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INTRODUCTION

In several problems in Harmonic Analysis, ‘and in Number Theory as
well, lemmas on small values of holomorphic functions play an important
role.

Let us give first an example from Harmonic Analysis. Let 4,,..., i, be m
distributions with compact support in R” whose Fourier transforms satisfy,
in C”, a lower estimate of the form

4

- Klm
}:lﬂj(C)l?“Hm”k‘—’ : (0.1)

One can then solve Bezout’s equation

Hy¥yysoe +/“m*vm:5 (02)

with v, ..., v,, also distributions with compact support [31, 33].

In many examples (0.1) cannot be verified, even if one knows that the
functions f, have no common zeroes in C”, without recourse to deep results
in number theory (see, e.g., [121). On the other hand, using again exam-
ples of a number theoretical nature one can find simple examples showing
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2 BERENSTEIN AND YGER

that the fact the fi, have no common zeroes does not imply (0.1), for
instance, let us consider on the real line the two measures

=3, +0_4, Ur=06,+6_,,

where A is an irrational. One sees that (0.1) is satisfied if and only if 4 is not
a Liouville number [20].

In the same vein, in the techniques used to estimate degrees of transcen-
dency, it seems that knowledge about zeroes must be replaced by
knowledge about the small values of the auxiliary functions involved
[39, 40, 49].

The lemmas on small values that we consider here relate to a very par-
ticular class of entire holomorphic functions in C", a class which appears in
Harmonic Analysis as Fourier transforms of distributions with finite sup-
port in R” (ie., difference-differential operators), and also has a role in
Number Theory, namely, being the exponential-polynomials with real fre-
quencies. The class of exponential-polynomials with complex frequencies
can also be studied using the methods we present here.

The main question we consider is the following: given F,.., F, m
exponential-polynomials with real frequencies and such that the set of com-
mon zeroes in C” is either discrete or empty, is it possible to estimate the
size of the connected components of the set where the inequality (0.1) is
not satisfied? This would correspond to a refined type of transcendency of
the exponential functions with respect to the algebraic functions.

In the case of two variables we have shown elsewhere [11] that for two
exponential-polynomials with rational frequencies the answer to the above
question is positive. We will see here that this is still the case when we deal
with m exponential-polynomials in two variables. We will also show that
this is not always true, even for rational frequencies, when the number of
variables » is bigger than two. Nevertheless we give here a general method
to attack this kind of problem (Theorem 3.1), which together with techni-
ques from the solution of Schanuel’s conjecture for formal power series [3 ]
and a method of “geometric duality,” which we develop in Section 8, allows
us, for instance, to study exhaustively the case n=3.

The same kind of tools allow us to study certain problems in Harmonic
Analysis which had not been tractable by known methods. In order to give
an idea of the type of questions we have in mind, let us describe an exam-
ple introduced by Delsarte [18]. Consider two distributions of finite
support in R? of the form

ui=adg0,+b 00t cidu1tdde+ v 03)
Py =300y + D20 10, 20011, +d2001)F Vs
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where the supports of v, and v, lie in the open square (0, 1) x (0, 1) and the
coefficients of the Dirac measures satisfy the condition

a b,

a,h,

bc,
byc,

o d,
¢d,

d,a,
d>a

#0.

We show here that every solution f of the system of convolution equations
xf = poxf =0

can be represented in terms of eclementary solutions of the form
P(x, p)e"*# where P is a polynomial in C[x, y] and (e, f}eC? In the
original example of Delsarte, whose complete proof was only given later
[9, 417, the only case considered was when both v, and v, where measures.

Let us finish this introduction with an example that seems to us hard to
obtain by methods different from those which we will use here, and which,
it seems to us, might have further applications.

Let F,,F, be two exponential-polynomials of three variables, with
rational frequencies and no common zeroes, then the pair (F,, F,) satisfies
an estimate of the form (0.1) (Proposition 8.7).

1

We will be concerned with non-zero functions in the space 4,=A4,(C"),
where p is the weight

POy =Y 1Tm ;| +log(1 + [ 1) (1.1)
and 4, is the space of holomorphic functions F in C” such that
|FOI<Cer, et

for some constant C= C(F)>0. This space, with its natural topology of
inductive limit, coincides with the space &'(R") of Fourier transforms of
distributions of compact support in R" [7, 20]. One could also consider
other weights, for instance, the weight p({)={| corresponding to the
space of analytic functionals.

Given a finitely generated ideal 7 in 4,, we say that . is strongly

-2l
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slowly decreasing (s.s.d.) if it has a system of generators (F,,..., F,,) satisfy-
ing the following condition:

Ve>0,vC>0,36>0,3D >0 such that if {, {’ are two points in
the same connected component of the open set

S(Fyvons Fpy3 8, D) 1= {{ € C™: ¥ | F(L)] < de~ 20}
we have |[{—{'|| <ee™ P, (1.2)

We note that under this hypothesis the variety V of common zeroes of the
ideal  is automatically discrete.

The condition (1.2) above is stronger than the condition “jointly slowly
decreasing” introduced in [9, Definition 4.1], on the other hand no restric-
tion is imposed to the number of generators of the ideal. It is also clear that
(1.2) is a property of the ideal  and not only of the system of generators
chosen.

Let us recall some properties attached to s.s.d. ideals. The first one
relates to the Spectral Synthesis problem. Given a system of m convolution
equations

uef= =p,xf=0  (feCT(RY), (1.3)

where ui,..., y,, € &'(R"), the spectrum of the system (1.3) is the analytic
variety V in C"

Vi={{eC":F|({)= - =F,()=0}, (1.4)

where F,({) = i,(¢) := (1), ¢ ¥y = j ¢4 dy (1). We say the system (1.3)
is non-redundant if V is discrete (or empty). The spectral synthesis holds if
all the solutions of (1.3) are the limits, in C*(R"), of linear combinations of
solutions of the form

P(t)e* ', ieVand PeC[t,,.,1,] (1.5)

The spectral synthesis always holds when n=1 [45], on the other hand it
is in general false for certain systems of equations when n>2 [27] A
theorem due to Gurevich [28] and Kelleher and Taylor [34] implies that
if the ideal & generated by (F,,.., F,,) is s.s.d., then the spectral synthesis
holds (in fact, it is enough to know that the components of the set
SF,,..., F,,; 8, D) are relatively compact for some choice of 4, D).

In the particular case m=n, one can go further than the spectral syn-
thesis [9] and show that every s.s.d. ideal is also closed in A, and,
moreover, that every solution of the system (1.3) can be represented by a
series of solutions of the form (1.5). This resuit has been extended to the
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case in which y,,..., ,, and f are vector-valued by Struppa {47]. In the case
m=n and 7 ss.d. with spectrum V empty, one has also a kind of
Nullstellensatz, that is, a decomposition of the function 1:

F.G

JMie
1

3G, 1=

i

Nk

Ged,,

P

(1.6)

hence the condition (1.2) implies in this case the Hérmander Con-
dition [31]

k>0  ZIF({)=xe S, Vel (1.7)

The proof of (1.6) is just the fact that 1 €7 (by the spectral synthesis) and
J is closed. It is well known that even when m#n the existence of
(G, G,y) satisfying (1.6) is equivalent to (1.7) [31, 33]. Since we will be
using this reasoning later, let us give here a direct proof that if m =#» and
V=@ we have (1.2)=(1.7). Namely, introduce the continuous
plurisubharmonic function in C™:

u(§)1=10g(i IF,»(C)IZ>, (1.8)

i=1

which is a solution of the Monge-Ampere equation
(dd'u)"=0

(it 1s essential here that m=n). Hence one can apply to each connected
component of S(F..., F,;90, D) the minimum principle [4, Theorem A]
and the fact that the weight p can be considered to be constant in such a
component. It follows that the estimate (1.7) that holds on the boundary of
the components holds in the interior and hence everywhere. (Note that this
reasoning works if we only know that F ..., F, are jointly slowly decreasing
in the sense of [9].) The advantage of the proof we have just given is that
it also works if we replace C” by a complex manifold of dimension #, this is
simply a consequence of the fact that conditions satisfied by the function u
defined by (1.8) are invariant under holomorphic changes of coordinates.

Explicit solutions G, to (1.6) and even to (0.2) have been discussed
elsewhere (e.g., [12]) and have interesting applications to engineering and
optics problems. Similarly, the spectral synthesis for s.s.d. systems has
applications to control theory, mathematical biology, etc., and we plan to
return to these applications in the near future.

We would like also to show that the condition (1.2) for an n-tuplet of
elements in 4, implies an estimate of the number of points of ¥. The coun-
terexample of Cornalba and Shiffman [17] shows that in dimensions
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bigger than or equal to two, the order of growth of an equidimensional
holomorphic mapping F from C” to C” does not allow us to estimate the
number of points in a ball of radius R of the variety {F,=---F,=0}. We
have, nevertheless, thanks to the fact that the Bezout estimates hold “on
the average” [25,46], that in the case we consider we can obtain true
estimates.

ProOPOSITION 1.1.  Let (F,,.., F,) be an n-tuplet of elements in A,(C")
s.5.d. with respect to the weight p defined by (1.1) (or with respect to the
weight p({)=||{ ). Denote by N(R) the number of points (counted with mul-
tiplicities) of the variety V= {F,= --- =F,} =0 which belong to the ball of
center 0 and radius R. There exist two constants C,, C, such that

VReR*, N(R)SC,R"+C,. (1.9)

Remark 1.1. When F,,.., F, are exponential-polynomials such an
estimate always holds due to the work of Khovanskii on Liouville
functions [35-37, 14].

Proof of Proposition 1.1. Let us fix R>0 and denote by V' the set of
points of V in the open ball é(O, R). Given {,€e V,, since (F,,.., F,) are
ss.d. we can construct a compact set I({,) of smooth boundary,
(o€ I'({y) € B(Ly, 1), and such that on the boundary of I'({,) we have

T IF Q280 w0 (1.10)

Jj=1

for some positive constants ¢,, C, depending only on (F,,.., F,).

One can write V' as a disjoint union of sets I'({,),..., I({,,,). This follows
from the fact that given { e V and {ye VR \I'({,) we have for some con-
stants ¢,, C,

d(Lh, BI(Ly)) = epe~ C2C0)

(this is just a consequence of the mean-value theorem). We can equally
assume (see [9, Lemma 1.5]) that each I'({) will be a small deformation of
a set of the form

|Fil<gie PO, |F,|<gem v
and hence that
meas(81({;)) < Ae®), i=1,.., mg,

for some constants 4, B independent of R.
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An application of Kronecker’s formula [24, p. 369] shows that there are
positive constants & ¢ such that for every 6e2n(R/Z)", the analytic
functions G\, j=1,..., n, defined by

€
(1+R)*

GO =F() - e’ (L11)

have, in every I'({;), the same number of common zeroes as the functions
F;. The constants ¢, ¢ depend only on ¢,, C,, 4, B and on the fact that on
each 0I({;) we have, for some convenient K, K,

pO<K + KR

Let N(R, 0) be the number of common zeroes of the functions G{',..., G!?
in B(0, R+ 1). By a result of Gruman [25, Theorem 2.9] or using the work
of Stoll, one has for any y > 1:

f:” . f; N(R, 8)d6, - db,

<

1 n
\<(v2—1)(R+1)>

x [[ (log*(M{R+1))+log™ ¢+ clog(R+1)), (1.12)
j=1
where M(r)=max {| F({)|:{eB(0,r)}.
The left-hand-side term in (1.12) is bigger than or equal to

vol B(0, y"(R + 1))

(ny" 3! card(FE) V)

=1

which is itself an upper bound for (27)* N(R). The inequality (1.12) leads
immediately to (1.9) since there are constants A, B, such that

log™ M(r)<A,+ Br, vii |

2
While our aim is to study the condition s.s.d., we will see in the next sec-
tion that its verification is tied to the discreteness of certain varieties. We

give here some useful criteria to check such discreteness.

PROPOSITION 2.1. Let W be an analytic variety in C" (n> 1), suppose W
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is of pure dimension d, d>=1. Assume further that there is a non-zero
polynomial Pe C[X|,.., X,,] and two positive constants C, K such that

n

(e W:IP(C)ICXP<Z IImC,-|><C(1+IiC|)K. (2.1)

i=1
Then the variety W is included in the algebraic hypersurface {P=0}.

