈ N∗, any time we have (in R) a relation

∑

|k|=m

akf
k1
1 · · · fkn

n = 0 , ak ∈ A ,

then all ak lie in Rf1 + · · ·+ Rfn. Recall that in our example R = On and A = C.

The other hypothesis we will need is that the quotient A-module

P =
R

f1R + · · ·+ fnR

is projective18 and finitely generated. What will be in fact important for us is the
possibility to define a trace map Tr : E = HomA(P, P ) −→ A (this is of course
possible when P is projective and finitely generated).

In our context, such condition is fulfilled sinceOn/(f1, ..., fn) is a finitely dimensional
C-vectorial space : since the ideal (f1, ..., fn) is M-primary, there is some exponent
ν ∈ N∗ such that

Mν ⊂ (f1, ..., fn) ; (2.9)

the smallest ν ∈ N∗ such that 2.9 holds is called the Nœther exponent of (f1, ..., fn).
We will see in the next section that the Nœther exponent is always smaller19 than
the intersection multiplicity µ that has been introduced in the previous section.
Since ζν

j ∈ (f1, ..., fn), j = 1, ..., n, one has necessarily

dimC
On

(f1, ..., fn)
< ∞ .

In fact, one can say more : there is a polynomial Hf ∈ Q[X] of the form

Hf (X) =
µ

n!
Xn + lower degree terms ,

such that, for any k ∈ N sufficiently large,

dimC
On

(f1, ..., fn)k
= Hf (k) .

The polynomial Hf is called the Hilbert-Samuel polynomial (for references, see for
example [Ha1] (chapter 1) or [ZS]. We will see later that when (f1, ..., fn) is a regular
sequence in On, then

dimC
On

(f1, ..., fn)
= µ ;

17Though quasi-regularity is equivalent to regularity in a local ring such On, it is very impor-
tant to stick here to this notion of quasi-regularity (see definition 2.2) since we will have to play
simultaneously in the local and semi-local context (as the analytic approach suggests it).

18This means there is a A-module Q such that P ⊕Q is a free A-module.
19It may be strictly smaller.
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it is easy to guess that since we know that if we “perturb” f1, ..., fn in f1−ε1, ..., fn−εn

(as we have done in section 2.3.1), we get exactly µ = µ(f) distinct simple common
zeroes20.

Let us now start with Lipman’s construction. The first basic idea is to introduce
the (f1, ..., fn)-adic completion of R (here of On). That is, we introduce on R the
“pseudo-valuation” :

vf : a 7−→ sup
{

p ∈ N ; a ∈ (f1, ..., fn)p
}
∈ [0, ..., +∞]

and

(h1, h2) 7−→ df (a1, a2) := exp(−vf (a1 − a2)) .

The completion of R respect to the pseudo “metric” df will be denoted as R̂ ; it is
the (f1, ..., fn)-adic completion of R (note is is also a A-commutative algebra)21.

We now choose a A-linear map

σ : P =
R

(f1, ..., fn)
−→ R

such that π ◦ σ = IdP when π : R −→ P is the quotient map ; this can be
done easily since P is assumed to be projective and finitely generated ; for example
in the situation R = On and f = (f1, ..., fn) is a regular sequence, we just take
representatives for elements ȧ1, ..., ȧµ which form a basis for the finite dimensional
C-vectorial space On/(f1, ..., fn) and then extend σ by linearity.

We start with the fundamental lemma :

Lemma 2.1 For any h ∈ R, one can find a unique list of elements ḣk in P (depend-
ing of course of the choice of σ) such that h has the following development (when

considered as an element in R̂) :

h =
∑

k∈Nn

σ(ḣk) fk1
1 · · · fkn

n . (2.10)

Proof. We use here the full strength of the quasi-regularity condition. Clearly
ḣ = π(σ(h0)), so that h0 = ḣ = π(h). Now, if we have

h− σ(ḣ0) =
∑

k∈Nn

σ(ḣk) fk =
∑

k∈Nn

σ(h̃k) fk ,

we have
n∑

j=1

σ
(
ḣ

(0,..,
j
1,..,0)

− h̃
(0,..,

j
1,..,0)

)
fj ∈ (f1, ..., fn)2 .

20When (f1, ..., fm) is still M-primary, the dimension of the quotient does not coincide with the
topological degree of the map x 7−→ f̃(ρx)/‖f̃(ρx)‖ (where f̃ = (f̃1, ..., f̃n) consists in n generic
linear combinations of f1, .., fm) for ρ > 0 small : for example if (f1, f2, f3) = (ζ2

1 , ζ2
2 , ζ1ζ2) ∈ O2,

one has dimO2/(f1, f2, f3) = 3 while the topological degree of the map x 7−→ f̃(ρx)/‖f̃(ρx)‖ when
f̃ = (f̃1, f̃2) equals 4 !

21As examples, think about the construction of Ôn = C{{ζ}} when (f1, ..., fn) = M or K̂[X] =
K[[X]] when K is a commutative field and f = (X1, ..., Xn).
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Applying the quasi-regularity condition with m = 1, one can see that

σ
(
ḣ

(0,..,
j
1,..,0)

− h̃
(0,..,

j
1,..,0)

)
∈ (f1, ..., fn)

for any j = 1, ..., n, so that

π
(
σ
(
ḣ

(0,..,
j
1,..,0)

− h̃
(0,..,

j
1,..,0)

))
= 0̇ , j = 1, ..., n ,

therefore
ḣ

(0,..,
j
1,..,0)

= h̃
(0,..,

j
1,..,0)

, j = 1, ..., n ,

so that the ḣk for |k| = 1 are uniquely determined. It is clear how to continue this
procedure step by step (using next the quasi-regularity condition for m = 2 and so
on...). ♦
Now, we are going to associate to any h ∈ R a list of operators h]

k ∈ HomA(P, P ) (in
our situation, these are linear operators from the µ-dimensional C-vectorial space
P = On/(f1, ..., fn) into itself). Namely :

h]
k : ṙ ∈ P 7−→ ḣṙ,k ∈ P ,

where
h · σ(ṙ) =

∑

k∈Nn

σ(ḣṙ,k) fk1
1 · · · fkn

n

(when developed in R̂). Because of the previous lemma, the ḣṙ,k, k ∈ Nn, are
uniquely determined (depending of course of the choice of the section σ). We now
attach to the list (h]

k)k∈Nn the formal power series

∑

k∈Nn

h]
k fk1

1 · · · fkn
n ∈ HomA(P, P ) [[f1, ..., fn]] .

We are now in good shape to introduce the procedure which will ”mimic” the con-
struction of

(ζ1, ..., ζn) 7−→ 1

J (f1, ..., fn)

(when J(f1, ..., fn)(0) = 0) we had to by-pass in order to construct the residue
symbols analytically in section 2.3.1.

One can associate to any coordinate function ζ1, ..., ζn the element

ζ]
j =

∑

k∈Nn

ζ]
j,k fk1

1 · · · fkn
n ∈ On/(f1, ..., fn)[[f1, ..., fn]] ,

together with the n elements

d

dfi

ζ]
j :=

∑

k∈Nn

kiζ
]
j,k fk1

1 · · · fki−1
i · · · fkn

n , i = 1, ..., n .

There is a natural (non commutative) product between elements in

On

(f1, ..., fn)
[[f1, ..., fn]] ;
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it is defined on monomials in f by

(T fk) ◦ (S f l) := (T ◦ S) fk+l

and then extended by linearity to formal power series if f ; using such product, one
may define (taking into account the non-commutativity) :

h] ◦

∣∣∣∣∣∣∣∣∣

d

df1

ζ]
1 · · · d

dfn

ζ]
1

...
...

...
d

df1

ζ]
n · · · d

dfn

ζ]
n

∣∣∣∣∣∣∣∣∣
=

∑

k∈Nn

δ]
h,k fk .

The key final point here is that the traces of the operators δ]
h,k, k ∈ Nn, do not

depend of the choice of the section σ. This is slightly more delicate to see and we
will just sketch the idea. The section σ may be extended (by extension of scalars)
to a A[[X]]-linear map

σ∗ : P ⊗A A[[X]] −→ R̂ .

Such map is bijective22, which shows us that R̂ is a projective and finitely generated
A[[X]]-module (just as P is a projective and finitely generated A-module)23. There
is also a natural trace map

Tr : HomA(P, P ) [[f ]] = HomA[[X]](R̂, R̂) −→ A[[X]]

and one has

Tr
( ∑

k∈Nn

δ]
h,k fk

)
=

∑

k∈Nn

Tr[δ]
h,k] fk (2.11)

for any h ∈ R. Since changing the section amounts to make a change of basis in
P , therefore in P ⊗A A[[X]] ' R̂, the traces or the δ]

h,k are all independent of the
choice of σ (because of 2.11 and the fact that the trace of an linear operator does
not depend on the basis in which it is represented).

We now define (as the same time,which is rather instructive, compared to what we
have done in section 2.3.1 with analytic methods) the whole list of residue symbols

Res

[
h(ζ) dζ1 ∧ . . . ∧ dζn

fk1+1
1 (ζ) , ..., fkn+1

n (ζ)

]

0

:= Tr (δ]
h,k) , k ∈ Nn .

We will see later (it is not yet clear at this point) that the two definitions of the
residue symbol (for k = (0, ..., 0)), namely the analytic one and the algebraic one,
coincide.

In the general setting (R, A), we may define symbols of the form

Res

[
h dr1 ∧ . . . ∧ drn

fk1+1
1 (ζ) , ..., fkn+1

n (ζ)

]

0

, k ∈ Nn ,

as soon as r1, ..., rn are n elements (arbitrary) in the A-algebra R and (f1, ..., fn) a
quasi-regular sequence of elements in R such that the quotient A-module

R

f1R + · · · fnR

is projective and finitely generated.

22Since P is finitely generated.
23In our case A = C.
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2.3.3 A key property : the transformation law

The following law will be a crucial ingredient for multivariate residue calculus. In
this section, we will stick to the analytic approach of the residue symbol introduced
in section 2.3.1.

