Corrigé du devoir maison N 2

1. (a) Soient X, \mathcal{A}, μ un espace mesuré et $f \in \mathcal{L}^1(\mu)$, $f \geq 0$ p.p. μ . Montrer que $\forall \epsilon > 0 \ \exists \delta > 0$ tel que $A \in \mathcal{A}, \ \mu(A) < \delta \ \Rightarrow \ \int_A f d\mu < \ \epsilon$.

(Indication: en raisonnant par l'absurde, trouver $A_k \in \mathcal{A}$ satisfaisant $\mu(A_k) < \frac{1}{k^2}$ et $\inf_k \int_{A_k} f d\mu > 0$, puis regarder $B_n = \bigcup_{k \ge n} A_k$).

Solution: En supposant le contraire, on trouve un $\epsilon > 0$ tel que $\forall \delta > 0 \; \exists A \in \mathcal{A}$ satisfaisant $\mu(A) < \delta$ et $\int_A f d\mu \geq \epsilon$. Prenons, $\delta = 1/k^2$, k = 1, 2, ... et les ensembles $A = A_k \in \mathcal{A}$ correspondants. En posant $B_n = \bigcup_{k \geq n} A_k$, on obtient $\mu(B_n) \leq \sum_{k \geq n} \mu(A_k) \leq \sum_{k \geq n} \frac{1}{k^2} \leq \frac{c}{n}$, où c > 0 est une constante. Cela entraîne $\mu(\bigcap_{n>1} B_n) = 0$. De plus, pour tout $n, B_n \supset B_{n+1}$ et donc

$$\lim_n \int_{B_n} f d\mu = \int_{\bigcap_n B_n} f d\mu = 0.$$

D'autre part, $\int_{B_n} f d\mu \geq \int_{A_n} f d\mu \geq \epsilon > 0$. Contradiction.

(b) En déduire, pour $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}_1, m)$ (mesure de Lebesgue) et $f \in \mathcal{L}^1(m)$, $f \geq 0$ p.p. m, que la fonction $F(x) = \int_{]-\infty,x]} fdm$, $x \in \mathbb{R}$, est bien définie et uniformément continue sur \mathbb{R} . Solution: Il est clair que F est bien définie et qu'en utilisant (a) on obtient $\forall \epsilon > 0 \ \exists \delta > 0$ tel que $A \in \mathcal{B}_1$, $\mu(A) < \delta \Rightarrow \int_A fd\mu < \epsilon$. On prend A =]x,y] où $0 < y - x < \delta$ et obtient que $\forall \epsilon > 0$ $\exists \delta > 0$ tel que $|x - y| < \delta \Rightarrow |F(y) - F(x)| = \int_{]x,y]} fdm < \epsilon$.

(c) Soit $f \in \mathcal{L}^1(\mathbb{R}, \mathcal{B}_1, m)$ (mesure de Lebesgue). Montrer que $\lim_{x \to \infty} \int_{]x/2,x]} f dm = 0$. En déduire que si, en addition, f est réelle positive et, pour $x \geq 0$, monotone décroissante, alors $\lim_{x \to \infty} x f(x) = 0$.

Solution: Si $f_k = \chi_{[k,\infty[}f \ (k=1,2,...), \text{ alors } f_k \downarrow 0 \text{ et } f_1 \in \mathcal{L}^1(\mathbb{R}), \text{ donc par le théorème de B.-Lévi on a } \lim_{k \longrightarrow \infty} \int_{]k,\infty[} f dm = 0 \text{ et } \lim_{k \longrightarrow \infty} \int_{]x,\infty[} f dm = 0.$ Puisque $0 \le \int_{]x/2,x]} f dm \le \int_{]x/2,\infty[} f dm,$ on obtient $\lim_{k \longrightarrow \infty} \int_{]x/2,x]} f dm = 0.$

Si, en addition, f est positive décroissant, on aura $0 \le \frac{x}{2} f(x) \le \int_{]x/2,x]} f dm$, ce qui montre le résultat.

2. Soit $f_{\alpha}(x,y) = \frac{1}{(x^2+y^2)^{\alpha}}$. Montrer que f_{α} est une fonction boreliénne sur \mathbb{R}^2 et trouver tous les $\alpha \in \mathbb{R}$ tel que $\int_B f_{\alpha} dm_2 < \infty$ où B = B(0,1) la boule unitée de \mathbb{R}^2 . (Remarque: on ne sait encore ni théorème de Fubini, ni changément de variables...).