Proof. We are going to show that we can choose constants ¢ >0, M >0
such that

fsM(C) = (P(C))z <SinV£C1 ‘e x singgé*n>/w
& R

tends to zero when ||{| — oo along W.
Let us fix a constant L, L > K. Denote %, the open set in C” defined by

U= {(eC PO <+ “). (2.2)
By (2.1), there is a constant Co= Cy(L) >0 such that
CeW, (¢, =Y |Tm{;| < Co(l +1log(1+[{])). (2.3)

Let ¢>0, and M a positive integer so that

M>2deg(P)+1, eM<1,eMCy<1, (2.4)

where deg (P) is the total degree of the polynomial P. We are going to
estimate f, ,,({) when {e W and ||| is large.
(*) Let us assume first that (e Wn %, , then

o O1<C PO PO exp (sMZ IIm c_,-|)

for some constant C, = C,(g, M). This follows from the inequalities

sin z

<e™:  and |sinz| <™ VzeC. (2.5)

Since sM <1 (by (2.4)) we have
Le Wl = fuulDI<C [P PC) e,
or, using (2.2) and (2.1),

LeWndly=| fu(OI SCC(1+CDF 5 (2.6)
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(*) Let us suppose now that { € W\%,. We can suppose that { #0 and,
say, || = (1/\/;1)HCH at that point. Let us write

. 1
f(;,M(C):gt;,AI(C)'E_A}' (27)

> 1
1t follows from (2.5) and (2.3) that for some C,=C,(e, M, P}>0

| 8oar(O) S Cy(1 + || ]|y deet P+ Coe Mt
SO+ enns o8,

(use (2.4) to obtain the last inequality). From (2.7) and (2.8) we obtain
fn( OIS 2m)M Col 1+ [ ff)dee st M, (2.9)
By our choice of M, it follows that

Jeall) >0 as (e W |[{] - o,

By the maximum principle for varieties [26, Theorem III B-16] it follows
that f, ,,=0 on W (it is here we use that W is of pure dimension d, d=1).

Suppose that W has an irreducible component W’ not included in the
hypersurface {P=0}. Once ¢, M are chosen arbitrarily but satisfying (2.4)
we have j=j(¢)e {1....n} and k =k(e)e Z* such that

W/g{g,:"'—”} (2.10)
&

because f,,,=0 but P # 0 on W' One can fix M, and pick a sequence

{€n}, such that for all meN, ¢,, and M satisfy (2.4), and furthermore for

every pair of distinct indices m, m’ the quotient ¢, /¢, is irrational. Since

the sequence j(¢,,) has a stationary subsequence one sees that (2.10) is

impossible for all £=¢,,. me N. This leads to a contradiction. We conclude

that every branch of W, and hence W itself, is included in {P=0]}. |
Let us point out a strengthening of Proposition 2.1.

PrOPOSITION 2.2. Let W be an analytic variety in C", n>1, of pure
dimension d, d>1. Assume that there is a non-zero polynomial
PeC[{y, ], an integer ke {1,..,n— 1}, and two positive constants C, K
such that

)
CeW:’Pmexp(Z |Im;,-|)‘<cu+u§w (211

j=1
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and

n

k K
leW= Y |C_,~|<C<1+Z lC‘,-]) i (2.12)
j=k+1 j=1
Then the variety W is contained in the hypersurface {P=0}.

Proof. It is very similar to the previous one. We can clearly assume
K=1. Let L> K and #, be the open set defined by (2.2). From (2.11) we
know there is a constant C,= C,(L) such that

k
CeW U =Y [Tm (| < Cylog (1+ ). (2.13)
=1
We choose ¢, M similarly as done before so that

M>(2deg(P)+ 1)K, eM<1,eMC,<1. (2.14)

Consider the auxiliary entire function 4, ,,

k /sin el
hl AI H ( >
;=1

As in the previous proposition 4, ,, satisfies the estimate (2.6) in Wn#,.
The assumption (2.12) implies the existence of constants R,>0, C,>0
(independent of ¢, M) such that

k
(eW. NIz Ry= LI <C YN (2.15)
1
For those points for which |{,|=max {|{,|, j=1.... k} we then obtain
1< Cok 18,1" (2.16)

and writing down

1

e ai() :C vR3 gemll)

we obtain, for those points in W\#%, where |{,| dominates that for some
Cy=Cs(e, M)>0,

| () S CLH LRSI Y (by (2.13)
<C4(] + “CH)Zdeg(P)+l - M/K (by (216))

This last inequality holds in W\%, no matter which |{;| dominates
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(j=1,., k). Since 2deg(P)+1—M/K<0O by (2.14), we obtain that
ho({)—>0 as [|[{l > oc in W. The rest of the proof is the same as in
Proposition 2.1. |1

COROLLARY 2.3. Let W be an analytic variety in C", n> 1. Suppose that
there are two positive constants C, K such that

{eW=Y |Im{|<Clog(1+|)) (2.18)
1

-
then W is a discrete variety.

Proof. 1f W is not discrete there is an irreductible branch W of dimen-
sion d, d = 1, W’ being irreducible is pure dimensional. Proposition 2.1 with
P =1 contradicts the existence of W’. ||

Remark 2.1, If W were assumed to be algebraic then this corollary is a
consequence of the Seidenberg-Tarski Theorem [22]. Note that there is a
modification of this corollary corresponding to Proposition 2.2.

We use Proposition 2.1 in the verification that certain analytic varieties
in C” are discrete once we possess enough geometric information about
them. We give here a very simple example of application of that
proposition.

We consider the analytic variety ¥ in C” defined by the equations

=Py e =P (), (2.19)

where P,,.., P, are elements in C[{,,... {,]. We show that V is discrete.
In fact, if k;,>deg(P,), for some C,>0 we have, just using the first
equation,

{eV=[e™ <O+ ][I
which only tells that —Im {, is bounded above. But we also have
|PiC) e =1

which allows us to bound Im {, above. Using all the equations we see that
the hypotheses of Proposition 2.1 are satisfied. It follows that if V' had
an irreducible branch W of dimension > 1 we would have
W< {P P, P,=0}, hence W< {P,=0} for some j, which is clearly
impossible.

We take the opportunity to introduce a different method to show the dis-
creteness of the ¥ we have just considered. This method does not depend
on the geometry of V but on arithmetical conditions satisfied by the
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equations of V. It consists in using the work of Ax [3] on the Schanuel
conjecture for formal power series. (It is interesting also to compare with
the work of Chabauty [15], Kolchin [37], and Coleman [16].)

ProrosiTioN 2.4. [3, Corollary 2, p. 253]. Let k be an integer bigger
than or equal to one and let y,,.., v, be n functions of the complex vari-
ables (t,,.., t;), holomorphic in {||t||<r}, r>0. Let P be an ideal in
CL¢ynn €y Xy X, ] such that

VPe?, Py vy, et e =0 in{lt) <r}. (2.20)

If & denotes the algebraic variety in C*" of common zeroes of the elements
in P and if dim & < n, then there exist rationals r ..., r,, not all zero, and a
complex number u such that

Py 4+ o+, y(t) =2, el <r (2.21)
In the example (2.19) the variety & is given by
X, =Pi().... X, = P,({)

and it is exactly of dimension » in C*". If the variety ¥ has an irreducible
branch W of dimension k, k> 1, one can parametrize that branch in a
neighborhood of a regular point and apply Proposition 2.4, hence one con-
cludes that the branch W is included in a hyperplane of the form

r1C1+ +rnCn:a'

One can assume that r, = —1 and study in C” ! the variety defined by
€= QLo Lo €= Q(Ca0n (),
where Q({y, ()= Pla—rylo— - —r,{,, {3, {,). By induction one

concludes that the existence of W is impossible.

Note that the major difference in the two approaches lies in the fact that
using Proposition 2.1 one gets a fixed algebraic hypersurface which con-
tains all possible irreducible branches of V of dimension > 1, while using
Proposition 2.4 one gets a hyperplane, but this hyperplane depends on the
branch we are considering. Let us finish this section with an example
generalizing (2.19) but which Proposition 2.4 seems badly adapted to
handle.

Recall that an exponential-polynomial of n variables (with frequencies in
R"—or sometimes one says iR") is a function of the form

Z P;({) et s,

Ae .t
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where the set of frequencies A is a finite subset of R”, (P,),. , 15 a family of
polynomials in C[{,,..., {,] which we suppose nonzero, and 4-{ denotes
always the bilinear form

"
ii=Y A,
j=1

PROPOSITION 2.5. Let F,..., F, be exponential-polvnomials whose sets of
frequencies are A,,..., A,. respectively, and satisfy

VA, A €A v VA, 2hE A, 2, # 2 for all ], (2.22)

we have

det {4y — Ajoun 4, — 241 #0.

Let Z,={(eC": P({)=0VieA,].

If W is an irreducible branch of dimension strictly positive of the variety
V={F = =F,=0}, there is je {1,...n} such that WS Z_.
COROLLARY 2.6. If all the varieties Z, are discrete, then V' is also dis-
crete.

Remark 2.2. 1f one applies Proposition 2.4 to this situation one is
bothered by the fact that the Z-rank of the abelian group generated by
AU - ud, could be very big, hence even under the conditions of
Corollary 2.6 one obtains a rather bad bound for the dimension of W.

Remark 2.3.  As the proof of Proposition 2.5 will show one can improve
on the statement if one uses geometric properties of each A4, and not only
the relative position of the different /4.

Proof of Proposition2.5. Let Q, be the product of the polynomial coef-
ficients of the exponential-polynomial F,, denote Q=0Q,- - Q,, and let W
be a branch of V' of dimension strictly positive. We are going to show that
Q is identically zero on W. The proof follows immediately out of this by a
simple induction on the cardinality of the A,.

Let {,e W, F, has the form

Fi({)=Y Pi({e”
Le 1
either P,({,)=0 for all ie A, (in which case Q({,)=0 and hence
0(L,)=0 and we are dong) or there are two distinct indices A, = 4,({,).
A1 =AY{y)in 4, such that P, ({,) #0 and P;:({,) # 0, furthermore, one can
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show that they can be chosen in such a way that the following inequalities
hold: ;

P}.l(Co) ’ PA'I(CO) #0,

1 [Pt
27 [P

(2.23)

expli(4, — A1) Col| < 2.

Let us assume (2.23) for the moment and continue with the proof. It
follows from (2.23) that there are two constants C,, K, independent of {,,
such that

o€ W=10Q,({o)] eIl C (141G )5 (2.24)
One can repeat the reasoning for the same point {, with the other F;. On

the other hand, the hypothesis (2.22) implies the existence of two constants
#,>0, 6,>0 (independent of {,) such that

0, 3 1Tm o1 < Y 1(4;—4) - Im o
j=1

=1

<6,
J

|Tm (1, (2.25)

1

I =

where (o= ({1, {o,,)- From (2.24) and (2.25) we obtain two constants C,
K such that

CeWz|Q<<:)|exp(01 S |Im c,.|)<c<1+ncu)“.

i=1

Thanks to Proposition 2.1 we obtain that  is identically zero in W.

Let us prove (2.23), the simplest proof consists in using a trick from [40,
Lemma 2, p.280]. Let a,,.., @, be non-zero complex numbers such that
>.a;=0, then there are two distinct indices j,, j, such that

3<la;l/la,l <2

If this were not true one could rearrange the a; so that their absolute values
were decreasing and conclude that

la, | <3lap |, lak¥1|<%|ak7?_lv"’ la,| <5 layl,
hence

lag+ - +alzla | —(laa| + - +agd)

1
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We propose to give here for an ideal 7 in 4, finitely generated by
exponential-polynomials, a necessary and sufficient condition for 7 to be
s.s.d. That is, we consider m exponential-polynomials F,,..., F,, (with fre-
quencies in R") and try to find under which conditions does the property
(1.2) hold. In what follows the sets of frequencies A,...., 4, will be con-
sidered as a subset of subgroup I” of R", I" of finite type. It is well known

[48] that there are N elements a,,..., ay in R” such that
I'=Z0,® - ®©Zxy. (3.1)

In the case of rational frequencies we will always assume that /"< 7" We
can associate to each function F; a polynomial p;e€ C[{ ., {py Xpes Xy ]
such that, up to an exponential factor, we have

FAO =pACy s §y €705 @™Y5) forall (e C". (3.2)

Since the exponential factors are invertible in 4, we could really consider
polynomials in C[{; . {ps Xyvers Xy /X, 17Xy ]. We will use implicitly
this remark in the future.

Associated to the polynomials p,...., p,, we consider the algebraic variety
Y in C"* " defined by

Y={{{X):p (. X)="=p,({. X)=0}. (3.3)

Thanks to the above remark we can suppose that no irreducible com-
ponent of Y is included in the variety {X, - Xy=0}.

There is a natural action of (C*)" on those algebraic subvarieties of
C"** that have no components included in {X, - X, =0}. It is the trans-
formation which associates to the variety Y the variety

Y = (LX) AL 1 Xy P X ) =0, =1,y m}, (3.4)

where p e (C*)". This transformation is an algebraic isomorphism between
Y and Y.
Denote F{*) the exponential-polynomials defined by

FOAE) =L, pre™ 5, pye™ ) Ve (3.5)

We also denote V¥ the subvariety of C” of common zeroes to the
functions F{*), j=1....m.

60760 1-2
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THEOREM 3.1. Let F,.., F,, be exponential-polynomials as above, the m-
tuplet (F,.., F,) generates a s.s.d. ideal if and only if:

e >0, Cy >0, 0,>0, Dy > 0 such that:
V(oeC" Vpe(C*)N

sup |1_pj|<50€‘Dop(tol:>V(p)m{”g_(:o“(goef(op(:o)} (3'6)

1<j<N

is discrete.