Theorem 2.2 (Transformation Law for local residues) Let (f1, ..., fn) and
(g1, ..., gn) two regular sequences in On such that

gj = aj,1f1 + · · ·+ aj,nfn , j = 1, ..., n ,

where the aj,k, j, k = 1, ..., n are elements in On. Then, for any h ∈ On,

Res

[
h(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

= Res

[
h(ζ) det [aj,k] 1≤j≤n

1≤k≤n
dζ1 ∧ . . . ∧ dζn

g1(ζ) , ..., gn(ζ)

]

0

.

(2.12)

Application. Let us introduce the Nœther exponent ν = ν(f) and therefore write

ζν
j =

n∑

k=1

aj,k fk , j = 1, ..., n .

Because of the transformation law, we have, for any h ∈ On,

Res

[
h(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

= Res

[
h(ζ) det [aj,k] 1≤j≤n

1≤k≤n
dζ1 ∧ . . . ∧ dζn

ζν
1 , ..., ζν

n

]

0

.

(2.13)

The right hand side of 2.13 can be computed immediately since the variables are
separated. Computations here amount to iterated computations of residues in the
one variable setting (which can be performed straightforward).

Proof. The transformation law and its interest (in the analytic context) were
pointed out by P. Griffiths (see [GR2], [GH]). In order to prove the result, let us
recall that, for η > 0,

(n− 1)!
n∑

k=1

(−1)k−1εk

n∧
l=1
l 6=k

dεl

ηn

is the normalized volume form on the (n− 1)-simplex
{

(ε1, ..., εn) ∈ [0,∞[n ; ε1 + · · ·+ εn = η
}
⊂ Rn

equipped with the orientation induced by the canonical orientation of Rn (the ori-
ented normal being the vector (1, ..., 1)).

Let h ∈ On (we choose a representative defined about the origin). Since

(ε1, ..., εn) 7−→ 1

(2iπ)n

∫

|f1|2 = ε1
...

|fn|2 = εn

h(ζ) dζ

f1(ζ) · · · fn(ζ)



2.3 The absolute case k = n in On 35

is almost everywhere defined and almost everywhere equal to a constant, namely
the residue symbol

Res

[
h(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

,

on Ση when η > 0 is small enough, we have

Res

[
h(ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ) , ..., fn(ζ)

]

0

=
(n− 1)!

ηn

∫

ε∈Ση

(
1

(2iπ)n

∫

|f1|2 = ε1
...

|fn|2 = εn

h(ζ) dζ

f1(ζ) · · · fn(ζ)

) n∑

k=1

(−1)k−1εk

n∧
l=1
l 6=k

dεl .

(2.14)

We now notice that, in the integral above :

dεj = d[|fj|2] = f j dfj + fj df j , j = 1, ..., n .

After we proceed to the substitutions (and re-ordering of differential forms) in the
double integral

∫

ε∈Σε

∫

|f1|2 = ε1
...

|fn|2 = εn

h(ζ) dζ

f1(ζ) · · · fn(ζ)
dζ1 ∧ · · · ∧ dζn ∧

( n∑

k=1

(−1)k−1εk

n∧
l=1
l 6=k

dεl

)
,

we finally obtain from 2.14

Res

[
h dζ

f1 , ..., fn

]

0

=
(−1)

n(n−1)
2 (n− 1)!

ηn(2iπ)n

∫

‖f‖2=η

h
( n∑

k=1

(−1)k−1fkdf [k]

)
∧ dζ

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫

‖f‖2=η

h
( n∑

k=1

(−1)k−1fkdf [k]

)
∧ dζ

‖f‖2n

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫

‖f‖2=η

h
( n∑

k=1

(−1)k−1skds[k]

)
∧ dζ

(2.15)

where we have used the abridged expressions :

‖f‖2 := |f1|2 + · · ·+ |fn|2 dfk :=
n∧

l=1
l 6=k

df l , k = 1, ..., n dζ := dζ1 ∧ . . . ∧ dζn

sk =
fk

‖f‖2
ds[k] =

n∧
l=1
l 6=k

dsl (k = 1, ..., n) .
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One can see that, outside the origin (that is when η ≥ ‖f‖2 > 0 pour η small
enough),

d
[( n∑

k=1

(−1)k−1skds[k]

)
∧ dζ

]
= ds1 ∧ ds2 ∧ · · · ∧ dsn ∧ dζ = 0

since
s1f1 + s2f2 + · · ·+ snfn = 〈s , f〉 ≡ 1

outside the origin. So, we conclude from Stokes’s theorem that

Res

[
h dζ

f1 , ..., fn

]

0

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫

‖ζ‖2=η

h
( n∑

k=1

(−1)k−1skds[k]

)
∧ dζ

(2.16)

for η > 0 small enough. From now on, we fix η = η0 so that 0 is the only common
zero of (f1, ..., fn) as well as of (g1, ..., qn) in the closed ball {‖ζ‖ ≤ η0}. We now
remark, if

s̃j :=
gj

|g1|2 + · · ·+ |gn|2 , j = 1, ..., n ,

outside the origin, that, in a neighborhood V of the sphere {‖ζ‖ = η0},

1 ≡
n∑

j=1

s̃jgj ≡
n∑

j=1

s̃j

( n∑

k=1

aj,kfk

)

≡
n∑

k=1

( n∑
j=1

aj,ks̃j

)
fk

≡
n∑

k=1

Skfk ,

where

Sj :=
n∑

j=1

ak,j s̃k , j = 1, ..., n

and
〈S , f〉 ≡ 〈s , f〉 ≡ 1 .

For any t ∈ [0, 1], one can see that

n∑
j=1

((1− t)sj + tSj)fj = 〈(1− t)s + tS , f〉 ≡ 1

in V . From this, follows immediately that, in V × [0, 1],

dt

[( n∑

k=1

(−1)k−1((1− t)sk + tSk)d[(1− t)s + tS][k]

)
∧ dζ

]
≡ 0 ,

so that

d

dt

[ ∫

{|ζ‖2=η0}
h
( n∑

k=1

(−1)k−1((1− t)sk + tSk)d[(1− t)s + tS][k]

)
∧ dζ

]
= 0 ,
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from which it follows that 2.16 with η = η0 can be also transformed as

Res

[
h dζ

f1 , ..., fn

]

0

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫

‖ζ‖2=η0

h
( n∑

k=1

(−1)k−1skds[k]

)
∧ dζ

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫

‖ζ‖2=η0

h
( n∑

k=1

(−1)k−1SkdS[k]

)
∧ dζ

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫

‖ζ‖2=η0

h∆
( n∑

k=1

(−1)k−1s̃kds̃[k]

)
∧ dζ ,

(2.17)

where
∆ := det

[
aj,k

]
1≤j≤n

1≤k≤n
.

If one conducts the same computations for (g1, ..., gn) instead of (f1, ..., fn) and h∆
instead of ∆, one can see that the pendant of 2.16 for η = η0 is

Res

[
h∆ dζ

g1 , ..., gn

]

0

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫

‖ζ‖2=η0

h∆
( n∑

k=1

(−1)k−1s̃kds̃[k]

)
∧ dζ

(2.18)

Combining 2.17 and 2.18 provides the transformation law. ♦
Remark. The transformation law can also be proved following the algebraic approach presented
in section 2.3.2 (see corollary 2.8 in [Li], chapter 2). We will admit here this fact. Since both
approaches (the analytic and the algebraic one) coincide when f = (ζν

1 , ..., ζν
n), it follows from the

transformation law (carried simultaneously in the analytic and in the algebraic contexts) and from
the fact that Mν ⊂ (f1, ..., fn) for some ν when (f1, ..., fn) is M-primary, that the two approaches
(analytic and algebraic), when carried when R = On and f1, ..., fn is a regular sequence, lead
exactly to the same objects.

2.3.4 The local duality theorem and Bergman-Weil devel-
opments

It is well known (this is almost a definition of a convergent power series) that any
h ∈ On can be developped (as a convergent power series) about the origin as :

h(z) =
∑

k∈Nn

akz
k1
1 ...zkn

n ,

where

ak = Res

[
h(ζ) dζ1 ∧ . . . ∧ dζn

ζk1+1
1 , ..., ζkn+1

n

]

0

.

If we forget about the convergence of the series and keep only the algebraic flavor
of the result, one can state it as follows : for any N ∈ N∗,

h−
∑

|k|∈Nn

|k|≤N

Res

[
h(ζ) dζ1 ∧ . . . ∧ dζn

ζk1+1
1 , ..., ζkn+1

n

]

0

zk ∈ (z1, ..., zn)N+1 , ∀N ∈ N .
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Such a result holds in any n-dimensional regular local ring On with residue field
On/M (whatever its characteristic is), z1, ..., zn been even replaced by any regular
sequence f1, ..., fn.

Proposition 2.3 Let f1, ..., fn be a regular sequence in a n-dimensional regular local
ring On with residue field On/M (of any characteristic) ; assume that

1⊗ fj − fj ⊗ 1 =
n∑

k=1

aj,k.(1⊗ ζk − ζk ⊗ 1) , j = 1, ..., n ,

where ζ1, ..., ζn are representants in M for the generators ζ1, ..., ζn of the polynomial
graded algebra On/M + M/M2 + · · · ; let

det[aj,k] =
M∑

l=1

ul ⊗ vl ;

then, for any N ∈ N, for any h ∈ On,

h−
∑
k∈Nn

k1+...+kn≤N

( M∑

l=1

Res

[
hul dζ1 ∧ . . . ∧ dζn

fk1+1
1 , ..., fkn+1

n

]

0

vl

)
fk1

1 . . . fkn
n ∈ (f1, ..., fn)N+1 .

Proof.

1. The analytic case. We will first give the proof in the analytic case On = On. The
starting point is to use the classical Cauchy formula in a polydisc ; it is well known
that if h is a representative of a germ of holomorphic function about the origin in
Cn and if ε1, ..., εn are small enough, that, for any point in the polydisk

∆ε = {z ∈ Cn ; |zj| < εj , j = 1, ..., n} ,

one has

h(z) =
1

(2iπ)n

∫

|ζ1|=ε1,...,|ζn|=εn

h(ζ) dζ1 ∧ . . . ∧ dζn

(ζ1 − z1) . . . (ζn − zn)
.