Solution: f_{α} est est définie et continue sur $\mathbb{R}^2 \setminus \{0\}$, donc borélienne.

Pour $\alpha \leq 0$, f_{α} se prolonge en une fonction continue sur \overline{B} , donc intégrable sur B.

Soit $\alpha > 0$. Pour tout n = 0, 1, ..., on pose

Alors, pour $n \neq k$ on a $B_n \cap B_k = \emptyset$, et $B = \bigcup_{n \geq 0} B_n$. De plus,

$$max(|x|, |y|) \le (x^2 + y^2)^{1/2} \le \sqrt{2}max(|x|, |y|),$$

d'où $\frac{1}{2^{\alpha}} \cdot \int_{B_n} 2^{\alpha n} dm_2 \leq \int_{B_n} f_{\alpha} dm_2 \leq \int_{B_n} 2^{\alpha(n+1)} dm_2$. D'autre part, pour $n \geq 1$, on a $m_2(B_n) = (2^{-n+1})^2 - (2^{-n})^2 = 3 \cdot 2^{-2n}$, et donc

$$\sum_{n\geq 1} \frac{1}{2^{\alpha}} \cdot 2^{\alpha n} \cdot 3 \cdot 2^{-2n} \leq \sum_{n\geq 0} \int_{B_n} f_{\alpha} dm_2 = \int_{B} f_{\alpha} dm_2 \leq \sum_{n\geq 0} 2^{\alpha(n+1)} \cdot 3 \cdot 2^{-2n}.$$

Par conséquent, $\int_B f_{\alpha} dm_2 < \infty$ si et seulement si $\sum_{n\geq 1} 2^{(\alpha-2)n} < \infty$, donc si et seulement si $\alpha < 2$.

- **3.** Soient $f \in \mathcal{L}^1(\mathbb{R}, m)$ telle que $\int_{\mathbb{R}} |xf(x)| dm(x) < \infty$, et $F(x) = \int_{\mathbb{R}} e^{-ixy} f(y) dm(y)$ ($e^{-ixy} = Cos(xy) iSin(xy)$).
- (a) Montrer que F est bien définie et continue sur \mathbb{R} . Solution: Puisque $x \longmapsto e^{-ixy} f(y)$ est continue sur \mathbb{R} et $|e^{-ixy} f(y)| \leq |f(y)|$, le théorème de continuité est applicable, et donc F est continue sur \mathbb{R} .
- (b) Montrer que F est dérivable sur \mathbb{R} , et exprimer sa dérivée sous forme d'intégrale. Solution: Il est clair que $x \longmapsto e^{-ixy} f(y)$ est dérivable et $\frac{\partial}{\partial x} e^{-ixy} f(y) = -iye^{-ixy} f(y)$. De plus, $\left|\frac{\partial}{\partial x} e^{-ixy} f(y)\right| = |yf(y)|$ et cette dernière fonction est intégrable. En appliquant le théorème de dérivation, on obtient que f est dérivable et on a $F'(x) = -i \int_{\mathbb{R}} e^{-ixy} y f(y) dm(y)$.
- (c) Montrer que la fonction $f_0(x) = e^{-x^2/2}$ satisfait les hypothèses du problème. A l'aide d'une intégration par parties, déterminer une équation différentielle du premier ordre satisfaite par $F = F(f_0)$.

Solution: f_0 et $x \longmapsto x f_0(x)$ sont intégrables sur \mathbb{R} parce que, par exemple, pour tout x > 1 on a $xe^{-x^2/2} \leq c \cdot e^{-x}$, et $\int_{(x>1)} e^{-x} dx < \infty$.

D'après (b), on obtient donc $F'(x) = -i \int_{\mathbb{R}} e^{-ixy} y f_0(y) dy = \lim_{A \longrightarrow \infty} [ie^{-ixy} f_0(y)]_{y=-A}^{y=A} - x \int_{\mathbb{R}} e^{-ixy} f(y) dy - xF(x)$.

(d) En déduire la fonction $F = F(f_0)$, sachant que $\int_{\mathbb{R}} f_0 dm = \sqrt{2\pi}$. Solution: Puisque $F(0) \neq 0$, on a F'(x)/F(x) = -x et donc, $F(x) = c \cdot e^{-x^2/2}$ pour tout $x \in \mathbb{R}$. Mais par définition de F, $c = F(0) = \int_{\mathbb{R}} f_0 dm = \sqrt{2\pi}$, d'où $F(x) = \sqrt{2\pi}e^{-x^2/2}$.