Proof of the sufficiency of the condition (3.6). This proof is extremely
technical and that compels us to give all its details; on the other hand the
reader can get a good idea of its basic principles by comparing with [11,
pp. 1271297, where a particular case is dealt with.

We will denote B(Z, r) the open ball of center Z=({, X)eC"*" and
radius r>0. Recalling that p is the weight defined by (1.1) in C", we
introduce a weight P in C"*" by

P X)=log(1+ LI+ X1+ ) [Tm .

ji=1

We introduce further the exponential map

PALX):=Xe v =1, j=1..N. (3.7)

We are going to prove in fact that the m+ N-tuplet G=
(P1yes Pons @10 @) Of elements in 4,(C"* V) is ss.d.; ie., for every pair
(&, C) of positive constants we can find another pair (g,, C,) of positive
constants such that if ¢ denotes a connected component of the set

S(G;al,cl)={(<, e S | pl X+ 3 1640 )]

j=1 i=1

<£1eC‘P‘;""’}, (3.8)

and if ({,, X;) and ({, X) are two points in %, we have
1L =Coll + 11X — X, || <ge™ Ploo), (3.9)

It will follow immediately that the m-tuplet (F,,..., F,,) is s.s.d. in C* with
respect to the weight p.

Let us prove by induction on the integer k € {0,.., n + N— 1} the follow-
ing result:
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(3.10) Let W be an algebraic subvariety of C"*", dim W=k, WcY,
assume that W is defined by the following algebraic equations:

W={({X)eC"":q,({, X)= - =q({, X)=0}.
Let ¢, C be two positive constants. There are two positive constants

e, =¢( C, W), C,=C\(¢, C, W) such that:
(a) if € is a connected component of the set S(W¢,, C,),

S(W;e,, Cy) = {(z, X): Y g8 01+ 3 19, X) <sleC‘P‘5"“},

= j=1
then € is a bounded subset of C"*";
(b) if ((,, X,), ({5, X,) are points in €, € as in part (a), then

1=l + 11X, = X, | <ee” CPen,

This result (3.10) is trivial when k=0 or when W is empty. It is also
clear that in (3.10) the constants ¢,, C, are not really dependent only on W
but on the choice of generators gq,,..., g, for W.

We will assume that &k > 1 and that (3.10) is true up to dimension k — 1.
The first step is to show that we can reduce the problem to those varieties
W which correspond to a prime ideal 2 in C[{, X], and ¢,,.., g, are the
generators of £.

Consider hence the prime divisors &,,..., # of the ideal & associated to
W [48], for each # we have a corresponding algebraic variety W, and
polynomials ¢, ,.., q,, generating %,

W,={{X)eC""":q, [, X)=0,j=1,.,n..

To every pair (e,, C,) of positive constants we can associate a pair
(¢,, C,) also of positive constants such that

!

Y lgfl Xl <ere N = 35e {1, 1),
. (3.11)
Z lg,,(L, X)| < gy0 = CPEX
ji=1

(it is clear that s depends on the point ({, X)). Suppose (3.11) does not
hold, hence for each se {1,.., ¢} there is an index j(s) € {1,.., n,} such that

€2 capic
[g50(Cs X ;;. pCPLX)



18 BERENSTEIN AND YGER

On the other hand. the polynomial [], ¢, is in the radical of the ideal .2
generated by ¢,.... q,, and hence it satisfies an inequality of the form

<A(’B“ Hz‘q X”

;=1

.H 4ol X)

for some positive integer r, and positive constants A, B. This shows that
one can in fact find &,, C, so that (3.11) holds.

We will suppose hence that (3.10) holds whenever W is a variety of
dimension k' < k (which is the case for the varieties W W, s#s’, which
are also included in Y) and also that (3.10) 1s true when W is one of the
varieties W, s=1,..1

Fix &, C and let ¢}, (', denote positive constants to be fixed later satisfy-
ing the inequalities &, < %¢,(e. C. W, n W), C\> Cy(e, C, W, n W, ) for a
pair of distinct indices s, s in [ 1., 7} Let % be a connected component
of S(W; e, Cy). By the inductive hypothesis either € satisfies (3.9) or there
is a point Z, =({,. X, )€€ such that

Y 14, (ZO+ Y g, (Za)l 2 e P70, (3.12)

i=1 j=1

where ¢, =¢,(e, C, W nW.), Ci=Cle.C, W W) This inequality

S0

remains valid with 1 rep]dced by 4 in a ball B(Z,.ze "“*') for some
o, A >0, which we can choose x <¢, 4 > C. Given a second pair s,, 5| if we
had taken

ey <inf{ie (e, C, W, 0 W), te (o, A, W, 0 W)}
Ci>sup{Ci(e, C, W, n W), Ci(o, A, W, 0 W.‘.i)},

S0

then either € is a subset of B(Z,, xe ~*"“*'} or it would exist a point Z,,
in 4 where one has two inequalities:

sy "v

Y 1qa (Z)] + 5 |4, (Zic)| 2 dee 05 (3.13)

j=1 j=1

with the same ¢, C, as in (3.12), and

ns,

Y 14 AZi) + z g (Zi)| 248,07 OP70), (3.14)

Jj=1 i=1

where & =¢,(a, 4, W, " W,), C,=C,(a, A, W, W,). By iteration we
obtain two constants 4, u such that if &}, | are correctly chosen only two
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kinds of situations can occur for the connected components % of
S(W; ey, C7), where &7, C7 are any pair, 0 <ef <ey, C{>Cy:

(x) either & satisfies (a) and (b) from (3.10) for ¢, C, or
() thereis Ze % such that

Vs.s'€ (Lt} 55" = 3 1q(Z)+ X 1900Z4)

j=1 j=1

> Je HPZe), (3.15)

Remark 3.1. We have just proved a version of Proposition 2.2 from
(117, valid for any number of variables. That is, given a finite family
{Vi,V,,.,} of algebraic subvarieties of ¥ of dimension strictly smaller
than k, V; defined by V,= {R,;=0}, and a pair (¢, C) of positive constants,
there are, by the 1nduct10n hypothe51s two pairs (¢, C,), (n, K) such that if
g, <eg, Cy>C, only two situations can occur for any connected com-
ponent € of S(Y;&}, CY):

(*) either % satisfies the conditions (a) and (b) from (3.10 . or
(*) there is a point Ze % such that

N
Vi YARUZN+ Y lon(Z) > ne KL
i h=1
Let us return to the proof of the theorem and suppose (3.15) holds while
we suppose (3.10) has been proved for all the varieties W, se {1....t}.
Consider two positive numbers &, t such that

VZeB(Z,,00 PN Vs s’ el 1], s#S,
n, (3.16)
2 lq\/ Z), + Z lq\ /(Z” () 7“‘”(2)‘

j=1 j=1

r\.)l\

We suppose now that ¢}, C have been further restricted by the con-
dition that (3.11) holds with (&}, C7) in the role of (g, C,) and ¢,=
inf{4/8, i¢,(c, 1, W,)Vs}. Co=sup{u, C (0,7, W,)Vs}. In this case, for
every Ze B(Z,, e 7)) there is an s=s(Z) € {1..., t} such that

n,

Z Iqx,/'(ZH < 829*(‘:PIZ;.

ji=1

Because of the choice of ¢,, C,, if we take into account (3.16) we see that
the index s is independent of Z, we could as well take it as s =s(Z,). If we
also impose on ¢}, C| the further condition that &/ <ie¢ (o, 1, W,), C7>
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Ci(o, 1, W,) Vs, then we would have that for all points Ze% n B(Z,,
oe~“F1Z¢)) where as always s =5(Z),

s N
Y14 2N+ Y 1842)| <eylo, T, W,) e CHlomPabE),
j=1 i=1
Since we have assumed (3.10) to be valid for W= W _, if we had taken the
care of choosing o<eg, t>% we see that ¥ also satisfies (a), (b) from
(3.10).

The above lengthy argument shows that we can limit ourselves to prove
(3.10) when W= W_ for se{l,..,t}. Let us suppose that ¢<egy, C> C,,
where ¢&,, C,, are the constants appearing in (3.6).

We are supposing from now on that W corresponds to a prime ideal #
generated by the polynomials g;, j=1,.., /, and we assume that (3.10) has
been proved for k' <k. Let {4,},_, , be the family of all (n+N—k)-
minors of the matrix | dq,;/0(;|, where for simplicity we have denoted by
Cpt 19 Loy n the variables X,.., X,,. By Theorem 5.3 from [30, Chap. 1,
Sect. V], we have /> n+ N —k and, moreover,

dim{Ze W, 4,Z)=0,j=1,., L} <k. (3.17)

The algebraic variety W’ appearing in (3.17) could be empty.

Let us choose ¢,, C, arbitrarily for the moment, but satisfying 0 <¢, <
8o/2, C, >2D,, where d,, D, are the constants appearing in (3.6). Let € be
a component of the set S(W;¢,, C,). By the induction hypothesis applied
to W', there is a pair of constants g,(g, C, W), C,(e, C, W’) associated to
(¢, C) by the condition (3.10). We can also assume that

& <r’=%£1(8’ C: W’), C1>K= Cl(g’ C, W’)
If for every Ze ¥ we have
L
Y 1442)| <ne ¥
-1

then the component & satisfies the conditions (a), (b) in (3.10). Hence we
can assume that no matter which is the choice of (¢, C,) there is a point
Z,€ ¥ such that

L
Z A[(Zy)| = ne KP#0., (3.18)

There are two constants 7, K, such that

(i) n<(e)e K, >C,
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(ii) if Z, is a point satisfying (3.18) then

L
1Z—Z,l <nje P& = ¥ | 4(Z)| 25 e *M2

=1

o=

e
After reordering the variables and the polynomials ¢; we can suppose
1Z=Zy| <me ™A= 4(2)| 356 H12, (3.19)

where 4, is the Jacobian determinant of the first n + N —k polynomials g;
with respect to the first n+ N—k variables, let us call these variables
2=(Zyp Tnon.x) and denote = =(Z,, n_i41sZnen) the last k
variables, ie., Z=(z,z') in the reordered variables, Z=({, X) in the
original variables. Therefore, except for modifying conveniently #,, K, we
can assume that (g, §oi v k> ZnaN_ k112 Zuyn) 18 @ system of local
coordinates in the ball of center Z and radius 1, e~ *'*'?’ for all possible Z
in (3.19). (All one has to obtain is the injectivity of the map (z, z’) - (¢;,...,
Guan—irZneN—k+ i Zny n) Which follows from (3.19) and Taylor’s for-
mula, so the choice of #7,, K| is dictated by the polynomials g, as well as
1, K—compare with the argument in (3.21) below.) The choice of n,, K, is
not modified anymore.

Let us pick two further constants n,<n,, K,>K,. Since we have
assumed ¢, <1d,, C,>2D,, and Z,e %, we can choose 5,, K, so that

I Z—Zol <noe P = sup [@(Z)] <dye P4 (320)

1<jsN

We want to show, and this is the critical point of the proof, that the
algebraic variety W, given by

Wo={Z:q(Z)= " =q,, n_i(Z)=0}

intersects the set defined by the left-hand side of (3.20) if ¢,, C, are chosen
correctly. Recall that Z,=(z,, zg). Writing the Taylor expansion of
g4z, z4) — qz¢, ') and using Cramer’s rule to solve a system of n+ N —k
equations, one sees that

n+N—k

| Z—Z,)| <noe” M@0 = Z [9,(z, z5) — g{z0, o)
i

> || z—zo| e~ kP2, (3.21)

where 7 and K have been obtained using (3.19) and the bounds we have on
the g; and their partial derivatives. We concludes that if in the C"*~~* of
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equation z' = zg, we consider the ball B of center z, and radius e ~ %0740,
we have on the boundary dB simultaneous lower bounds for the functions
g4z, z5) — gz0, z5). These functions vanish simultaneously, of course, for
z=z,, and Kronecker’s formula tells us that if 3 {g,(Z,)| is sufficiently
small, then the functions gz, z;) have exactly one common zero in B;
hence if g,,C, are chosen conveniently we will have a point
Z,=(z{,z}) e W B(Zy, nge *"'%) with z| = z;,. The conditions we have
imposed on the minor 4, and what we have just shown tell us that only
one branch of W, (and hence at most one branch of W) intersects the ball
of center Z, and radius 5,e~*1#'%1) that this branch (which we will call
W,) has dimension &, and that the coordinates ' form a system of local
coordinates on Wj. One can also see that W} is contained in W, if not the
dimension of W~ Wj would be strictly smaller than & and applying the
Remark 3.1 we could have used a point Z, € % such that the existence of Z,
would be impossible. By considerations of dimension we have then

WonB(Z,,nie NP2 =W~ B(Z,,5,e577),

Let B’ be the ball in C* of center z| and radius n,e~ *""“"). In this ball we
consider the holomorphic functions f,..., f obtained by restriction of the
functions ¢,,..., @ y to the variety W parametrized by the coordinates z'.