We choose ε1, ..., εn small enough so that 0 is the only common zero of f1, ..., fn in
the closure of ∆ε (which is possible sine 0 is necesseraly an isolated common zero
of f1, ..., fn which are assumed to form a regular sequence). Because of Stokes’s
theorem, we can even assert that for |zj| < εj/2, j = 1, ..., n,

h(z) =
1

(2iπ)n

∫

|ζ1−z1|=ε1,...,|ζn−zn|=εn

h(ζ) dζ1 ∧ . . . ∧ dζn

(ζ1 − z1) . . . (ζn − zn)
. (2.19)

The right-hand side in formula (2.19) can be understood as the total sum of residues
in the polydisc ∆ε (respect to the quasi-regular sequence (ζ1 − z1, ..., ζn − zn)) of
the differential abelian (n, 0)-form h dζ1 ∧ . . . ∧ dζn. Let us write in ∆ε (using for
example either Taylor formula or Newton’s method of divided differences)

fj(ζ)− fj(z) =
n∑

k=1

aj,k(z, ζ) (ζk − zk) , j = 1, ..., n .

Thanks to a semi-local version of the transformation law (which can be proved
exactly as the global version stated in proposition 2.4), one has, for |zj| < ηj <
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εj/2 (small enough so that the functions fj − fj(z), j = 1, ..., n, have exactly µ(f)
common zeroes (counted with multiplicities) in ∆ε, all lying inside ∆ε, the following
represention formula :

h(z) = Res

[
h(ζ) det[aj,k](z, ζ) dζ1 ∧ . . . ∧ dζn

f1(ζ)− f1(z), ..., fn(ζ)− fn(z)

]

∆ε

.

If ρ1, ..., ρn are small enough, then the set

{z ∈ ∆ε ; |fj| ≤ ρj , j = 1, ..., n}

is connected and included in ∆ε ; moreover (if we refine the choice of η1, ..., ηn),
then, for |zj| < ηj, j = 1, ..., n, all common zeroes of fj − fj(z), j = 1, ..., n in ∆ε lie
in the set

{z ∈ ∆ε ; |fj| < ρj , j = 1, ..., n} .

We therefore have the representation formula (for |zj| < ηj, j = 1, ..., n),

h(z) =
1

(2iπ)n

∫

|f1(ζ)|=ρ1,...,|fn(ζ)|=ρn
ζ∈∆ε

h(ζ) det[aj,k](z, ζ)

(f1(ζ)− f1(z)) . . . (fn(ζ)− fn(z))
.

We may know expand

1

(f1(ζ)− f1(z)) . . . (fn(ζ)− fn(z))
=

∑

k∈Nn

(f1(z))k1 ...(fn(z))kn

(f1(ζ))k1+1...(fn(ζ))kn+1

as a normally convergent geometric series on {|f1(ζ)| = ρ1, ..., |fn(ζ)| = ρn} when
|f1(z)| < ρ1/2, ..., |fn(z)| < ρn/2 (which is achieved provided the ηj are small
enough). Thanks to the normal convergence, we get, for such z close to 0, the
so-called Bergman-Weil 24 expansion

h(z) =
∑

k∈Nn

Res

[
h(ζ) det[ak,l](z, ζ) dζ1 ∧ . . . ∧ dζn

fk1+1
1 (ζ) , ..., fkn+1

n (ζ)

]

0

(f1(z))k1 . . . (fn(z))kn ,

the series being normally convergent on any compact set, which proves of course the
assertion in the proposition in the case On = On.

2. The general case. Let us prove the result in the general case. Let f̃1, ..., f̃n

defining a regular sequence in On and ãj,k ∈ On ⊗On such that

f̃j ⊗ 1− 1⊗ f̃j =
n∑

k=1

ãj,k.(ζk ⊗ 1− 1⊗ ζk) , j = 1, ..., n ,

and

det[ãj,k] =
M̃∑

l=1

ũl ⊗ ṽl .

24A close version of this formula (not developped) was proposed by André Weil in [Weil] ; the
idea of such developments goes back to S.B. Bergman (1936) [Berg], see also for further modern
developments the monography of Aizenberg-Yuzhakov [AY].
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Let us prove that

h̃ = h−
M̃∑

l=1

Res

[
h ũl dζ1 ∧ . . . ∧ dζn

f̃1, ..., f̃n

]
ṽl ∈ (f̃1, ..., f̃n) . (2.20)

Thanks to the transformation law, for any g in On, for K large enough (such that
MK ⊂ (f̃1, ..., f̃n)),

Res


 (h⊗ g).

( M̃∑
l=1

ũl ⊗ ṽl

) n∧
j=1

d[ζj ⊗ 1] ∧
n∧

j=1

d[1⊗ ζj]

f̃1 ⊗ 1, ..., f̃n ⊗ 1, 1⊗ f̃1, ..., 1⊗ f̃n




= Res


 (h⊗ g).

( M̃∑
l=1

ũl ⊗ ṽl

)
d[ζ ⊗ 1] ∧ d[1⊗ ζ]

f̃ ⊗ 1, 1⊗ f̃




= Res


 (h⊗ g).

( M̃∑
l=1

ũl ⊗ ṽl

)
d[ζ ⊗ 1] ∧ d[1⊗ ζ]

f̃ ⊗ 1− 1⊗ f̃ , 1⊗ f̃




= Res

[
(h⊗ g) d[ζ ⊗ 1] ∧ d[1⊗ ζ]

ζ ⊗ 1− 1⊗ ζ, 1⊗ f̃

]
= Res

[
(h⊗ g) d[ζ ⊗ 1] ∧ d[1⊗ ζ]

ζ ⊗ 1− 1⊗ ζ, 1⊗ f̃

]

= Res


 (1⊗ gh)

n∏
j=1

( K−1∑
k=0

(ζk
j ⊗ ζK−1−k

j

)
d[ζ ⊗ 1] ∧ d[1⊗ ζ]

ζK ⊗ 1− 1⊗ ζK , 1⊗ f̃




= Res


 (1⊗ gh)

n∏
j=1

( K−1∑
k=0

(ζk
j ⊗ ζK−1−k

j

)
d[ζ ⊗ 1] ∧ d[1⊗ ζ]

ζK ⊗ 1, 1⊗ f̃




= Res

[
(1⊗ gh) d[ζ ⊗ 1] ∧ d[1⊗ ζ]

ζ ⊗ 1, 1⊗ f̃

]
= Res

[
gh
f̃

]
.

This proves that for any g ∈ On, one has

Res




g
(
h−

M̃∑
l=1

Res

[
hũldζ

f̃

]
ṽl

)
dζ

f̃


 = 0 .

Following the algebraic construction of the residue symbol developped in section ,
we conclude that for any g ∈ On, the trace of the multiplication operator

ṙ ∈ On

(f̃1, ..., f̃n)
7−→ rh̃ mod (f̃1, ..., f̃n)

is the zero operator, which proves the assertion (2.20). It also concludes the proof
of the proposition when N = 0. In order to obtain it for arbitrary N , we need to
apply the above result with f̃j = fN+1

j , j = 1, ..., n and use the relations

f̃j ⊗ 1− 1⊗ f̃j =
( N∑

k=0

fk
j ⊗ fN−k

j

)( n∑

k=1

aj,k (ζk ⊗ 1− 1⊗ ζk)
)

, j = 1, ..., n .

The assertion of the proposition follows from the above reasoning applied with such
f̃j’s. ♦
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The particular case N = 1, which asserts that, for any h ∈ 0n, one has

h ≡
M∑

l=1

Res

[
hul dζ1 ∧ . . . ∧ dζn

f̃1, ..., f̃n

]
vl mod (f1, ..., fn)

is know as Kronecker Trace formula. It has a crucial corollary25 :

Corollaire 2.1 (the local duality theorem) Let f1, ..., fn be a regular sequence
in a regular local ring On ; then an element h ∈ On lies in (f1, ..., fn) if and only if

∀g ∈ On , Res

[
gh dζ1 ∧ . . . ∧ dζn

f1, ..., fn

]
= 0 ,

where ζ1, ..., ζn are elements in M/M2 which generate the polynomial algebra

On

M
[X1, ..., Xn] = On/M + M/M2 + · · · .

2.4 Global residues in K[X1, ..., Xn]

2.4.1 The global transformation law

Besides the local version of the transformation law, we may state in K[X1, ..., Xn] a
global version as follows :

Proposition 2.4 (Global Transformation Law). Let two quasi-regular sequen-
ces (P1, ..., Pn) and (Q1, ..., Qn) in K[X1, ..., Xn] (K being a commutative field) such
that there exists polynomials Aj,k, 1 ≤ j, k ≤ n, with

Qj =
n∑

k=1

Aj,kPk , j = 1, ..., n .

Then, for any Q ∈ K[X1, ..., Xn],

Res

[
Q(X) dX1 ∧ . . . ∧ dXn

P1 , ..., Pn

]
:=

∑
α∈V (P1,...,Pn)

Res

[
Q(X) dX1 ∧ . . . ∧ dXn

P1 , ..., Pn

]

α

= Res

[
Q(X) det[Aj,k](X) dX1 ∧ . . . ∧ dXn

Q1 , ..., Qn

]

:=
∑

β∈V (Q1,...,Qn)

Res

[
Q(X) det[Aj,k(X)] dX1 ∧ . . . ∧ dXn

Q1 , ..., Qn

]

β

. (2.21)

Proof. Since (P1, ..., Pn) and (Q1, ..., Qn) are quasi-regular, the images φ(P ) (resp.
φ(Q)) in any localisation at a prime ideal P in K[X1, ..., Xn] which contains V (P )
(resp. V (Q)) define regular sequences, so that we can define local residues respect
to these localisations. If α ∈ V (P1, ..., Pn) ∩ V (Q1, ..., Qn), it follows from the local
transformation law (theorem 2.2) in the corresponding local ring instead of On, one
has

Res

[
Q(X) dX1 ∧ . . . ∧ dXn

P1 , ..., Pn

]

α

= Res

[
Q(X) det[Aj,k(X)] dX1 ∧ . . . ∧ dXn

Q1 , ..., Qn

]

β

.

25In fact we used this so-called ”corollary” in our algebraic proof, since such statement appears
in fact as an avatar of the algebraic construction developped in section 2.3.4.
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If β ∈ V (Q1, ..., Qn) \ V (P1, ..., Pn), one can see from Cramer’s rule that

φ(det[Aj,k]) ∈ (φ(P1), ..., φ(Pn)) ,

which implies that

Res

[
Q(X) det[Aj,k(X)] dX1 ∧ . . . ∧ dXn

Q1 , ..., Qn

]

β

= 0 .

Therefore, the two sums in (2.21) are equal and the global Transformation Law is
proved. ♦

2.4.2 Jacobi’s theorem

A consequence of the global transformation law (proposition 2.4) is an important
result due to C. Jacobi [Jac], who proved it under some minor additional assump-
tions26.

Theorem 2.3 (Jacobi’s residue theorem) Let P1, ..., Pn be n polynomials in
K[X1, ..., Xn], where K is a commutative field, such that the homogeneous parts
of higher degree p1, ..., pn of P1, ..., Pn define a (X1, ..., Xn)-primary ideal in the
polynomial ring K[X1, ..., Xn]. Then P1, ..., Pn define a quasi regular sequence in
K[X1, ..., Xn] and, for any Q ∈ K[X1, ..., Xn],

deg Q <

n∑
j=1

(deg Pj − 1) =⇒ Res

[
Q(X) dX1 ∧ . . . ∧ dXn

P1 , ..., Pn

]
= 0.

Proof. Let | | be a non trivial absolute value on K and K an integral closure. Since
the homogeneous parts p1, ..., pn of P1, ..., Pn define a (X1, ..., Xn)-primary ideal in
K[X1, ..., Xn], there exists a strictly positive constant κ such that

∀x ∈ Kn \ {(0, ..., 0)} ,

n∑
j=1

|pj(x)|
‖x‖deg Pj

≥ κ

(here ‖x‖ = |x1| + · · · + |xn| for example). As a consequence, there exists K > 0,
such that

∀x ∈ Kn
, ‖x‖ ≥ K =⇒

n∑
j=1

|Pj(x)|
‖x‖deg Pj

≥ κ

2
;

this implies that the affine algebraic variety

V (P1, ..., Pn) = {x ∈ K
n
; P1(x) = · · · = Pn(x) = 0}

lies entirely in {x ∈ K ; ‖x‖ < K} and therefore is zero - dimensional 27, which
proves that (P1, ..., Pn) defines a quasi-regular sequence in K[X1, ..., Xn].

26In the context K = C, Jacobi was assuming in addition tranversality conditions respect to the
hypersurfaces {Pj = 0} in Cn.

27If not, the Krull dimension of the homogeneous ideal generated by the homogeneisations
hP1, ...,

hPn would have Krull dimension strictly bigger than 1 in K[X0, ..., Xn], which would imply
that for any homogeneous linear form L in X0, ..., Xn, the Krull dimension of (hP1, ...,

hPn, L)
would be strictly positive !
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Suppose that card V (P1, ..., Pn) = N . For each j = 1, ..., n, one can find a monic
polynomial Rj ∈ K[Xj] with degree N in the radical of (P1, ..., Pn). Thanks to
Hilbert’s nullstellensatz, there exists an integer M and polynomials Aj,k, 1 ≤ j, k ≤ n
such that

RM
j (Xj) =

n∑

k=1

Aj,k(X)Pk(X) , j = 1, ..., n .

Since {p1 = · · · = pn = 0} = {0} and (P1, ..., Pn) is quasi-regular in K[X1, ..., Xn],
the homogeneous polynomials hP1, ...,

hPn define a regular sequence in the polyno-
mial ring K[X0, ..., Xn]hom, which implies that the primary decomposition of the
ideal (hP1, ...,

hPn) does not involve embedded primes (thanks to Macaulay unmixed
theorem, see for example [Mat], theorem 17.3, page 134), in particular (X0, ..., Xn)
cannot be an embedded prime in this primary decomposition. Therefore,

RM
j (Xj) ∈ (hP1, ...,

hPn) , j = 1, ..., n ,

which implies that one can choose the Aj,k, 1 ≤ j, k ≤ n, such that

deg(Aj,k Pk) ≤ deg RM
j = MN , 1 ≤ j, k ≤ n .

We now use the global transformation law (proposition 2.4), which asserts that for
any polynomial Q in K[X1, ..., Xn], one has

Res

[
Q(X) dX1 ∧ . . . ∧ dXn

P1(X) , ..., Pn(X)

]
= Res

[
Q(X) det[Aj,k(X)] dX1 ∧ . . . ∧ dXn

RM
1 (X1) , ..., RM

n (Xn)

]
.(2.22)

In order to prove Jacobi’s result, it is enough to understand what happens when
n = 1. Let P (X) = a0X

d + a1X
d−1 + ... + ad (a0 6= 0) and

R(X) =

deg Q−1∑
j=0

αjX
j

be the remainder in the euclidean division of Q by P in K[X1, ..., Xn]. As seen in
the previous section, one has

Res

[
Q(X) dX

P (X)

]
=

αdeg Q−1

a0

,

which is zero when deg Q < deg P − 1 ; this implies Jacobi’s result when n = 1.
Since one has, for each (k1, ..., kn) ∈ Nn,

Res

[
Xk1

1 . . . Xkn
n dX1 ∧ . . . ∧ dXn

RM
1 (X1) , ..., RM

n (Xn)

]
=

n∏
j=1

Res

[
X

kj

j dXj

RM
j (Xj)

]
,

the right-hand term in (2.22) vanishes as soon as

deg(Q det[Aj,k]) <

n∑
j=1

(M deg Rj − 1) ;

since

deg(det[Aj,k]) +
n∑

j=1

deg Pj ≤ nM deg Rj ,

a sufficient condition on Q which ensures the vanishing of such right-hand side is

deg Q <

n∑
j=1

(deg Pj − 1) ,

which concludes the proof of Jacobi’s theorem. ♦
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2.4.3 Max Nœther theorem

We may now formulate (in a complete explicit way) an important algebraic result by
Max Nœther ([Nœ], see also [Sco]) which has been ”revisited” by italian geometers
(Severi, Segre) along the last century (see for example [Sem]).

Theorem 2.4 (Max Nœther’s theorem) Let K be a commutative field and Pj,
j = 1, ..., n, a sequence of polynomials in K[X1, ..., Xn] which define a regular se-
quence and are such the homogeneous parts p1, ..., pn of higher degrees define a
(X1, ..., Xn)-primary ideal in K[X1, ..., Xn]. Then (P1, ..., Pn) is a quasi-regular se-
quence which generates a proper ideal. Moreover, let

Pj(X)− Pj(Y ) =
n∑

k=1

aj,k(X,Y ) (Xk − Yk) , j = 1, ..., n ,

where the aj,k ∈ K[X, Y ] may be for example constructed thanks to Newton’s divided
differences method. Then, for any Q ∈ (P1, ..., Pn), the formal identity

Q(Y ) =
∑

k∈Nn\{0,...,0}
Res

[
Q(X) det[aj,k(X, Y )] dX
P k1+1

1 (X), ..., P kn+1
n (X)

]
P k1

1 (Y ) . . . P kn
n (Y )

truncates exactly in order to provide a polynomial identity

Q(Y ) =
n∑

j=1

Aj(Y )Pj(Y ) ,

where
max

j
[deg PjQj] = deg Q .

Proof. If (P1, ..., Pn) had non common zero in K
n
, one would have, since hP1, ...,

hPn

define a regular sequence in the homogeneous polynomial ring K[X0, ..., Xj] (see the
proof of Jacobi’s theorem 2.3 above) ,

Xj =
n∑

k=1

Q̃j,k(X0, ..., Xn) hPk(X0, ..., Xn) , j = 1, ..., n .

This implies that one can write, after deshomogoneization (take X0 = 1)

Xj =
n∑

k=1

Qj,kPk ,

where max deg(Qj,kPk) = 1 ; all Pj are affine polynomials and P1, ..., Pn have a
common zero since the homogeneous parts of higher degree correspond to an invert-
ible n × n matrix of elements in K. Therefore, this leads to a contradiction and
(P1, ..., Pn) define necesseray a proper ideal in K[X1, ..., Xn].

It follows from elementary properties of global residues and of the global transfor-
mation law (proposition 2.4 applied in K(Y )[X]) that

Q(Y ) = Res

[
Q(X) dX1 ∧ . . . ∧ dXn

X1 − Y1, ..., Xn − Yn

]

= Res

[
Q(X) det[aj,k]dX1 ∧ . . . ∧ dXn

P1(X)− P1(Y ), ..., Pn(X)− Pn(Y )

]
.
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If we localise at some maximal ideal M in K[X1, ..., Xn] (corresponding to a com-
mon zero α ∈ K

n
for P1, ..., Pn), we get about such point α the Bergman-Weil

development

φ(Q)(z) =
∑

k∈Nn\{(0,...,0)}
Res

[
Φ(Q) φ( det[aj,k](X, z)) dX1 ∧ . . . ∧ dXn

P k1+1
1 (X), ..., P kn+1

n (X)

]

α

×(φ(P1)(z))k1 . . . (φ(Pn)(z))kn . (2.23)

But Cramer’s rule (see the argument used to deduce the global transformation law
from the local one as in the proof of proposition 2.4), one has

Res

[
Φ(Q) φ( det[aj,k](X, z)) dX1 ∧ . . . ∧ dXn

P k1+1
1 (X), ..., P kn+1

n (X)

]

α

= Res

[
Φ(Q) φ[det[aj,k](X, z) dX1 ∧ . . . ∧ dXn

P k1+1
1 (X), ..., P kn+1

n (X)

]
.

Moreover, one has

Res

[
Φ(Q) Xβ1

1 . . . Xβn
n dX1 ∧ . . . ∧ dXn

P k1+1
1 (X), ..., P kn+1

n (X)

]
= 0

as soon as

(k1 + 1) deg P1 · · ·+ (kn + 1) deg Pn > deg Q + β1 + · · ·+ βn + n ,

or

k1 deg P1 + . . . + kn deg Pn +
n∑

j=1

(deg Pj − 1) > deg Q + β1 + · · ·+ βn .

As the total degree of det[aj,k(X, Y )] is precisely
n∑

j=1

(deg Pj−1), the right-hand side

of (2.23) truncates exactly as

φ
( n∑

j=1

AjPj

)

where maxj(deg AjPj) = deg Q. The local algebraic identity

φ(Q−
n∑

j=1

AjPj) = 0

implies (because of a flatness argument) the global algebraic polynomial identity

Q =
n∑

j=1

AjPj .