Thanks to the hypothesis (3.6) and the fact that W< Y and one of the
minors @ of maximal rank of the matrix || df;/0z,| is not identically zero in
B', the same hypothesis allows us to conclude that £ < N. In fact, if that
were not true, by [26, Theorem 10, p. 160], the subvariety of B’ defined by
the equations

fl2)=fz), Jj=L..N (3.22)

would not be discrete in B’; on the other hand, for every je {1.,.., N} we
have

) =fzD)exp(—ia; ) X; = @(Z,) + L.

It now follows that if the variety (3.22} is non-discrete in B, then the
variety ¥*?) will have non-discrete intersection with B({,, gge = <*") ({, is
the {-coordinate of Z,), where p,=1+¢(Z,). By (3.20) this would con-
tradict (3.6).

Now we can compute the minor @ by the chain rule and using the fact
that the f; are the restrictions of the ¢; to the algebraic variety W, and we
see that there are indices s,,..., s, € {1,.., N} and a polynomial R non-iden-
tically zero on W such that, in B’, we have

AXZ) D(z') = R(Z) exp(—i i a,c), (3.23)

i=1
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where, as always, Z = ({, X) corresponds to the point of W associated to
:'eB.
Since the variety W {R=0} has dimension strictly smaller than k we
can assume, by the Remark 3.1, that we have
|R(Z,)| = ne *F70

One can assume also that 5,, K, are such that
1Z=Z,] <noe” X" = |R(Z) | > 5e KN
We have then

n

|R(Z))| ==z e X, (3.24)

o

The inequality (3.24) and the identity (3.23) give us a lower bound for
&(z}). Using now the reasoning based on the Taylor expansion of the
functions f(z')—f,(z}), as we did to prove (3.21), we construct a ball
B" <= B’ of center z; and radius 7,e **“Y such that on dB” we have

N
Y I SA )V = f2)] = e P, (3.25)

=1

where 7., 15, K, K5 can be explicitly determined in terms of the #, K, #,,
K,, the coefficients of the polynomials g,, R, and the size of the ;.

Choosing carefully 7., K (i.e., imposing extra conditions on ¢,, C,) we
can assume

N
YIS <o K (3.26)
1
This essentially ends the proof, but let us just finish up the last details.
Recall that (g, §ui nv—k> Zns Nkt 10 “ne n) fOrm a system of local
coordinates in the ball B, B= B(Z,., n,e *1*?1). We can always go back
to the original coordinates, and the quantitative part of the reasoning can
always be taken care of by just using the estimate (3.19) for 4, in B. Let us
define a “box”

n+N—k
{ > lq,-|<a}><B”. (3.27)

=1

Once @ has been chosen, one can choose ¢,, C, in such a way that Z,
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belongs to the box (3.27) (ie., X7+ % [g{Z,)| < a, since z; =z is the cen-
ter of B”). We need to assume that in {3 |g;| <a} x 0B" we have

ud N3
()] 22 o~ KsPizy),
IS

The choice of a can be done effectively since on W={g,=' =
g+ n-x=0} we have

N
Z\f;‘(Z')!Z%e’K}P‘Z” vz e 0B”
1

by (3.25) and (3.26). In fact, a is of the form #n,e ~%"“*)_ On the remaining
portion of the boundary of the box we will have then

n+ N-—k

Z |qj|=’74€

=1

— K4PtZy)

After making certain that ¢, <inf{y;/8, 5,/8}, C,>sup{K;, K,}, we see
that the component ¥ remains necessarily in the interior of the box, hence
is a subset of the ball of center Z, and radius ee~ %) since we had
already chosen #,, K. 1y, K, so that this was precisely the case.

Proof of the necessity of the condition (3.6). Since the m-tuplet F,,..., F,, is
s.s.d. there is a pair (g,, C,) such that every connected component of
S(Fy,.., F,,; ¢, C,) has diameter less than one. There is a pair (6, D,)
such that

sup [1—p;| <de Pt
j

and
FP(O=0 Vj=Y | F(0)] <5 e e
1

By the properties of the weight p, there is a pair (64, D) such that
V{,eC" V(e B((,?2), Spe Pwto) £ § o= L),

Hence, if V'*) (with sup |l —p;| <d,e27'%) intersects the ball B({,, 1),
every point of V'~ B({,, 2) will be in S(F,,.., F,,; &,, C,) and ¥’ should
have a connected component which escapes from B((,, 2) if V®'~ B((,, 2)
is not discrete. Hence S(F,,.., F,: &, C,) will have a component of
diameter bigger than one, which is impossible. ||

Remark 3.2. Recall that in the sense of Berenstein and Taylor [9], an
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m-tuplet F of elements of A4, is “jointly slowly decreasing” if there are con-
stants ¢,, C;, K;, K, such that the connected components of S(F; ¢, C,)
are bounded and, if {, {" are points in the same component,

<K, p({)+K;.

If the entries F,,..., F,, of F are exponential-polynomials, then the proof of
the necessity of (3.6) shows that given r >0 there are d,, D, such that

[1—pll <8¢ PPl = 119 ~ B({,, r) is discrete.

That shows that condition (3.6) is satisfied and hence for such m-tuplets, it
is equivalent to be s.s.d. and to be jointly s.d.

Let us point out that in the proof of Theorem 3.1 one finds also a proof
of the following:

PrOPOSITION 3.2. Let ¢ be the algebraic ideal in C[{, X] asociated to
the exponential-polynomials F,,..., F,, (via the polynomials p,,..,p,,). Let
2., 2, be the radicals of the different primary components of ¢ and let
T\ss I, be the ideals in A, generated by the corresponding exponential-
polynomials. Then, T is s.s.d. if and only if I,..., 7, are s.s.d.

Remark 3.3. Following the proof of Theorem 3.1 one can see that
under the condition (3.6), one can make explicit the relation between the
pairs (¢, C) and (0, D) that appear in Definition 1.2. Namely, there are
three constants f>0, B>0, ke N* such that 6, D can be chosen as
follows:

O = Pek

(3.28)
D=kC+B
(we assume < 1).

In Section 8, we will need to study exponential-polynomials depending
on k parameters in an algebraic way; more precisely, these are formal
expressions which can be considered as functions from C to C(u,,..., u;)
(where C(u) denotes an algebraic closure of C(u)) of the form

(- F()= Z <Z A;,./(’) e s
iel N |

here {4,,} denotes a family of elements in C(u) and /" is a fixed subgroup
of R".
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Let us consider m such exponential-polynomials F,..., F,,, with frequen-
cies in I, each F; being of the form

F()=3 (Z As;f‘)c’)
iel” !

We may associate through the procedure (3.2) to such F, polynomials p;
in C(u)[{, X].

Let us use here the terminology of [48, II, Sect. 32, p. 497. As soon as u
is, in C*, an allowable system of argument values of the elements (4Y))
(which is equivalent for u to be outside an algebraic hypersurface ¥ of C*
depending on the AY}), one may introduce the exponential-polynomials of
m variables '

Fu)($)=3Y (Z A; (u) C’) et j=1.m,
rel N
where the complex numbers 4Y/)(u) are function values for the 4/} belong-
ing to the allowable arguments (u...., u,) [48]. Of course, this definition is
not quite unique, for one has many possible choices for the numbers AY)(u)
when u is fixed in C*. Anyway, when the 4)(u) have been chosen, one can
also define as elements in C[(, x] the polynomials p(u, {, X) associated
through (3.2) to the exponential-polynomials F;(u).

In all the following, “u generic” will mean “u outside a countable union
of algebraic hypersurfaces W, of C*.” with V< W,

We can now state the following proposition:

PrOPOSITION 3.3. Let Fy,..., F,, be exponential-polynomials depending on
parameters (uy...., u;) such that the condition (3.6) holds for u generic for the
exponential-polynomials F(u)({) with constants &, C, 0, D, independent of
u and of the determinations of the numbers AY)(u) among the function values
for the AY) belonging to the allowable argument u. Denoting by ¢, the
functions defined by (3.7) and P the weight in C"*", P({,X)=
Log(1+ I+ [ xI)+ 27 [Im (|, there is a non-zero polynomial Re C[u]
and three positive constants 8, B, xk such that, given 0<e<1, ¢>0, if u is
generic and

|R(w)| .
_—(1+HuH)"8’ D=xC+B

=8
then every connected component € of the open subset of C"*" defined by
SUP s Pons @1 @30, D)

m [\/
= {(C’ XY NP LN+ Y ol X)) <Ce Dmc-xn}
! 1
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satisfies
VI X)ed, VU X)eb, 1=l +llx=x"f<ee <Y

Proof. The method of proof of Proposition 3.3 is exactly the same as
that of Theorem 3.1. The ring C[{. X] being replaced by T(u)[{. X1, the
induction is always on the dimension (in C(u)[{, X]) of the ideals contain-
ing the original ideal generated by p,...., p,,. The only extra thing we need
to study is what happens on the initial point of the induction, that is, when
the ideal generated by the ¢/, X) is of dimension 0. But in this case,
thanks to Noether’s normalization lemma [487, there are in the ideal n + N
irreducible polynomials in 03(_11[[ X7 of the form

Z4Az/~ j=l..n

and

Vien

Y Al X5 j=10L N
0

Let us choose allowable arguments for all the elements of C(u) written
above and function values belonging to these arguments.

By a well-known lemma due to Polya [7, 20], if we denote by v the
maximum of the degrees of the above polynomials (v =max {v,}), there is a
positive constant o« which depends only on v such that if 0<e¢ <1 is given,
there is for any ze C a real number 0 < r(z) <¢ such that

- min ‘YAA,u >ae" | A, (u)].

l=rz)

To arrive at the final estimation one needs only to observe that if we con-
sider the product r of all the 4, we obtain an element R of C{u] and a
constant L >0 such that

|Ru)|<me‘JA () +u)t 1

Y1

Before going any further we give here an immediate application of
Theorem 3.1 and Proposition 2.5.

PROPOSITION 3.4. Let u,....u, be n distributions in R" with finite sup-
ports A,., A,. Assume the sets A,..., A, satisfy the condition (222} and
write down the ii,...., U, in the form

Zzn( >
sE .1, X
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Suppose that the algebraic subvarieties of C" given by
Z;={p,=0Vied;

are all of dimension <0.
Then the ideal generated by the ji,...., fi, is s.5.d.

We end this section with the remark that if one is interested in the
analytic functionals corresponding to exponential-polynomials with com-
plex frequencies, every result we have stated holds after replacing the
weight p by the radial weight ||{|. The auxiliary weight P that appears in
the proof of Theorem 3.1 would this time be the weight P({, X)=
log(1+ [ X1+ (1<

4

Theorem 3.1, which we have just proved, reduces us to studying the set
of elements (p,,..., py) € (C*)", which we will call exceptional, for which the
variety V' defined by (3.5) has dimension bigger than or equal to one.
Since the dimension of the algebraic varieties Y'*' in C"**" remains con-
stant, one could ask whether there are simple conditions about the
algebraic variety Y which imply that the corresponding analytic variety V
is discrete.

Let us recall that the relation between the varieties V and Y seems very
simple:

V={{eC":3XeC" such that ({, X)e YnExp}, 4.1

where Exp is the n-dimensional submanifold of C**" defined by the
equations

Xy=e™"".., Xy=e""

When V is discrete but not empty, in the set of varieties Y such that (4.1) is
satisfied one can find an algebraic variety Y,, not necessarily unique, of
minimal dimension, and one has then

dim Y, < N. (4.2)

In fact, since Y, is of minimal dimension and ¥ is non-empty, one can
always assume there is an irreducible branch Yj of Y,, with dim Y=
dim Y,, and such that Yj intersects Exp in a non-singular point of Yj. At
that point one can use the formula [30, Proposition 7.1 which gives a
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lower bound of the intersection at a point of two analytic varieties in
Cn+N:

dim(Yyn Exp) = dim Y + dim(Exp) — (n + N).

By Remmert’s theorem the dimension of Y{n Exp at the point we are con-
sidering is the same as the dimension of its projection V in C”, hence we
have

0=2dim Y;— N

which is what we wanted to show.

The problem about the variety Y, we have just introduced is that it is
not at all related to the generators of the original idea 7. We can, on the
other hand, consider first the irreducible components of Y, then the
singular varieties of those components; by repeating this process, one finds
a variety Y, which satisfies both (4.1) with Y, instead of Y and (4.2) with
Y, instead of Y.

On the other hand, the condition dim Y < N does not ensure that V is
discrete. Let us give the following example (n=N=2):

in this case V is of dimension 1 in C? and Y is the algebraic variety of C*
defined by

(=0, X =X,

which is an irreducible variety (also smooth) of dimension 2.

Modifying this example we can see that in general there are exceptional
values of p even though (4.2) is satisfied for Y. For instance, let us consider
in C*

Fi(§)=¢—0
Fl(é,)zeigl _Zei;:7

then {pe(C*)*: p,=2p,} is the exceptional set.