This ends the proof of Max Nœther’s result. ♦
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2.4.4 The Bézout identity in a particular case

We combine in this section the different tools involved in the previous sections in
order to prove the following version of Bézout identity :

Proposition 2.5 Let K be a commutative field and P1, ..., Pn+1 n + 1 polynomi-
als in n variables such that the homogeneous parts p1, ..., pn of P1, ..., Pn define a
(X1, ..., Xn)-primary ideal in K[X1, ..., Xn] and (P1, ..., Pn+1) = K[X1, ..., Xn]. Let
aj,k, j = 1, ..., n + 1, k = 1, ..., n be (n + 1)× n polynomials in K[X,Y ] such that

Pj(X)− Pj(Y ) =
n∑

k=1

aj,k(X,Y ) (Xk − Yk) , j = 1, ..., n + 1 .

The following Bézout identity holds :

1 = Res




∣∣∣∣∣∣∣∣

a1,1(X,Y) . . . . . . an+1,1(X,Y)
...

...
...

...
a1,n(X,Y) . . . . . . an+1,n(X,Y)

P1(Y) . . . . . . Pn+1(Y)

∣∣∣∣∣∣∣∣

dX1 ∧ . . . ∧ dXn

Pn+1(X)

P1(X), ..., Pn(X)




. (2.24)

Proof. Following the proof of Nœther’s theorem 2.4, the Cauchy global identity

1 = Res

[
dX1 ∧ . . . ∧ dXn

X1 −Y1, ..., Xn −Yn

]

can be transformed, thanks to the global transformation law (proposition 2.4) com-
bined with Jacobi’s theorem (2.3), into the polynomial identity

1 = Res




det[aj,k(X,Y )]1≤j,k≤n dX1 ∧ . . . ∧ dXn

P1(X), ..., Pn(X)




= Res


 Pn+1(X) det[aj,k(X,Y)]1≤j,k≤n

dX1 ∧ . . . ∧ dXn

Pn+1(X)

P1(X), ..., Pn(X)




= Res




∣∣∣∣∣∣∣∣

a1,1(X,Y) . . . . . . an+1,1(X,Y)
...

...
...

...
a1,n(X,Y) . . . . . . an+1,n(X,Y)

0 . . . 0 Pn+1(X)

∣∣∣∣∣∣∣∣

dX1 ∧ . . . ∧ dXn

Pn+1(X)

P1(X), ..., Pn(X)




= Res




∣∣∣∣∣∣∣∣

a1,1(X,Y) . . . . . . an+1,1(X,Y)
...

...
...

...
a1,n(X,Y) . . . . . . an+1,n(X,Y)

P1(Y)− P1(X) . . . Pn(Y)− Pn(X) Pn+1(Y)

∣∣∣∣∣∣∣∣

dX

Pn+1(X)

P1(X), ..., Pn(X)




.

We conclude with the fact that any global residue respect to P1, ..., Pn is annihilated
by each Pj, j = 1, ..., n. ♦



Chapter 3

Lesson 3 : about integral closure

3.1 Some equivalent definitions

In this section A denotes a commutative nœtherian domain, I an ideal in A. The
fraction field Frac (A) may have arbitrary characteristic. The main reference used
in this chapter is the survey paper by K. E. Smith [Smith] (also useful to provide
accurate references).

Definition 3.1 The integral closure I of an ideal I is the set of elements h ∈ A
which satisfy a homogeneous relation of integral dependency

hN + a1h
N−1 + · · ·+ aN ≡ 0 , (3.1)

where ak ∈ Ik, k = 1, ..., N and N = N(h) ∈ N∗.
Remark. Let grad I be the graded A[X]-algebra

⊕

n≥0

InXn ;

an element h of A lies in I if and only if hX satisfies in A[X] a monic equation

(hX)N + U1(hX)N−1 + · · ·+ UN , U1, ..., UN ∈ grad I .

This caracterization (just multiply by X relation (3.1) is the most convenient in order to check
(which is not completely trivial following definition 3.1) that I is an ideal.
Another equivalent caracterisation of the integral closure is the valuative criterion
(see [ZS], lemma p. 354) :

Proposition 3.1 Given a nœtherian commutative domain A and an ideal I in A,
an element h ∈ I if and only if h ∈ IV for all discrete valuation rings V lying
between A and its fraction field Frac (A).

Example. When A = On and h ∈ I if and only if for any germ t 7→ γ(t) of curve such that
γ(0) = 0, one has

val(h ◦ γ ; 0) ≥ min
a∈I

val(a ◦ γ ; 0) .

For example, if f ∈ M, f belongs to the integral closure of the jacobian ideal generated by the
germs of ∂f

∂zj
, j = 1, ..., n : this follows from Leibniz rule :

(f ◦ γ)′(t) =
n∑

j=1

∂f

∂zj
(γ(t)) γ′j(t)

47
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for any germ of curve γ which passes trough the origin ; therefore

val(f ◦ γ ; 0) ≥ val ((f ◦ γ) ; 0) ≥ min
j

val (∂zj
◦ γ ; 0) ,

so that the valuative criterion is fulfilled.

Example. When A = On and I is a monomial ideal generated by the monomials ζα1 , ..., ζαM ,
M ∈ N∗, (α1, ..., αN being elements in Nn \ {(0, ..., 0)}), I is generated by all monomials zβ where

β ∈ convex enveloppe
( M⋃

j=1

[αj + ([0, +∞[)n]
)

,

that is β belongs to the convex enveloppe of the staircase of I.

As a consequence of the valuative criterion, here is also an interesting caracterization
of the integral closure of an ideal :

Proposition 3.2 Let A be a commutative nœtherian domain and I an ideal in A.
An element h ∈ A lies in I if and only if there is some c = c(h) ∈ A \ {0} such that
for infinitely many integers n ∈ N, one has chn ∈ In.

3.2 Tight closure in positive characteristic

In this section, we consider that the commutative nœtherian domain A is such that
its fraction field Frac (A) has positive characteristic p > 01.

Definition 3.2 Let A be a commutative nœtherian domain with fraction field of
characteristic p > 0 and I = (f1, ..., fm) some ideal in A. The tight closure of I is the
ideal in A which consists of elements h ∈ A such that there exists c = c(h) ∈ A\{0}
such that for all e sufficiently large,

chpe ∈ (fpe

1 , ..., f pe

m ) . (3.2)

Remark. Taking the pe-roots, formula 3.2 leads to

c1/pe

h ∈ I · A1/pe

,

which means, since c1/pe

“tends” to 1 when e tends to infinity (just take valuatons to quantify
that), that h is indeed “almost” in I (here comes the reason for the terminology “tight” closure).
Because of the caracterisation given in proposition 3.2, there is a relation between
the two notions of integral closure and tight closure, namely we have the :

Proposition 3.3 Let A be a commutative nœtherian domain with fraction field of
positive characteristic p and I = (f1, ..., fm) an ideal in A. Then, one has Im ⊂ I∗

if I∗ denotes the tight closure of I in A.

Proof. Because of the caracterization given in proposition 3.2, if h ∈ Im, there
exists c = c(h) ∈ A \ {0} such that, for any e ∈ N sufficiently large,

chpe ∈ Impe

;

1In fact, the notion of tight closure we introduce in this section could be introduced as well
provided A is a commutative nœtherian ring containing a field with characteristic p > 0 (A is then
called of “equi-characteristic”).
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but if k1, ..., km are m positive integers such that k1 + . . . + km ≥ mpe, at least one
of the kj is greater than pe, so that chpe ∈ Impe

implies

chpe ∈ (fpe

1 , ..., f pe

m ) .

Since this holds for any e >> 0, h lies in the tight closure I∗. ♦
We now consider the particular situation when A = On is a regular local ring
with dimension n such that the residue field On/M is a perfect2 field with positive
characteristic p.

Proposition 3.4 Let On be a commutative n-dimensional regular local ring with
perfect residue field k = On/M with characteristic p > 0. Then, any ideal in On is
tightly closed, that is satisfies I = I∗.

Proof. We need to show that if I = (f1, ..., fm), any element in I∗ lies in I. Let
h ∈ I∗. There exists c = c(h) ∈ On \ {0} such that

chpe

=
m∑

j=1

ae,jf
pe

j (3.3)

for some ae,j in On. Since c 6= 0, there is some ec ∈ N such that, for e > ec, c does
not belong to the ideal generated by ζpe

1 , ..., ζpe

n , where ζ1, ..., ζn are generators (in
M/M2) for the polynomial n-dimensional k-graded algebra On/M + M/M2 + ....
Since On is regular and k is perfect, the Frobenius map h 7→ hp is finite and On

is a free module over each of the Ope

n for any e ∈ N, so that we get, for e > ec,
a Ope

n -linear map φe from On into Ope

n such that φe(c) = 1. Then, it follows from
(3.3), taking the action of φe on both sides, that

hpe

=
m∑

j=1

φe(ae,j)f
pe

j ;

from that we deduce, taking pe-roots, that h lies in I ; note that here of course,
binomial identities of the form

(u1 + · · ·+ um)pe

= upe

1 + . . . + upe

m

have played an essential role (here is the great advantage of the non zero character-
istic setting). ♦
Combining propositions 3.3 and 3.4, we get the following result, known (here in the
context of positive characteristic) as Briançon-Skoda theorem3 :

Proposition 3.5 Let I be an ideal generated by m elements in a regular local ring
On with perfect residue field k with characteristic p > 0. Then, one has the inclusion
Im ⊂ I.

2“Perfect” means (when k is a field with positive characteristic p) that for any a in the field,
the equation zp = a admits at least one root in k.

3The first proof of this result was obtained in the characteristic zero case (which is indeed the
most delicate !) by Joël Briançon and Henri Skoda using complex analytic L2 methods (due to
Lars Hörmander) in 1974 [BriS] ; then a proof in a more general context (including the positive
characteristic setting) was given by J. Lipman and A. Sathaye [LS], at the same time than a proof
based on duality and residue calculus was proposed by J. Lipman and B. Teissier [LT]. The case of
positive characterisic was extensively studied by Craig Huneke, Melvin Hochster (see [HH] and the
notes on the web site of Melvin Hochster : http://www.math.lsa.umich.edu/∼hochster), Karen
Smith,...
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3.3 Residue calculus and integral closure

Briançon-Skoda’s theorem in the n-dimensional regular local ring On can be stated
as follows :

Theorem 3.1 (Briançon-Skoda theorem, analytic version) Let I an ideal in
On generated by m elements ; let µ = min(m,n). Then, for any k ∈ N∗, one has
Iµ−1+k ⊂ Ik.

Proof. We will give here a proof when I is a proper M-primary ideal (and therefore
µ = n) which is generated by a regular sequence f1, ..., fn. The general case follows
from two observations :

• by Krull’s theorem, any ideal I in On can be expressed as

I =
⋂

k≥1

(I + Mk)

since
⋂

k≥1 Mk = {0} ;

• when I is a proper primary ideal generated by m ≥ n elements f1, ..., fm,
then any system (f̃1, ..., f̃n) of n generic linear combinations (with complex
coefficients) of f1, ..., fm, defines a regular sequence in On and is such that the
integral closures of (f̃1, ..., f̃n) and (f1, ..., fm) cöıncide.

If (f1, ..., fn) is a regular sequence in On, then4, one has, for any k ≥ 1,

(f1, ..., fn)k =
⋂
l∈Nn

l1+···+ln=k−1+n

(f l1
1 , ..., f ln

n ) (3.4)

(in order to see that, just write down the quasi-regularity conditions at any order).
If h lies in the integral closure of In−1+k, then, it follows easily from the integral
dependence relation

hN + uk,1h
N−1 + · · ·+ uk,N = 0 , uk,j ∈ Ij(n−1+k)

(because of its homogeneity) that

|h(ζ)| ≤ C‖f‖n−1+k

for some strictly positive constant C in a neighborhood of the origin5. Because of
the local duality theorem (corollary 2.1), in order to check that such h belongs to
Ik, it is enough, in view of 3.4, to check that for any g ∈ On, for any l ∈ ((N)∗)n

such that l1 + · · ·+ ln = k − 1 + n, one has

Res

[
g(ζ) h(ζ) dζ1 ∧ . . . ∧ dζn

f l1
1 , ..., f ln

n

]

0

= 0 .

4As pointed out by Melvin Hochster in the Appendix of [LT].
5In fact, if I = (f1, ..., fm) is an ideal in On, the condition |h| ≤ C‖f‖ in a neighborhood of the

origin caracterizes the membership of h to the integral closure of (f1, ..., fm) ; the proof (see [LeT]),
which is pretty difficult, goes through the valuative criterion and uses resolution of singularities
in characteristic zero [Hir] ; finding explicitely the integral dependence relation starting with the
condition |h| ≤ C‖f‖ remains an open question.
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It is rather surprizing here that for the first time, we are going to exploit the integral
symbol involved in the definition of the local residue :

Res

[
g(ζ) h(ζ) dζ1 ∧ . . . ∧ dζn

f l1
1 , ..., f ln

n

]

0

=
1

(2iπ)n

∫

Γ~ε(f)

g(ζ)h(ζ) dζ

f l1
1 (ζ)...f ln

n (ζ)
,

where
Γ~ε(f) := {|f1| = ε1, ..., |fn| = εn}

and (ε1, ..., εn) are choosen (outside a set of Lebesgue measure zero in ]0, η]n for
η small enough) so that Γ~ε(f) is a real n-dimensional cycle with smooth support.
Moreover, a classical result in differential geometry (the coaerea formula, see for
example [Fed], Theorem 3.2.11, p. 248) ensures that one can find ε1 ∼ ε, ..., εn ∼ ε,
so that, when ε tends to zero, the n-dimensional volume of the support of Γ~ε(f)
tends to 0 6. Estimating integrals, we get that

∣∣∣ 1

(2iπ)n

∫

Γ~ε(f)

g(ζ)h(ζ) dζ

f l1
1 (ζ)...f ln

n (ζ)

∣∣∣ ≤ C‖g‖∞ εk+n−1

εl1
1 . . . εln

n

vol (Γ~ε(f))
ε→0−→ 0

since εl1
1 . . . εln

n ∼ εl1+...+ln = εk−n+1. Because the integral does not depend of ε
(thanks to Stokes’s formula), the residue symbol equals 0 and we conclude applying
the duality theorem that h ∈ (f l1

1 , ..., f ln
n ) for all such multi-indices l, which concludes

the proof of the theorem. ♦
When On is a regular n-dimensional local ring (whatever the characteristic of the
residue field k is), one can provide a characterisation of the membership to integral
closure thanks to residue symbols ; namely we have the :

Proposition 3.6 Let On be a n-dimensional regular local ring, ζ1, ..., ζn being a set
of generators in M/M2 for the graded k-n dimensional algebra On/M+M/M2 + ...,
and f1, ..., fn a regular sequence in On. Then an element h ∈ On belongs to the
integral closure (f1, ..., fn) if and only if for any g ∈ On, the formal power series
belonging to k[[u]] :

F̂h,g :=
∑

k∈Nn

Res

[
ghk1+...+kn dζ

fk1+1
1 , ..., fkn+1

n

]
uk1

1 ...ukn
n

corresponds to the development about the origin of some element in k(u) which has no
pole at u = 0 and degree (maximum of the degrees of numerator and denominator in
a reduced expression) bounded independently of g, the denominator being independent
of g.

Proof. From the relation of integral dependency

hN +
N∑

j=1

( ∑
q∈Nn

q1+···+qn=j

aj,qf
q1

1 ...f qn
n

)
hN−j = 0 ,

one can see, when h belongs to the integral closure of (f1, ..., fn), that the coefficients

of F̂h,g obey a difference equation, which shows indeed that F̂h,g corresponds to a

6In fact, the coarea formula asserts that the L1(]0, η]n)-norm of the n-dimensional Lebesgue
measure of the trace of the support of Γ~ε(f) with the euclidean ball B(0, ρ) = {‖z‖ ≤ ρ} (as a
function of ~ε) is bounded by κρ2n‖df‖n

B(0,ρ) and therefore goes to zero when ρ tends to zero.
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rational fraction in k(u), whose degree is bounded by 2N . Conversely, let us assume

F̂h,g corresponds to such a rational function, with denominator

1 +
∑
q∈Nn

q1+...+qn≤N

αqu
q1

1 . . . uqn
n

For any l ∈ Nn with l1 + . . . + ln = 2N , one has

Res




g
(
h2N +

N∑
j=1

(
∑

q∈Nn

q1+...+qn=j

αqf
q1

1 ...f qn
n )h2N−k

)
dζ

f l1+1
1 , ..., f ln+1

n


 = 0 ,

which implies thanks to the local duality result (corollary 2.1) that for any such l,

h2N +
N∑

j=1

(
∑
q∈Nn

q1+...+qn=j

αqf
q1

1 ...f qn
n )h2N−k ∈ (f l1+1

1 , ..., f ln+1
n ) .

In view of (3.4) it follows that

h2N +
N∑

j=1

(
∑
q∈Nn

q1+...+qn=j

αqf
q1

1 ...f qn
n )h2N−k ∈ (f1, ..., fn)2N+1 ,

which provides the integral dependency relation we need in order to conclude that
h belongs to the integral closure of (f1, ..., fn). ♦
Given an ideal in a n-dimensional regular local ring On, the smallest integer m
such that there exists elements f1, ..., fm in I such that I and (f1, ..., fm) have the
same integral closure in On is called the analytic spread of I (see [NR]). It will have
another interpretation when we will introduce the graded ring

GI(On) :=
∞⊕

k=0

Ik

Ik+1
,

since the analytic spread of I will cöıncide with the dimension (as a On/M-vectorial
space) of

GI(On)⊗On

On

M
=

GI(On)

MGI(On)
.

3.4 Integral closure and membership problems

We will see in the next chapters that the geometric Bézout theorem (which governs
geometric intersection theory) governs in fact the effective resolution of Hilbert’s
Nullstellensatz ; namely, if P1, ..., Pm are m polynomials in K[X1, ..., Xn] defining
K[X1, ..., Xn] as an ideal and having respective degrees D1 ≥ D2 . . . ≥ Dm, one can
write an explicit Bézout identity

1 = 1l =
m∑

j=1

AjPj ,
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where
max

j
deg(AjPj) ≤ lD1D2...Dinf(n,m) ,

l ≤ n + 1 being precisely the analytic spread of the ideal (hP1, ...,
hPm) in the local

ring On+1(z0, ..., zn) (see [Hi] for such a result and updated references) 7.

On the other hand, the membership problem remains with its intrinsic algebraic
complexity : given polynomials P1, ..., Pm with degree at most D and Q a polynomial
wchich is known to belong to the ideal (P1, ..., Pm), there is in general no hope to
expect an effective membership formula :

Q =
m∑

j=1

AjPj ,

with max deg AjPj ≤ deg Q + κnD
2n

. In fact, in a famous paper [MM], E. Mayr
and A. Meyer were able to construct (as an automat), for any integer D ≥ 1, for
any integer k ∈ N∗, 10k + 1 binomials Pk,0, ..., Pk,10k in 10k variables such that
X1 ∈ (Pk,0, ..., Pk,10k+1) and, for any relation

X1 =
10k∑
j=0

Ak,jPk,j ,

one has necesseraly
max

j
deg(Ak,jPk,j) ≥ (D − 2)2k−1

.

On the other hand, I = (P1, ..., Pm) being an ideal in K[X1, ..., Xn], consider the
set of polynomials Q ∈ K[X1, ..., Xn] such that, if one takes the localization at
any maximal ideal M, the image of Q lies in the integral closure (in the local ring
K[X1, ..., Xn]M) of the ideal generated by the images of P1, ..., Pm. This is an ideal
I ⊂ K[X1, ..., Xn] which lies in between I and its radical. We will see in the following
courses that analysis may recover some algebraic information relative to I (while
geometry may only recover information on

√
I or eventually about multiplicities

attached to isolated components in the primary decomposition of I). For example,
if Q ∈ I, one can recover an explicit formula

Qinf(n+1,m) =
m∑

j=1

AjPj ,

with
max

j
deg(AjPj) ≤ inf(n + 1,m)(deg Q + Dn) ,

where D = max deg Pj (this is a result by M. Hickel in [Hi]). Clearly, effectiveness of
Briançon-Skoda’s theorem is governed by the Bézout estimates involved in geometric
intersection theory.