Even under restrictive conditions on Y the problem of the discreteness of
V as well as the nature of the exceptional set appears to be tied to
arithmetical conditions on the coefficients of the exponential-polynomials,
even when the frequencies are rational. To give a more precise idea let us
recall here Schanuel’s conjecture [3]:
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Given n numbers y,,..., v, Q-linearly independent, the trancendency degree
over Q of the extension Q(y,,.., ¥,, €*',..., e*") is at least n.

Let us admit Schanuel’s conjecture for n=2. (For n=1 it is true. It is
just the Gelfond-Schneider theorem.) Assume Fi,.., F,, are exponential-
polynomials of two variables, not all zero at the origin, with integral fre-
quencies and such that the variety Y is irreducible, dim Y =1, and Y is
defined over Q. Furthermore, let us assume, so that the problem is one
really of two variables, that Y is not included in any hyperplane of C* of
the form

ril +rl,=0, (ri,ry) e QA\(0).

Under all these conditions we can conclude that V' is empty. If not, let
(¥1, .)€V, and the transcendency degree of Q(y,, v,, e®!, €”?) is at most
1 since the point (y,, y,, e*L,e*?)e Y. By Schanuel’s conjecture there are
rationals r,, r, not both zero such that r; y, +r, y,=0. Now, the algebraic
variety Y {r {;+r,{,=0} is a variety of dimension 0 defined over Q.
Hence the pairs (y,, ¢™') and (y,, ") belong to @* which contradicts the
theorem of Gelfond and Schneider since (y,, y,) # (0, 0).

This group of very simple examples leads us to pose the following
problem.

PrROBLEM 1. Given m exponential-polynomials of »n variables with fre-
quencies in Q" and algebraic coefficients which define a variety V' discrete
(or empty), is the ideal generated by F,..., F,, s.s.d.?

When n = 1, the ideal generated by a single exponential-polynomial with
real frequencies (and a posteriori one generated by any finite number of
exponential-polynomials) is s.s.d. [20, 9]. Hence the answer to Problem 1
in this case 1s positive without restrictions on the frequencies or on the
coefficients.

When n=2, we have given a positive answer to this problem when m is
also equal to 2 and without any restriction on the coefficients [11]. In the
next section we will show that the condition m = 2 is not necessary. On the
other hand, the conditions on the frequencies are necessary, even when
n=2. For instance, the pair cos {,, cos A{,, 4 ¢ Q, considered in Ap(Cz) is
s.s.d. if and only if 4 is not a Liouville number. In fact, since A is irrational
the spectrum V is empty; if this pair was s.s.d., the remarks after (1.7) show
that we would have a Nullstellensatz, i.c., a pair of elements in A ,( C?) such
that

1=G({)cos {{+ G,({) cos AL,. 4.3)

Taking {,=0, one sees that one would have a Nullstellensatz in dimen-
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sion 1 for the functions cos {, cos A{, which is equivalent, in this case, to A
being non-Liouville (cf. the example given in the Introduction after (0.1)).

Modifying the same example, we see the necessity to impose conditions
on the coefficients in Problem 1, even when the frequencies are rational. In
fact, consider in C* the following three exponential-polynomials, with
integral frequencies and empty variety V-

Fily=cos{y, F{)=cosl;, F()=0L-4, (1eR\Q)

The ideal generated by F,, F,, F; being s.s.d. is equivalent to the
Nullstellensatz for this triplet, which by restriction to the line (;=0,
{,—A{,;=0 implies a Nullstellensatz in dimension 1 for the pair cos{,
cos A{, hence one has to impose conditions on A. If 4 is algebraic it will be
non-Liouville and we can solve (4.3) with G,({,), G,({,) € 4,(C), so we will
have

1=G({;)cos L+ G5(L ) cos AL,

=G () cos £+ (G(L,) cos(Al, —{3)) cos {,
sin(A{; — ;) 5
W)(Cz—ACJ

which is the Nullstellensatz for the above triplet.
These examples show that to obtain a positive answer to Problem 1 it is
necessary to solve the following:

4 (sz sin

ProBLEM 2. Let F,,.., F, be m exponential-polynomials in C" with fre-
quencies in Q”, algebraic coefficients, and empty spectrum V, are there m
elements G,,..., G,, in 4,(C") such that

1=F,G,+ - +F,G,?

It is easy to see that Problem 2 has a positive answer for n=1 (see Sec-
tion 7), but we do not know the answer for any other value of n.

Let us add to this list a problem similar to the above and which has been
posed by Ehrenpreis.

ProBLEM 3. Given an exponential-polynomial F of a single variable
with algebraic coefficients and real algebraic frequencies, do the distinct
zeroes stay away from each other? More precisely, are there positive con-
stants ¢, N such that

FO=F{)=0, [#=[{-]>ce M (44)

Using the work of Polya on zeros of exponential-polynomials in the last
inequality the factor e~"®) can be replaced by (1+|({|)™* for some

607/60:1-3
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M > 0. A positive solution to this problem will have several applications in
Harmonic Analysis. The first one is that the variety V= {F=0} will be an
interpolating variety in the sense of [ 10]. The second one is that, under the
additional assumption that the spectrum is real and simple, every con-
tinuous solution ¢ of the equation u * ¢ =0 (where fi = F) must be almost-
periodic [23].

When /" denotes, as above, the subgroup of R generated by the frequen-
cies of F and rank /"= 1, then a positive answer to Problem 3 is equivalent
to a positive answer in dimension 1 to Problem . When rank I" =2, under
the additional hypothesis that V' is real and simple, it was shown by
F. Gramain [23] that the answer to Problem 3 is also positive.

5

We give here some applications, in the case of two variables, of the
results in Sections 2 and 3.
Let us give first a generalization of the main theorem in [11].

THEOREM 5.1. Let 7 be a finitely generated ideal in A,(C*), generated
by exponential-polynomials with rational frequencies, assume also that the
spectrum V of F is discrete or empty. Then the ideal T is s.s.d.

Proof. We can assume that the generators of 7 are m exponential-
polynomials F,..., F,, with frequencies in N2 Consider the algebraic variety
Y in C* associated to F,,.., F,, via (3.3), and defined by polynomials
D1 Pm- We can suppose that none of these polynomials are divisible by
X, or X,, in fact, by Proposition 3.2 we can assume that Y is irreducible
and the p; generate a prime ideal 7.

We are going to show that there is a constant 4, 0 < < 1, such that

sup |1 —p,| <d=dim V' <0. (5.1)

j=12

The theorem will then follow from Theorem 3.1.

If the algebraic variety Y has dimension bigger than or equal to 3, there
is a polynomial ge C[{, X] dividing all the polynomials p;, which is
impossible (it would even contradict the discreteness of F¥). Hence
dim Y<2.

Suppose p € (C*)? is an exceptional value. Let us consider an irreducible
branch W' of dimension 1 of V' (the case of dim V'*'=2 being
impossible since the F{?) are non-zero). By the Proposition 2.4 there are
(r\, r,) e @*\(0) and y e C such that

WO {leCirl +rl =7} (5.2)
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By dimensionality considerations we obtain that W’ is the line
ni+rl=y. (5.3)

It follows from [ 11, Remark 6, p. 122], since the variety V is discrete, that
the pair (r;, r,) can be taken to lie in finite subset # of Q* which is related
only to the frequencies of the exponential-polynomials F,,..., F,,. We will
prove this in a more general context in Proposition 7.1.

Let us assume first that the polynomial r,{, + r,{>—7 does not belong
to the algebraic ideal ¢ generated by p, ..., p,.; hence the subvariety of C*
{py="=p,=r{ +r,{,—7y=0} has dimension at most 1 and one can
use another time Proposition 2.4 and obtain a second line §,{; + 5, —
v =0 containing also W*’ and such that r,s,—r,s, # 0, and this leads to a
contradiction. Hence, in order that W'’ could exist, one must have
rl +r.{,—ye # This is only possible for fixed (r,.r,) and for a single
value of y, otherwise 1€ ¢, Y= ¢, and, a fortiori, W' = 4.

We conclude that W' could only be a line belonging to a certain finite
set of lines, independent of p. If there were a sequence of exceptional values
P> pr—(1,1), one could extract a subsequence such that W js
stationary, namely, a line W,, with equation of the form (5.3). But on this
line W, all the Fi*¥'=0, hence by letting k — oc we have

F=--F,=0 on W,

contradicting the discreteness of V. ||

Remark 5.1. One can in fact prove, decomposing the variety
Y={p = =p,=0} in irreducible components and taking the smallest
o corresponding to the different components, that (5.1) is always valid
under the assumptions of Theorem 5.1. We can in fact go further and see
that there are no exceptional p unless there is an equation of the form (5.3),
considered in C* which is satisfied on a whole irreducible component of Y.
Looking at this in more detail, one arrives at the conclusion that there is a
finite number of pairs (r,, r,) in Z*\(0) and non-zero complex numbers
y# 1 such that every p exceptional satisfies one of the equations

PIPZE=T

Let us now give an application of Theorem 3.1 to a type of system of
convolution equations proposed by J. Delsarte [18]. We need a certain
amount of extra notation. O denotes a convex compact polygon with non-
empty interior in R Its vertices ordered counterclockwise are 4,...., 4,,.
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We adopt the convention 4, ,=A4,. We fix two n-tuplets (a,,..., a,) and
(by,-., b,) in C" satisfying the condition

l—[ ab;, —a;1b;)#0 (5.4)

(with the convention a,, ,=a,, b, ,;=5,).
One considers two distributions with support in Q of the form

p=73 ad+0+¢
= (5.5)

v=1 bdi+t+y,

i=1

where J 4 denotes the Dirac mass at the point 4;, ¢, T are two distributions
with finite support in the interior O of the polygon Q. and o, y are two C*
functions with compact support contained in Q. The case not considered in
[9, 18,417 is the case where the order of at least one of the distributions
o, T s strictly positive, and this case seems to escape the previously known
methods. We prove the following theorem.

THEOREM 5.2. Let u, v be two distributions of the form (5.5), then the
ideal I generated by fi, V is s.s.d. in A,(C?).

Proof. We first assume that ¢ = =0, hence we are in the case that g, ¥
are exponential-polynomials with frequencies in R*. We are going to show
that in this case there are no exceptional values p, hence the theorem will
follow immediately from Theorem 3.1. Fix p e (C*)", where N denotes the
rank of the group I” associated to ji and v by (3.1).

Let us consider a unit vector u in R?, and after a rotation we can assume
that its direction is that of the x-axis. Thanks to the condition (5.4) one can
find a linear combination of the measures 3" a,6 ,, and Y. 6,8 ,; such that the
support of this new measure contains the point (a, 0) as the only point in
the support with maximal abscissa. Using exactly the same linear com-
bination one finds a function in the ideal .7 ‘*' of the form

eiatl(l +Z Pk(C)ei(ak51+ﬂkC2)>, (5.6)

where all the «, < 0. Hence there are three positive constants ¢, C, T such
that if

1{a] < e | and Im{,£-T
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the set of zeros of the function (5.6) is contained in a logarithmic strip of
the form

[Tm {,| < Clog(1 + [, 1).

Using a compactness argument (whith respect to the unit sphere of direc-
tions u) we see that there is a constant C, such that the variety V**’ is con-
tained in a set of the form

Hm {ff < Co(1 +log(T + [[T]). (5.7)

We can then appeal to Corollary 2.3 and conclude that V'’ is discrete.
That shows that the pair (4, V) is s.s.d. in the case p =y =0.

In order to finish the proof let us denote ( the polygon with vertices
—A,,., —A, and H; the indicator function of the set 0 (e, Hgs(x)=
max{x-y:yeQ} for x e R*). What we have shown by (5.6) is that there are
two positive constants K and & such that

[Im (|| > Klog(l +log(1+ 1))
=4+ [HQ)] = kere™), (5.8)

always under the condition ¢ =4 =0. Let us return to the general case.
Since the two functions ¢, ¥ € CJ(Q) we have, outside a compact subset
of C2,

[ ()] + [(0)] < Sket0Im),

One can conclude that, for a convenient choice of (¢, C,), all the com-
ponents of the set S(4, v; ¢, C,) are contained in a set of the form (5.7).
Using now the fact that we have proved that the pair of exponential-
polynomials appearing in £, ¥ are s.s.d., that ¢, y are Cg, and all the com-
ponents of S(g, V;e,, C,) satisfy (5.7) for any &,<¢,,C,>C,, we see
without any difficulty that the pair £, ¥ generates an ideal ss.d. in
4,7, 1

Remark 5.2. 1If we replace o + ¢ and 7+ in (5.5) by distributions of
compact support contained in Q, we see, thanks to (5.8), that V is discrete.
One can then ask whether the spectral synthesis still holds for the system
pxf=vxf=0.

We give here a third example where the geometry of the support of the
distributions associated to the exponential-polynomials plays a role.