7W.D. Brownawell in [Brow1] was the first to realize Bézout geometric estimates govern the
effective resolution of Hilbert’s nullstellensatz ; the proof was clarified and settled in geometric
terms by J. Kollár [Ko1], then in [Ko2] ; more clarification came from the work of L. Ein and R.
Lazarsfeld [EinL] and M. Hickel [Hi] we quote here. Very recently, Z. Jelonek, using a fundamental
result by O. Perron [Perr], gave a quite elementary proof of J. Kollár’s result [Jel] ; nevertheless,
the intertwining with residue theory and Briançon-Skoda’s result is not yet completely understood
(and remains crucial when working in an arithmetic setting instead of just a geometric one).
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Chapter 4

Lesson 4 : Lelong-Poincaré and
Green relations

4.1 Volume and degree of a projective algebraic

set

In this section, our setting will be the projective setting Pn(C). On Pn(C), a (1, 1)
closed form plays an important role, the form

ω =
i

2π
∂∂ log[|z0|2 + · · ·+ |zn|2] = ddc log ‖Z‖2 ,

where Z := [z0 : z1 : · · · : zn] ; such a form is globally defined since

ddc log |f |2 ≡ 0

when f is a non-vanishing holomophic function. Such a form ω is a positive form
and an easy computation shows that

∫

Pn(C)

ωn =

∫

Cn

(ddc log[1 + |ζ1|2 + ... + |ζn|2])n = 1 .

(one can make easily the computation when n = 1 using spherical coordinates).

Let
V = {Z ∈ Pn(C) ; P1(Z) = . . . = PM(Z) = 0}

be an algebraic set in Pn(C), defined as the zero set V (P ) of a collection of M
homogeneous polynomials (P1, ..., Pm). One says that V has pure codimension equal
to k (1 ≤ k ≤ n + 1) if and only if the Krull dimension of all isolated primes in the
primary decomposition of I = (P1, ..., PM) in C[X0, ..., Xn] equals n−k+1 (the case
k = n + 1 means that V (P ) is empty).

If J is a prime ideal in C[X0, ..., Xn] generated by (F1, ..., Fν) (with Krull dimension
p + 1 ∈ {1, ..., n}), then the ideal generated by F1, ..., Fν , together with all n − p
minors of the jacobian matrix D(F1, ..., Fν)/D(z0, ..., zn), defines a proper subset
of V (J) (see [Ha1], chapter 1, section 5) ; this implies that, when V has pure
codimension equal to k ∈ {1, ..., n}, then V is a smooth 2(n − k)-real submanifold
(resp. (n − k)-complex submanifold) of the real 2n-manifold Pn(C) (resp. the n-
complex manifold Pn(C)) outside a singular subalgebraic variety Sing V which has

55
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dimension strictly smaller than n − k. Therefore, the integration on such V of
the (k, k)-positive differential form ωk makes sense and this provides the following
important definition :

Definition 4.1 ((and Wirtinger’s theorem, see [Stolz]) The degree of an al-
gebraic subset (of pure codimension k ∈ {1, ..., n}) of Pn(C) is defined as the volume

deg V (P ) =

∫

V

ωn−k .

It is a positive integer which equals the number of intersection points between V and
the projective linear subset

LU = {〈U1, Z〉 = ... = 〈Un−k, Z〉 = 0}

(where 〈Uj, Z〉 = uj0z0 + ... + ujnzn, [uj0 : ... : ujn] ∈ Pn(C), j = 1, ..., n − k) when
U1, ..., Un−k are generic.

Example. When V = V (P ), P being a homogeneous irreducible polynomial with degree D, then
deg V (P ) = D.

4.2 Lelong number of a positive current

Let U be an open subset in Cn and k ∈ {1, ..., n}. A (k, k) current

T =
∑

1≤l1<l2<···<lk≤n

∑
1≤m1<m2<···<mk≤n

Tl , m

k∧

λ=1

dzlλ ∧
k∧

µ=1

dzmµ

(where the Tl,m are distributions in U) is positive if and only if the action of T on
any i(n−k)2α∧α, where α is a (n− k, 0)- smooth form with compact support gives a
positive number. Positivity implies that the distributions ik

2
Tl,m are in fact positive

measures.

Example. If V is a purely dimensional closed analytic set in U with codimension k (which means
that V is locally defined as the zero set of holomorphic functions f1, ..., fm such that all isolated
primes in the primary decomposition of (f1, ..., fm) in Oz0 , z0 ∈ {f1 = ... = fm = 0} have all Krull
dimension n−k), then the integration current on V , which associates to any (n−k, n−k)-smooth
form with compact support ∫

V

ϕ =
∫

Reg V

ϕ

is a positive (k, k)-current. The reason why the integration on V makes sense is that it makes
sense outside the singular points of V (which form a closed analytic subset of V with dimension
strictly smaller than n − k) and that the restriction of this integration current on U \ Sing (V ) is
a positive (k, k)-current satisfying ∂T = ∂T = 0 ; such a current as a unique extension to U as a
(k, k)-current with the same properties (see for example [Lel], appendix).

If T is a (k, k)-positive d-closed current in U and a a point in the support of T , one
can show that, for r > 0 small enough, the function

r 7−→
∫

‖z−a‖≤r

T ∧ (ddc log |z − a|2)n−k =
(n− k)! σT (B(a, r))

r2(n−k)πn−k
,
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where σT (B(a, r)) denotes the positive measure

σT =
1

(n− k)!
T ∧ (

i

2
∂∂‖z‖2)n−k ,

is an increasing function of r ; its limit when r tends to zero is a positive real number
which is called the Lelong number of the positive closed (k, k)-current T at the point
a (see [Lel] or [De1], section 6).

Example. When T is the integration current on a closed analytic set V of pure codimension k,
then the Lelong number of T at a ∈ V is a positive integer which equals the number of sheets of
the covering

π : V −→ Cn−k

when π is a generic linear projection from Cn to Cn−k such that the restriction π|V : V −→ Cn−k

is a proper map in a neighborhood of a. For example, if V := {(z, w) ∈ C2 ; z2 − w3 = 0}, the
Lelong number of V at the origin equals 2. If a is a regular point of a closed analytic subset V

with pure codimension k, then the Lelong number of the integration current on V at a equals 1.

4.3 Lelong-Poincaré, Monge-Ampère equations

Let U be an open connected set in Cn. When f is a holomorphic function in U , then
ddc log |f |2 defines a positive (1, 1)-current which is d-closed. The Lelong number at
a point a ∈ V (f) = {f = 0} equals the multiplicity of a as a zero of f , that is the
valuation of

u 7−→ f(a + u)

at the origin. If V (f) is irreducible (as a closed analytic set in U), then the Lelong
number of ddc log |f |2 remains constant (equal to µ ∈ N) on Reg V (f) and the
formula

ddc log |f |2 = µ[V (f)] , (4.1)

where [V (f)] is the integration current on V (f), is (in the particular case of prin-
cipal ideals, we will extend it later to quasi-regular sequences) the Lelong-Poincaré
equation.

It also has a global version. If P = P µ1

1 ...P µM

M is a homogeneous polynomial in
n + 1 variables with irreducible factors P1, ..., PM , then one has then the formula in
Pn(C) :

ddc
[
− log

|P (Z)|2
‖Z‖2 deg P

]
+

M∑
j=1

µj[V (Pj)] = deg P × ω(Z) , (4.2)

which appears as the global version of Lelong-Poincaré equation. The current

M∑
j=1

µj[V (Pj)]

can be interpreted as the integration current associated to the effective geometric
cycle

C :=
M∑

j=1

µj Cj ,
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where Cj is the irreducible algebraic set {Pj = 0}.
When f1, ..., fk define a quasi regular sequence in the ring H(U) of holomorphic
functions in n variables in a connected open subset U ⊂ Cn, then one can show that
for any smooth test form ϕ of type (n− k, n− k) with compact support in U ,

lim
τ−→0+

(ddc log[|f1|2 + . . . + |fk|2 + τ ])k =
M∑

j=1

µj

∫

Vj

ϕ ,

where V1, ..., VM are the closed irreducible analytic sets which correspond to the
(necesserally) isolated primes in the primary decomposition of (f1, ..., fk), µj being
defined as the intersection multiplicity µ(f, u) of the regular sequence

(
f1, ..., fk,

n∑

l=1

u1,l(zl − al), ...,
n∑

l=1

un−k,l(zl − al)
)

(for uj,l, j = 1, ..., n − k, l = 1, ..., n, generic) in the local ring Oa, a = (a1, ..., an)
being an arbitrary point in Reg Vj. Such a result can be summarized as

(ddc log[‖f‖2])k = [V (f1, ..., fk)]mult , (4.3)

where [V (f1, ..., fk)]mult denotes the integration current (with multiplicities being
taken into account) on the effective cycle

M∑
j=1

µjVj

attached to the quasi-regular sequence (f1, ..., fk) ; in fact here, one can write

(f1, ..., fk) =
M⋂

j=1

Qj ,

where Qj is Pj-primary, Vj = V (Pj), and µj is realized as

µj = inf{µ ; Pµ
j ⊂ Qj} .

Formula (4.3) is the Monge-Ampère formula for quasi-regular sequences, which fits
with Lelong-Poincaré formula (4.1) in the codimension one case.

Let P1, ..., Pk be k homogeneous polynomials in n + 1 variables, with respective
degrees D1, ..., Dk, which define a regular sequence in the homogeneous polynomial
ring C[X0, ..., Xn] ; then, if D̂j =

∏
l 6=j Dl, j = 1, ..., k and D := D1 · · ·Dk, one has,

from Monge-Ampère equation (4.3), the formula

ddc

[
− log

(
k∑

j=1

|Pj(Z)|2D̂j

‖Z‖2D

)
×

( k−1∑

l=0

D−lωk−1−l ∧
(
ddc

[
log

k∑
j=1

|Pj|2D̂j

])l
)

(Z)

]

+ [V (P1, ..., Pk)]mult = Dωk(Z) =
(

deg[V (P1, ..., Pk)]mult

)
ωk(Z) , (4.4)

which appears as a generalization of (4.2) for regular sequences in C[X0, ..., Xn].
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There is also an extension of Lelong-Poincaré formula to the case of quasi-regular
sequences : namely, if f1, ..., fk are holomorphic functions in n variables defining a
quasi-regular sequence in an open connected set in Cn, one has

lim
τj−→0+

j=1,...,k

( k∧
j=1

ddc log[|fj|2 + τj]

)
= [V (f1, ..., fk)]mult

in the (weak) sense of currents.