THEOREM 5.3. Let p,..., i, be distributions with finite support in R?
whose Fourier transforms define a discrete variety of C2. We assume that the
supports A, and A, of the two distributions p,, u, satisfy the condition
(2.22). Thus the ideal generated by (ji,,..., ji,,) is s.s.d. in A,(C?).
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Proof. Thanks to Proposition 2.5 we see that every sequence W' of
irreducible branches of dimension 1 of the V'** has a subsequence which is
stationary when the p, — (1,1). Thanks to the reasoning already used in
the proof of Theorem 5.1 we see that this is incompatible with V' being
discrete. ||

The typical example of application of the previous theorem is when y, is
the characteristic function of a convex polygon and p, is obtained from y,
by a convenient rotation.

Remark 53. We can also show-and we will in Section 7-that if u,, y,
are two distributions with finite support in R and their supports satisfy
(2.22), then the spectral synthesis always holds (even if the spectrum is not
discrete) for the system

pyxf=p,* =0, fe C2(R?).

6

From what we said in Section 4 it is clear that, at least for the moment,
we can only give partial answers, when n = 3, to the problems raised there.
While the methods developed in Section 3 apply to a system of exponen-
tial-polynomials with real frequencies, we will restrict ourselves in this sec-
tion to the case of rational frequencies.

Let us return to the triplet (cos {,, cos{,, {,—A{,) considered in
(4,(C?))’. We have seen that the ideal they generate cannot be s.s.d. On
the other hand, from the results of Section5 (or by an easy direct
verification) one obtains that the system of convolution equations they
define does not admit any non-zero solution and hence the spectral syn-
thesis still holds since the spectrum V is empty in this case. We could then
add the following to the list of problems in Section 4.

ProBLEM 4. If py,..., u,, are distributions with finite support in R”, does
the system

A
have the spectral synthesis property?

When n=2 a positive answer to Problem 4 was given by Gurevich in
[29] when the supports of the y; lie in Q* reducing the case of spectrum
non-discrete to that of empty spectrum by a method that was used also in
[8, 34]. On the other hand, it is also known that there are convolution
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systems in R? for which the spectral synthesis does not hold [27], but the
known examples do not correspond to distributions of finite support.

The proof of Theorem 3.1 gives, at least theoretically, another sufficient
condition to ascertain that an ideal Z generated by exponential-
polynomials with integral frequencies is s.s.d. when dim Y < n. Let us try to
describe this mechanism: we begin by decomposing the variety Y=Y, in
irreducible components Y{", Y{'... and we denote Z{, Z{,., the
singular locus of Y{), Y{*.... Given one of the components Y{, say, Y{",
consider the polynomials g,,..., g; generating the prime ideal corresponding
to Y and regard the matrix

3G,
th

k=10 '
h=1...n

where G,({) = g.({, €*). Since the minors of rank # of this matrix are of the
form A({, %), h a polynomial, one must verify, so that the method works,
that at least one of these polynomials / is not identically zero on Y. One
adds the equation {#=0} to those of Y{'’ and obtains an algebraic variety
Wi of smaller dimension. One makes the same verification for the other
components Y{2',... Consider now the algebraic variety

— 7 i 72 I
Y\ =Z) oW uZE oW o e

whose dimension is strictly smaller than that of Y. Repeat the procedure
starting with Y,. If we never find any trouble with the above steps we get
to an algebraic variety of dim <0, and that implies that the original ideal is
s.s.d.

We have hence a method, completely algebraic, to ensure that a system
of exponential-polynomials with integral frequencies defines an s.s.d. ideal.
It is only a sufficient condition and usually very hard to verify, and for such
a reason we will provide later other sufficient conditions.

We give here an extremely simple example to which we apply the above
decision method. We consider in C*

Fi({)=Ce"—1
Fz(C):gx_Cz (6-1)

1
-
w2l
o

i

QN

(o)

[a}

&

Y, is then the irreducible smooth variety of dimension 3 given by

Y0=<[C3X1—l=C,—C2=Xl_2X3:()}_
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The only thing to compute here is the Jacobian

det oF,

bl | ) WG+ 83) 4 joi28t 6.2
T, {ye +ie (6.2)

We can take as polynomial /4 the polynomial ~2{,X;+ iX,, since the fac-
tor ¢ in (6.2), being invertible in A,(C*), does not play any role. The
variety Y, is also irreducible and smooth and dim Y, =2, and it is defined
by

Y1={C1—52=Cs—i=X3+%=X1+z’=0},

Repeating this procedure we obtain that the variety Y, is empty, hence the
ideal generated by (F,, F,, F3) is s.s.d. We note that in this very simple
example we have just considered, the study of the varieties V'@ is
immediate; one sees that the problem can be reduced to one in dimension
two and applying Proposition 2.2 one obtains that the possible irreducible
branches of dimension >1 of V' must be contained in the hyperplane
{{3=01}, which is impossible by the first equation in (6.1).

We try here to give other types of conditions which allow a direct
application of Theorem 3.1. Let us recall that we suppose that we are given
m exponential-polynomials F,,.., F,, with integral frequencies defining a
variety ¥ which is discrete or, possibly, empty. We want to find conditions
on the algebraic variety ¥ which will allow us to pinpoint, if they exist, the
irreducible branches of strictly positive dimension of the analytic varieties
V) for p e (C*)" exceptional. In what follows all the algebraic varieties are
subvarieties of C?", the variables are denoted {,,.., {,,, X,,.., X,,, and Q is
the open subset of C":

Q={(X): X, X,#0}. (6.3)

DEFINITION 6.1. A coherent change of coordinates on £ is a bijection T
of 2 into 2 such that there is a matrix 4 = ||a,,|| € GL(n, Z™* ) such that

Y, X)e®Q, (U, X')=T(, X)—>{ =AU and Ve {1..., n},
X= 1 (X
k=1

It is clear that a coherent change of coordinates is a proper mapping of Q
into itself, and if W is an analytic subvariety of pure dimension p of a
domain U< Q, then T(W) is an analytic subvariety of dimension p in
T(U). This is a consequence of Remmert’s theorem [26].
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We will use the following two preliminary lemmas.

LEMMA 6.1. Let q be a polynomial in C[{,,..., {, ], then there is a matrix
Ain GL(n, Z™) such that

k—1

VieC”,  qla0)=alli+ Y u(lrn L)L (6.4)
i=0

where ae C*, u;e C[{,,.., {, ], and k is the total degree of the polynomial 4.

Proof. The existence of a matrix 4 € GL(n, C) such that (6.4) holds is
very well known (see, e.g., [7, Chap. 6]), and the only thing to observe is
that in the proof of that lemma we can impose the extra condition that the
coefficients of 4 are in Z*. |

LEMMA 6.2. Let F be an exponential-polynomial of n variables with fre-
quencies in Z". There is an element ue 7", a matrix Ae GL(n, Z ), a strictly
positive integer N, a non-zero polynomial PyeC[{,,..,(,], and a family
{G,})_, of exponential-polynomials of n variables with frequencies in
{0} x 2", such that

V{eC",  e“‘F(Al)=Py)e™+ Y G )e™ 9% (6.5)

¢=1

Proof. After multiplication by a convenient exponential we can assume
that the frequencies «;,..., «, of F are all elements in (N*)". Let ae (N*)"
such that

Vie{l,.., L}, l#1=aa,>a u,.

After an eventual rearrangement of the o, such an element always exists.
We choose a family {a,},_, , of elements in (N*)" such that (a, a,,.., a,)
form a basis for R”, and we denote by A the matrix whose columns are the
vectors a, a,,..,a,. Let {C,},_, , be the non-zero polynomials in
C[¢{4,- £,,] such that

F(A4-{)

3 creni(xati+ 3 wat)|

Denote

u=(0, —a, ay,..,—a, - a,)eZ".
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Hence
R4 = Cyf) e e

L n
+ 3 CAD) exp l:i<0‘1'aC1+ Y (“/““1)'01';/')]'
I=2 j=2

If we set N=u, ' a we have immediately the expression (6.5). |}

Remark 6.1. 1f we denote by T the coherent change of variables
corresponding to the matrix 4 appearing in Lemma 6.2 we see that there is
an integer N >0, a non-zero polynomial PyeC[{;....{,], and a family
{P,})_, of elements in C[{,,... {,, X5,... X,,, 1/X,,.., 1/X,] such that if g
is the polynomial associated to F by (3.2)

Y X)eQ,  g(T (L X)=0

N
PO XY+ ) PULX) XY =0,

g=1

where X = (X,,..., X,,).
We are now ready to prove the following proposition.

PrROPOSITION 6.3. Let F,,.,F, be m exponential-polynomials of n
variables with frequencies in N", and we assume that the polynomials
P,,.., P,eC[{, X] associated via (3.2) are in fact in CL{ s Ciy Xy X1,
1 <k <n, and that the dimension (in C*') of the algebraic variety Y defined
by (3.3) is smaller or equal to n. Then, there is a non-zero polynomial P in
CLC 0 L] such that all the irreducible branches of dimension bigger or
equal to 1 (in C") of the analytic variety V={{eC" F,({)=" "=
F,(0)=0}, if they exist, are included in the algebraic hypersurface

[{eC” P(Ly s L) =01,

Remark 6.2. Given an n-tuplet p € (C*)”, it will be immediate, from the
proof of Proposition 6.3, to see that every irreducible branch of positive
dimension of V' is also included in the same hypersurface
{P({y,., {)=0} given in Proposition 6.3.

The theorem of Ax, i.e., Proposition 2.4, allows us to say that for a given
irreducible branch W of V there is a polynomial P, affine with rational
coefficients (except for the independent term), such that W< {P, =0}
What is surprising about Proposition 6.3 is that the polynomial P is
independent of the branch W.
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Proof of the Proposition 6.3. Let us suppose W is an irreducible branch
of positive dimension of ¥ and denote by Z the subvariety of C**:

Z= {(C, X)e C™{eW, X,=e%. X, = ei;,,}.

Since W is irreducible, Z is contained in one of the irreducible components
of the variety Y, hence we are not making any restriction if we suppose that
P, P, are the generators of a prime ideal # in C[{, X] associated to
one of the irreducible components of Y, and it is clear that the hypotheses
of Proposition 6.3 still hold for these new polynomials p,,..., p,,..

If a non-zero element of C[{,,..,{,] is in &, then there is a non-zero
polynomial in C[{,,.., {,] which belongs to # and the conclusion of
Proposition 6.3 is immediate in this case, and we will assume hence that

The polynomial P, does not depend only on the variables {. Consider P, as
a polynomial in C[{,,..., (i J[X.... X, ]. Let ({o, X¢) € Z, and either one of
the coefficients of P, vanishes at {, or none of them vanishes at {,. Let us
suppose we are in the latter situation.

The point ({,. X,) belongs to the open set 2, and thanks to Lemma 6.2
and Remark 6.1 there is a coherent change of coordinates T, such that, in a
neighborhood of (¢, X,), the variety Y is defined in the new coordinates
by the following equations:

N
Po({VXDM 4 Y, PAL, X XW(X)Y = G({ X)) =0

/=1
Gy, X7) =0
: (6.7)
G.({ X) =0,
where 0#£ P e C[{'], P,eC[{' [ X5, X, 1/X5,, 1/X ] for =1, N,
Ge C[{1[XY, X0 1/X,e, 1/ X ] for j=2,.., m. Moreover, if Q denotes

the polynomial P, or any of the coefficients (in C[{']) of the P, or G,, and
if 4, is the matrix associated to the change of variable T, the function

{-0(47')

is a polynomial function depending only on the variables (..., {;.
Let (5, Xo) = T,({,, Xo), and we have, thanks to the hypothesis we have
made above,

Po({o) = Po(A o) #0.

Denote Pj(()=Py(A[ ).



42 BERENSTEIN AND YGER

By elimination theory [48], there is a family R,,.., R, of elements in
C[C1[ X5, X, 1/X5,.., 1/X;,] such that, in the variables (', X’), the
variety Y is defined in a neighborhood of ({;, X;) by the equations

Gl(Cla X’) =0
Ryl X') =0 65)
R,({, X)=0.

The analytic subvariety of C*"~' (the variables being (|,.., {,, X3,.., X,)
defined in a neighborhood of ({;, X§,,..., X5,,) by the equations

Ry Xy Xp) = - = Ri({, Xy, X)) =0

1s, by the hypothesis, Remmert’s theorem and Remark 6.1, of dimension
smaller or equal to » in C¥”~' if n>2, something we have implicitly
assumed. Hence, at least one of the functions R, for instance, R,, is not
identically zero. Moreover, if O denotes any one of the polynomial coef-
ficients (ie., in C[{']) of R,, the function (- Q(A4['() is still in
C[Cls"" Ck]

If n=2, we stop the procedure, and we will return to it at the end of the
proof. If »> 3, we continue as follows. Again we have two cases, either at
least one of the coefficients of R, vanishes at {;, or none of them vanishes at
this point. Again we suppose we are in the latter situation.

As before we can find a coherent change of coordinates T,, this time
leaving untouched the variables {}, X, and such that in a neighborhood of
({5, X5) the variety Y is defined, in the new coordinates ({”, X”), by the
following equations:

Qo ()XY + Z Q" X5 s XNXDY = H\({", X")=0

Qo({")(X3)" + Z 01" Xy X)V1 = Hy({", X")=0 69)
i=1 .

Hy({", X") =0

H. (" X") =0,

where Qo,, Q,.€C[{"], Q,,€C[({", X3.... X, 1/X3,..,1/X] for [#1,
Q,,eC[{", X5,..., X, 1/X3,.,1/X;] for I#1, and H;eC[{’, X7,.., X,
1/Xx7,.., 1/X2] for j=13,.., L. Moreover, if Q denotes any of the polynomial
coefficients (i.e., in C[{"]) of the H; and if A4, is the matrix associated to
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T,, then the function {— Q(A4,'4, ') is a polynomial in C[{,,.., {,;].
Denote ({3, Xg)= T-({y. X3), then, in the case we are considering,

002(05) = Qo245 "4 ,) #0.

We denote Pi({) = Qo,(4; "4 'C) Po(0).
Again by elimination theory we obtain a family S,,.,S, in
C[¢”, XY,..., X, 1/X5,..., 1/X] such that the variety Y is defined in a

1

neighborhood of ({g, X;) by the system

H({" X")=0
Ho({", X") =0
Sy X") =0 (6.10)
Syl X")=0.

The analytic variety in C** * (variables {},.., ¢/, X5...,X!) defined near
(€0 e X350 X5 ) DY the M — 3 last equations of (6.10) is again of dimen-
sion less equal to »n; and, since we have assumed » > 3, at least one of the
S,., say, S, is not identically zero. Moreover, if Q is any one of the coef-
ficients (in C[{"]) of S, consldered as an element of C[{"][X5,..., X},
1/X5..., 1/X,], the function { —» Q(4; yisin C[{,,... {1

When n =3 we stop here, if not we contmue in the same way. Therefore,
after having gone through this procedure n—1 times, we construct a
polynomial P'eC[{,,..,{,]. independent of ({,.X,), and a coherent
change of coordinates T, with associated matrix A, such that :

—either P'({,)=

—or the variety Y is defined in a neighborhood of ({,, X,,) in new coor-
dinates (w, Z) by equations of the form

Aoi(w 1+Z W, 2y Z,) ZV =0

Aoo(w) Z5 + Z baWe Zyrs Z,) ZN =0

/=1

. o 6.11)
honW) ZV S Aplw) ZN ~0 (

K, 1w, Z,) =0

K.(w, Z,) =0,
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where none of the polynomial coefficients (i.e., in C[w]) of the 4, vanishes
at the point w,; moreover, if Q is one of those polynomial coefficients, the
function { - Q(4~'{) is a polynomial function in the variables (..., {,
alone.

In the case where Y is defined near ({,, X,) by equations of the form
(6.11) in the coordinates (w, Z), the classical method of elimination theory
of computing successive Sylvester determinants shows us that there is, for
every je {1,..n}, a family {g;,}%, of elements in C[w,,.., w,] indepen-
dent of the point ({,, X,)) such that

(@) V), ujp 0,
(b) Wie{l.,n}, Vie {0, M}, w A '())eC[{ ],
(c¢) if (w, Z)e Y is near (w,, Z,) then

M;
2 (W) ZH1=0 V). (6.12)

After dividing (6.12) by convenient powers of the Z; we can assume that
vj Hiag, E 0.

Let P"e€ C[{,,.., {;] be defined by

P'(¢ H /J,M (4~ C)Il,o( 1C)

Jj=1

From (6.12) we conclude there are two constants C’, K’ such that for every
point { in W close to {,, we have

1 ,
— < 1 K, 6
P L) AU (w, |¢_,-(¢)|)<C“+“C“’ (6.13)

where

YAL)=exp < Z o, ; Im C1>’ 4 '= lloes -

=1

It follows from (6.13), since det 4 #0, that there are two constants C, K
such that for every { € W near {, we obtain

1P"(C1aes Ci)l €XP (Z [Tm C,I) < C(1+ 5D~ (6.14)

Now, every constant that has appeared, as well as all the polynomials we
have introduced, are independent of {, and the branch W. Hence, setting
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P=P'P", we see that every point of a branch of positive dimension is con-
tained in the set

{c: P(C)] exp (ﬁ IIm ;,»|) <Clit rcu)“}.

We can finish the proof using Proposition 2.1. ]

Remark 6.3. The main difficulty in the above proof is the lack of a
theorem of the type of Noether’s normalization theorem [30, 48], which
we cannot prove since are limited to coherent changes of variables and not
arbitrary linear changes of coordinates in the 2n variables as would be
necessary for the proof of such a normalization theorem. It is precisely to
get around this difficulty that we have given the above proof with prac-
tically all details.

Remark 6.4. 1f the coefficients of the exponential-polynomials F,...., F

m

are in a subfield of C or in a field of the type C(u). the polynomial P of
Proposition 6.3 has coefficients in the same field.
We can also prove the following proposition.

PropoSITION 6.4. Let P,.... P,,eC[{, X], Y the corresponding algebraic
variety. Denote by W, the subset of C" defined by

(¢ Wo=>dim Y ({{=,} xC")<0. (6.15)

Every irreducible branch of positive dimension of the analytic subvariety V of
C" defined by the equations

Pyl el et = =P (L, ", ¢) =0 (6.16)

is contained in the closure W, of W, in C".

We need two further lemmas:

LEMMA 6.5. Under the hypotheses of the preceding proposition, every
irreducible component of Y not included in Wy x C" has dimension ar most n.

Proof of Lemma 6.5. Let Y, be a component of Y not included in
Wox C", (o, Xo)e Y, with (¢ W,. By (6.15), if Z is an irreducible com-
ponent of Y, n({{={,} xC") containing ({,, X,) we have

dim Z=0.
As pointed out before, by [30, Proposition 7.1], one has

dim Z>dim Y, +dim({{={,} xC")—2n.
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It follows that

0zdimY,+n—-2n=dmVY,—n |

LEMMA 6.6. Under the hypotheses of the preceding proposition, we have,
for every je {0,..,n}, for every algebraic subvariety V; of C" of dimension
less or equal to j (in C")

((or Xo)e Y (V;xC") and {o¢ W= every irreducible com-
ponent of Y\ (V;x C") containing ({o, X,) has dimension less
or equal to j (in C*"). (6.17)

Proof of Lemma 6.6. The conclusion of the lemma is correct when j=0,
and this follows immediately from the hypotheses. It is also clear one can
assume Y is irreducible in C** and V; in C" (j is now fixed in the range
1<j<n), hence V;xC" is also irreducible in C?. We will assume the
lemma valid for j—1 and dim V= j.

Given ({o, Xo)e YN (¥,;xC"), let Z be an irreducible component of this
variety containing the point ({,, X,). Since the conclusion is valid for j—1
we can assume (, is a regular point of V,. If no point of Z has a regular
{-coordinate we would have Z< Y~ (V] x C"), V] =singular variety of V',
and since dim V] <dim V, < j we could apply the inductive hypothesis.

Since {, is a regular point of V/; we can construct a linear variety L in C”",
dim L=n—j, {,e L, and {, is an isolated point of V', L. By the case j=0
of the lemma we have

dim YN (V,xC"nLxC")=0 {(6.18)

On the other hand, let Z’ be an irreducible component of Z~ (L x C") con-
taining ({,. X, ), and by the now familar argument

dim Z' >dim Z + dim(L x C")—2n=dim Z — J.
But, by (6.18)
dim Z'<dim((Yn V,xC")n L xC") =0.

Hence dim Z < j, which proves the lemma. [

Proof of Proposition 64. Let W be an irreducible branch of positive
dimension of the subvariety V of C". Suppose W is not included in W,. Let

Z= (L, )™ Le W, X, =€, X, = ).

Since Z is connected it is contained in an irreducible branch Y, of Y. We
assume dim Y, =n—gq, 0 <g<n, and this is justified by Lemma 6.5 since
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Y, is not contained in W, x C". Consider a point ({,, Xo)€ Z, {o ¢ W,. By
the Proposition 2.4 there is an re @"\(0) such that

Wc {CeC":r1C1+ et L=l +rn€0,n}' (6.19)

We denote y, =r (o, + --- +r,{o. After a coherent change of coordinates
we can assume that the hyperplane in (6.19) has the form

L=y

The analytic variety Z is now contained in an irreducible component Y,
of the algebraic variety Y,n{{;=y,}. By Lemma 6.6, dim Y, <n—1.
Replacing {; by v, in the exponential-polynomials corresponding to the
generators of Y,, we obtain exponential-polynomials of n— 1 variables
whose variety of zeroes contains a copy of W. We can apply again
Proposition 2.4 in C" !, make a new coherent change of coordinates that
does not touch {, or X, and see that the copy of W is contained in the set
{,=7v,. Now, every component of ¥ n {{, =v,} n {{,=7,} containing the
point ({4, Xy) has dimension n— 2 by Lemma 6.6. Iterating this procedure
one sees that W cannot have positive dimension. ||

COROLLARY 6.7. Let P,,.., P,eC[{, X], with m = n. Assume there is a
closed set Wy< C" such that

{o¢ W,=rank \—-— {0, X) =n VX (6.20)

Then, every irreducible branch of positive dimension of the variety
{{eC: P, e*)= - =P, e*)=0} is contained in W,,.

Proof. This follows from the fact that the hypothesis (6.20) implies
(6.15). In fact, if { ¢ W, for X, fixed, a minor of rank n of the matrix
(8P;/0 X ) (Lo, X,)| is not zero, hence the variety

{XeC"P({o, X)= " =P,(( X)=0}
has dimension at most zero at X, which is precisely (6.15). |

Application. If the exceptional set W, of (6.20) is either a variety of
dimension <0 or a finite union of irreducible varieties of dimension 1 (or a
union of both of those things), then the ideal generated by the exponential-
polynomials P,({, e*),., P,({,€*) is ssd., under the additional
assumption, in the second case, that the variety V' be empty or discrete.

607/60:1-4



48 BERENSTEIN AND YGER
7

In this section we will study in detail a particular kind of system of
exponential-polynomials which will allow us to study Problem 2 posed in

Section 4 in the case n =1 and to improve upon the Ritt theorem proved in
[6,43].
Let us begin with the following proposition.

PROPOSITION 7.1. Let F be an exponential-polynomial of n variables with
the set of frequencies A < C", which we write as

F({)= ) Axle" ™, (7.1)
ie

where none of polynomials A; is identically zero.
Let V, be an irreducible algebraic subvariety of C" of dimension 1 such
that F vanishes identically on V. Then only nwo situations can occur:

(a) either all the polynomials A;, Ae A, vanish identically on V),
(b) or there are i, A’ e A, A# A, and v € C such that
VoS ileC (A-A) (=1}
To prove this proposition we need several lemmas.
LEMMA 7.2. Let 2 be a prime ideal in C[{,,.., {, ] (1 =2), such that the
zero locus of # is an algebraic variety of dimension 1, denoted V(2); we

assume V{(P) is not contained in any hyperplane in C" of the form { =1
Then, there is a constant C such that

C: (Clv“’ Cn)e V('U]) and |C]i > C
imply

3 Il <Cl+ I

Proof of Lemma 7.2. We will prove this lemma by induction on x.
When # =2 the lemma is trivial since V() is defined by a single equation
P, {,)=0, P irreducible and of degree =1 in the variable {,. We will
assume that the result is correct for dimensions ' <n. Let P,,..., P,, be the
generators of 2, then

V(P)= ({eC P({)= - = P,({)=0).

Due to the hypothesis that V() is not contained in a hyperplane {, =7y
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we can use Lemma 6.1 on the variables {,,..., {, and find new coordinates
(£,, ¢5,...., ;) such that, in the new coordinates,

Pyl G G = RUEHE) + 01 (Cys $avens ), (7.2)

where ¢, is a polynomial of degree <v in {5 and R, is a polynomial in the
single variable {, which cannot be identically zero on V().

We also conclude without difficulty that |{,| is not bounded on V{2),
otherwise {, will be a bounded holomorphic function on an algebraic
variety and hence constant (see, e.g. [19]). Choose a constant K such that
I{y] = K implies |R,({,)| =1 and consider a regular point {,e V() such
that |{y,| = K. By elimination theory, the projection W of V() into C" !
defines an irreducible algebraic variety of dimension one. This variety can-
not be contained in any hyperplane {, =7 otherwise V(#) would also be
contained in such a hyperplane. By the induction hypothesis, there is a
constant ¢’ such that

n
1GI>C (GG )W = Y <O+ D

f=3

Using now (7.2) and the fact that

‘C1|>K=>|R|(é’1)|>l

one arrives to the desired conclusion. ||

LEMMA 7.3.  Let V be an algebraic variety of pure dimension equal to 1 in
C", n= 2. Assume that no irreducible component of V is contained in a hyper-
plane of the form {,=7y. Let P,QeC[{,,.,(,] such that the varieties
VA{P=0} and Vn{Q=0} are of dimension zero or empty. Then the
analytic variety W defined by

W={{eV:P({)e" +Q({)=0}
is discrete.