4.4 The notion of height for an arithmetic cycle

Let P1, ..., PM be M homogeneous polynomials with integer coefficients defining a
projective algebraic set with pure codimension k in Pn(C). Besides the geometric
notion of degree, which has been introduced in the previous section, one would like
to “quantify” the arithmetic complexity of the arithmetic cycle [(P1, ..., PM)]arith

mult in
the projective (n + 1)-dimensional scheme Proj (Z[X0, ..., Xn]).

In order to do that, we introduce a linear projective subspace of codimension n+1−k,
defined by the equations

〈Uj , Z〉 =
n∑

l=0

uj,lzj = 0 , j = 0, ..., n− k ,

where the coefficients uj,l, j = 0, ..., n + 1 − k, l = 0, ..., n, are generic in Z. The
generator au (in N∗) of the ideal of all a ∈ Z such that one has

a.(X0, ..., Xn)q ⊂
M⊕

j=1

Z[X0, ..., Xn] Pj +
n+1−k⊕

j=0

Z[X0, ..., Xn] 〈Uj , Z〉

for some q ∈ N∗ defines a zero arithmetic cycle [au] ; if

au =
∏

p prime

pvau (p) ,

the logarithmic height of the zero cycle

[au] :=
∑

p prime

vau(p).{p} (4.5)

is defined as

h([au]) :=
∑

p

vau(p) log p . (4.6)

Unfortunately, this height h([au]) is not independent of U1, ..., Un−k+1, even if the
coefficients ujl are generic, so that h([au]) cannot be used as an intrinsic measure
of the arithmetic height of the arithmetic cycle [(P1, ..., PM)]arith

mult (which makes the
difference with the definition of the degree of the geometric cycle [(P1, ..., PM)]mult).

In order to correct such a definition, we need to recall Jensen’s formula in one
complex variable, which asserts that, if

P (X) = a0

d∏
j=1

(X − aj) ,
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where all aj are such that |aj| > 1, then

log |a0|+
d∑

j=1

log |αj| − 1

2

( 1

2iπ

∫ 1

0

log |P (eiθ)|2 dθ
)

= 0 (4.7)

(one can check easily the formula when d = 1, as a consequence of Poisson formula,
and then just add) ; such a formula can be interpreted as follows : the “arithmetic”
contribution to the loarithmic height

log |a0|+
d∑

j=1

log |αj|

needs to be “balanced” by the “analytic” contribution

−1

2

( 1

2iπ

∫ 1

0

log |P (eiθ)|2 dθ
)

,

which involves (introducing homogeneous coordinates)

−1

2
log

|hP (z0, z1)|2
‖Z‖2d

=
1

2
G[V (P )]mult

,

where G[V (P )]mult
is a solution of the so-called Green equation :

ddcG[V (P )]mult
+ [V (P )]mult = deg P × ω .

The “balance” between the arithmetic and the analytic contributions which ex-
presses Jensen’s formula (4.7) can also be viewed as an avatar of the well known
product formula : when a/b is a rational number, one has

∏
p prime

|a/b|p =
1

|a/b|∞

if |a/b|p denotes the p-adic non archimediaa absolute value of a/b and |a/b|∞ the
archimedian one ; this “balance” phenomenm between arithmetic and algebra (which
involves if one pretends for example to define an intrinsic notion of arithmetic log-
arithmic height in accordance with the geometric notion of degree) a necessary
complementarity between arithmetic objects (arithmetic cycles) and analytic ones
(Green currents attached to the correspondibg geometric cycles).

The following definition was proposed in [Falt] and [GS] :

Definition 4.2 Let Z be an arithmetic cycle (with pure dimension n + 1 − k in
Proj (Z[X0, ..., Xn])) and ZC the corresponding purely (n − k) dimensional complex
geometric cycle in Pn(C). A normalized Green current attached to Z is a (k−1, k−
1)-current on Pn(C) with singular support the support |ZC| of the geometric cycle
ZC, with integrable singularities of logarithmic type, such that

ddcG + [ZC] = deg ZC × ωk .
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Examples. Formulaes (4.2) and (4.4) provide Green currents when the geometric cycle ZC is de-
fined as the cycle attached to a quasi-regular sequence of homogeneous polynomials in Z[X0, ..., Xn].

The fundamental idea which supports recent developments of arithmetic intersec-
tion theory (following [GS] and [BGS]) is based on the pairing (Z, GZ) between an
arithmetic cycle Z and such a normalized Green current attached to ZC. Formally,
intersecting cycles amounts to formally define the product of two such pairs

(Z1, GZ1) • (Z2, GZ2)

when Z1 and Z2 are two arithmetic cycles whose supports intersect properly (that is
the codimension of |Z1| ∩ |Z2| equals the sum of the codimensions of |Z1| and |Z2|).
Formally, one defines the intersection product as

(Z1, GZ1) • (Z2, GZ2) =
(
Z1 • Z2 , [Z2,C] ∧GZ1 + deg Z1,C ωcodim Z1,C ∧GZ2

)
.

One can check that

ddc
[
[Z2,C] ∧GZ1 + deg Z1,C ωcodim Z2,C

]
= [Z2,C] ∧

(
deg Z1,C ωcodim Z1,C − [Z1,C]

)

+ deg Z1,C ωcodim Z1,C ∧
(

deg Z2,C ωcodim Z2,C − [Z2,C]
)

,

which fits with the fact that

deg(Z1,C • Z2,C) = deg Z1,C × deg Z2,C

by Bézout theorem (the intersection of the geometric cycles being a proper one) and
the codimension of the support of this intersection geometric cycle is precisely the
sum of the codimensions of Z1,C and Z2,C (for the same reason).

The main technical difficulty here is to define the product of currents [Z2,C] ∧ GZ1 ,
which can de done thanks to the fact that the supports of ZC,1 and ZC,2 intersect
properly and the singularities of GZ1 are of logarithmic type (of course, one needs
to use here Hironaka’s theorem about resolution of singularities in the characteristic
zero setting [Hir]) ; there are also alternate arguments based on the concept of
holomicity and precise description of the wave front sets of the two currents [Z2,C]
and GZ1 which allow the multiplication of such currents thanks to the idea of analytic
continuation, in the spirit of Atiyah [Ati], Gelfand [GelfS] and J. Bernstein [Bern],
see for example [Bj3].

Following Jensen’s formula and the “balance” it imposes between the arithmetic
and the analytic contributions, the natural definition of the logarithmic height of a
arithmetic cycle Z of codimension k is, when U0, ..., Un+1−k are generic in Zn+1,

h(Z) = h([au]) +
1

2

∫

Pn(C)

GZ,u ; (4.8)

here the arithmetic 0-cycle [au] and its logarithmic height h([au]) have been defined
in (4.5, 4.6) and GZ,u is a (n, n)-Green current for such a 0-cycle [au] which is
obtained as

[Πu] ∧GZ + deg ZC ωk ∧ L(k)
u ,
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where Πu is the (k − 1)-dimensional projective plane

Πu := {Z ∈ Pn(C) ; 〈U0, Z〉 = · · · = 〈Un−k, Z〉 = 0} ,

Lu is a (n− k, n− k)-current solution of

ddcLu + [Πu] = ωn+1−k ,

and GZ a Green current solution of

ddcGZ + [ZC] = deg ZC × ωk .

The construction of L
(k)
u follows from example from (4.4) (since the 〈Uj, Z〉, j =

0, ..., n− k define a regular sequence for generic Uj) ; the computation of

∫

Pn(C)

ωk ∧ L(k)
u =

n∑

p=k

p∑
j=1

1

j

can be found for example in [Stol]. So we get, from (4.8),

h(Z) = h([au]) +
1

2

∫

Πu

GZ +
deg ZC

2

n∑

p=k

p∑
j=1

1

j

as the natural definition of the logarithmic height ; this definition is independent of
U0, ..., Un−k provided the coefficients uj,l, j = 0, ..., n− k, l = 0, ..., n, are generic.

We just mention here the basis result about arithmetic intersection theory, namely
the arithmetic Bézout theorem, which can be stated as follows :

Theorem 4.1 [BGS] Let Z1 and Z2 two arithmetic cycles which intersect properly
in Proj Z[X0, ..., Xn]. Then

h(Z1 • Z2) ≤ deg Z1,C × h(Z2) + deg Z2,C × h(Z1)

+κ(codim Z1, codim Z2)× (deg Z1,C deg Z2,C) .

Sharp height estimates for the arithmetic nullstellentatz have been obtained in
[BY1], [BY2] and finally [KPR] (where the optimal bounds are found). The re-
sults which are obtained show that the arithmetic Nullstellesatz is governed by
arithmetic Bézout theorem, which means that, even from the arithmetic point of
view, Hilbert’s Nullstellensatz remains a geometric problem ; basically, if P1, ..., PM

are M polynomials in n variables with coefficients in Z and without common zeroes
in Cn, then one can write a Bézout identity

a =
M∑

j=1

Aj(X)Pj(X) ,

where A1, ..., AM are in Z[X1, ..., Xn], a ∈ Z∗ and

max(log |a|, log |coeff. (Aj)|) ≤ κ(n)hDn+1 ,

where D = max(deg Pj) and h = max(log |coeff. (Pj)|).
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Multivariate residue calculus, which plays a role in the “splitting” of Lelong-Poincaré
formula, provides a tool (based on the use of Trace formula, Transformation Law,
and Briançon-Skoda’s theorem, presented in this course) in order to make such
Bézout formulaes explicit and help to a better understanding of arithmetic division
theory besides arithmetic intersection theory.

Unfortunately, we have to stop at this point this introductive course. It is clear
that, like in multivariate residue theory, algebraic (or arithmetic) and analytic tools
have to complement each other in the arithmetic intersection theory developed from
Arakelov’s original ideas (see [L]) for which we tried to sketch a brief presentation
here.