Proof of Lemma 7.3. Assume W contains an irreducible analytic variety
of dimension one. It is then, by dimensionality considerations, an
irreducible branch Z of V, hence algebraic. The algebraic varieties
Zn{P=0} and Zn {Q =0} have non-positive dimensions, hence they
are finite sets. Therefore there is a constant C such that

{eZ=|Im{,| <CU +log(1+[])).
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We can then find a positive constant K such that the function

(Lo Cn)—’m

is holomorphic and bounded on Z, hence constant. This contradicts the
hypothesis. |

Remark 7.1. Note that we could have assumed that for each irreducible
component of ¥ one of the two polynomials P or Q does not vanish iden-
tically and obtained the same conclusion.

Proof of Proposition 7.1. We will prove this proposition by induction
on the number of frequencies in F. Let A= {4,,.., 4y} and write 4, instead
of 4, . The proposition is clear if N=1, and it is also true when N=2 by
Lemma 7.3. Assume hence N > 2. We can also assume V,= V(2), where &
is a prime ideal in C[{] and none of the polynomials 4,,.., 4, belongs
to 2.

Let { eV, be a regular point. If P,,.., P, are the generators of # we
assume that

o(P,...,P,_1)
d Rz
. H i Tot)

An easy computation shows that

(%o)

#0. (7.3)

J({)=Jacobian of (P,,.., P, _,, F}{)=

J

Bj(C) eii’-g’

i

1=

where B;e C[{]. It is clear that the exponential-polynomial G defined by

G(l)=AME) J()— Bu() F(O) (7.4)

vanishes identically on V,, since F and also J vanish on V, in a
neighborhood of {, and V, is irreducible.

A computation similar to that performed for the case n=2 in [11, Proof
of Theorem 2], which, for the sake of completeness, we will give below,
shows that if one of the polynomial coefficients of G is identically zero on
Vs, then there is an index je {1,.., N—1} and ye C* such that

Vom{Cecn3Aj(C)"’VAN(C)eiuNil’)'g:O} (7.5)

is not a discrete variety. By Lemma 7.3 it follows that V, is included in a
hyperplane of the form

(Av—4) (=Y,
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and we will be finished. When none of the polynomial coefficients of G
vanishes on ¥, we reach the same conclusion by the induction hypothesis
since the number of frequencies in G is N—1. This ends the proof of
Proposition 7.1, modulo the above-mentioned computation.

To show that we can reduce everything to (7.5) if one of the coefficients
of G vanishes identically on V', we need to make explicit the computation
of J and the coefficients Ay B, — By A, in (7.4), say, j=1. We have

8F___8F
a, o,
oP, P,
J()= L, o,
op, , 0P, ,
a, &,
AL 0F
Vo,

=z,
g Zi: A C)(aC’-HA,kA) L

hence

N 04 oA
AyB,—B Al_z A, C)[ANacl AIEC—N
k

ful.k—ﬂ.N.uAlAN].

Suppose this polynomial is identically zero on V, and we will have then
the identity, on Vg,

n 04, 0A y N
Z Ak<AN0—CZ_A18_Ck_>=[Z Z(AN,k_;“l.k)Ak:IANAI' (7.6)

k=1 k=1

In a neighborhood of the point {, we can assume 4, 4, does not vanish
and that, by (7.3), the algebraic variety V,, is parametrized by

C1=¢1(Cn),*~-’ Cn——lzq)nfl(CnL

and their derivatives are ¢, = do,/d(,=4,/4,. Introduce the holomorphic
function ({,) defined in a neighborhood of {,, by

A
V() = (@1(Ca)n 90 1(0a), ),
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¥ does not vanish in that neighborhood. We note that the polynomial
identity (7.6) on V, is equivalent to the fact that y satisfies the differential
equation
dy
dC,

This equation can be integrated immediately and yields

n—1
=ip((,) [ Y (g — Ay 03L) + (Ay,— )“1‘n):|'

k=1

n—1
Y({,)= —yexp [i Z ((Anva —41a) @08+ (An, — 44,) gn):l’

k=1

where y e C*. Hence we have locally on ¥, the identity

A,
Ay

— _yeil/l.v— /'-1)‘§’

hence V, is contained in the variety
A +yA et i=0
which is what we wanted to prove. |

Remark 7.2. We note that given an exponential-polynomial F with real
frequencies and P,..., P, a family of polynomials defining an algebraic
variety of dimension smaller or equal to one, if the variety V'=/{F=
P,=-:=P,=0} is discrete then the ideal generated by F, P,,.., P,, is
s.8.d. by the same reasoming as that of Theorem 5.3. The Proposition 7.1
gives us a way of deciding whether V is discrete or not.

We can equally prove, following the ideas from [11, Proofs of
Theorem 2 and of Lemma 1.27, the following proposition, which can be
considered an improvement on the Ritt theorem.

PROPOSITION 7.4. Let F be an exponential-polynomial of n variables of
the form

F(O)= 3, All)e™™,
k=1

where the A, k=1,.., N, are non-zero polynomials and the 4, are distinct
elements of C". If P is an irreducible polynomial dividing F (i.e., F/P is an
entire function) and not dividing all the polynomials A, then there are two
complex numbers y,y' and two distinct indices k, k' in {1,.., N} such that

P{)=y(Ae—Ap) L+



IDEALS 53

Proof of Proposition 74. We will prove this proposition by induction
on the number N of exponentials appearing in F. The result is trivial for
N=1, and let us assume it correct for N =2. The inductive step, for N >3,
is to assume it valid when there are at most N — | exponentials. Hence we
can assume that none of the A, vanishes identically on {P=0}.

Let us consider a regular point {, of the variety {P=0}, where we can
assume (0P/00,0{,) #0. We have n — 1 independent vector fields tangential
to {P=0} near {,, namely,

&, o, e,

We apply them to the exponential-polynomial F and obtain » — | exponen-
tial-polynomials J, ..., J, _ | also identically zero on [P=0}:

0P oA, 0P3A, (. P _ OP\] , .
J/(C): 2 I:E;—”?V_'G—CI:_*_IAk<Ak‘,‘6_"—_}~k‘”a"}>:|e e

“on

We want to see what happens if all the exponential-polynomials
AyJ;— By ;F have all their polynomial coefficients identically zero on the
variety {P=0}. One will have then, for instance,

ANBI“,"BN\/Alzo on {P:()} (77)

This identity means that on {P =0} we have

0P [ @A, AN OP[ 04, oA,
T(AN — —A1T>_T<A,’\"—_Al = )

v a e
({9 (S/ 3y (":/' €6y €6,

=iAd, A4y <(}'l.n — ) le‘_/_ ;-.v,,-) =
aq

5y Y

cp 6P). (7.8)

In a neighborhood of the point {, we car assume that 4,4, does not
vanish on {P =0} and that this algebraic variety is parametrized by

L.‘;;:(p(gl """ Cn 1 )

As in the proof of the previous proposition we introduce A4,/4, as an
auxiliary function on {P =0} in a neighborhood of {,, namely,
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The identity (7.8) reflects the fact that  satisfies a system of linear partial
differential equations of first order which can be integrated explicitly to
yield

W(Cl 3neey CnA 1) = Cei(ANi A

for some non-zero constant c¢. Hence we have on {P=0}, in a
neighborhood of {,, the identity

Ay —cA, eyl (7.9)

Since the variety {P =0} is irreducible (or using the same reasoning in a
neighborhood of each regular point) we see that (7.9) holds throughout
and P divides the exponential-polynomial A4, —cA,e**~*)'< By the
assumption about the case N=2 we see that P must be of the form
WAx—4,) {4+ as we wanted. On the other hand, if one of the exponen-
tial-polynomials A yJ,— By ;F does not have all its coefficients divisible by
P, then we can apply the inductive hypothesis and also reach the desired
conclusion about P.

It remains to consider the case N=2. It is clear then that after a linear
change of coordinates we can assume F has the form

F(z) = Ag(z) €' + A,(2), (7.10)

where A, A, are relatively prime polynomials and not divisible by P. Let
us assume P is not of the form yz, +y'. Write P as

P(z)= Y ufzy, 23,n2,) 2577 (7.11)
i—0

with r > 1, and let us consider a point z° such that

P(z%)=0,  uy(29,28,..,2°) #0.

The algebraic variety {4,=4,=P=0} has dimension less or equal to
n—2 and, again appealing to elimination theory, we can find a polynomial
R(z,, z4,..., z,), not identically zero, such that for all (z,, z,.., z,,) with
Uz, 23505 2,) # 0,

3z, € C such that
P(Zl, 225 Z350es Zn) = AO(Z], 235 Z35ue5 Zn) = Al(zlz- 225 23500 Z,,) = 0

<> R(2}, Z3sy 2,) =0. (7.12)
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Hence, we can choose the point z° so that

up(z9, 29,., 29 #0,  R(z%,29,..29#0, and P(°)=0. (7.13)

Consider the Sylvester resultant S'in C[z,,..., z,,, T] of the two polynomiais
Ao(zyvn 2,) TH A2 0s 2,) and P(zyy ) (7.14)

considered as polynomials in z,. Since for zl—_r‘f, I3 =z‘3’, z,=1z0 the
three polynomials in z,, P(z% z,,29,..,2%), Az9, -2,_3, ,&2,
A(2Y, z,, 23,... 2%), have no common zeroes the resultant S cannot be iden-

tically zero. We write it in the form

L
S(zys 230 2 TV =Y. Silzy, 2300 2,) T,
k=0

where S,(z(, 2350, 2,) £ 0.

We note that if uy(z,, z5,..., 2,) # 0 then we can always find z, such that
P(z,, z5,., z,) =0 by solving (7.11). Hence we can change slightly the
point z° and suppose that (7.13) holds together with the condition
Si(zY, 28,..., 29) # 0. By the same reasoning for each z, near z¥ we can find

z, near 29 so that
P(z),25,29,.,29=0 and ug(zy, 29,..., 29 £0.
Since P divides F, we also have

eizlA (‘1’ z, ‘(%, ’_ )+A ( 1’32’,’,'(3),..., ZO)::O,

n

which implies that the resultant S of the system (7.14) satisfies

L
0=S(z,, 20020, e™) = Y Si(z, 2%, 20 1 =0.  (7.15)

k=0

Since the function appearing in (7.15) is entire holomorphic in the variable
z,, and it vanishes for z| near = ,1, it will vanish identically. Hence it follows
that S,(z,, z%,.., z%) =0, which is false when z,=z% This contradiction
shows that P must be of the form yz, +y". |}

Ritt proved in [43] that, for n = 1, the quotient of exponential-sums can-
not be an entire function unless this quotient is already an exponential-
sum. The example (sin {)/ { shows the difficulty in extending this result to
exponential-polynomials. The best result known to date is the following
[6]: if F, G are two exponential-polynomials of »n variables (without any
restriction on their frequencies), such that their quotient F/G is an entire
function, then this quotient has the form H/P, where H is an exponential-
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polynomial and P a polynomial that does not divide any of the coefficients
of H; moreover, one can show that if G is an exponential-sum, then P is
equal to 1. One can in fact show that the example {sin {)/{ is really typical,
since by Proposition 7.4, every irreducible factor of the polynomial P is
affine and its direction determined by the frequencies in H, therefore by
those of F and G. We state this result in the form of a corollary.

CoroLLARY 7.5. If F, G are exponential-polynomials (with frequencies in
C") such that F/G is an entire function, then there is an exponential-
polynomial H and a polynomial P, factorizable in affine factors, such that

FO) HQ)
vie(” — = .
- € GO PO

We are going to show that the techniques we have developed allow us to
answer the question raised in Remark 5.3, meanwhile we need the following
result.

LEMMA 7.6. Let F be a non-zero exponential-polynomial of two variables
with real frequencies; let P be an affine polynomial of the form ol + >+ 7,
with (o, B)e R?\(0). If P divides F exactly q times, then the pair (P, F/PY)
defines an ideal s.s.d. in A,(C?).

Proof. Let us recall that thanks to a theorem due to Ehrenpreis and
Martineau [7,20]. we know that for any Fe 4,, P polynomial if P?
divides F then F/P lies automatically in 4.

After a linear change of coordinates of the form { —» A+ 7', A€ S0(2),
y'e€ C, we can assume P is a constant multiple of {,. We see that if G({)=
F({) 4, we have

G(()=G(0,5)+ L H(L, 5) Hed,(C)

The ideal generated by G and {, coincides with the ideal generated by
G(0, ¢,) and {,. On the other hand,

44
G(0, Cz)Zg@ F(C) |;|:0,
1

hence G(0, {,) is a non-zero exponential-polynomial of a single variable,
hence it generates an ideal which is s.s.d. in 4,(C).

It is casy to sec that if both f,({,) and f5({,) generate principal ideals
which are s.s.d. in 4,(C), then the pair ( f(({,), f2({;)) generates an ideal in
A p(CZ) which is also s.s.d.; this follows from the construction of “boxes” as
already done in the proof of Theorem 3.1. |
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We can now prove the following (compare with Theorem 5.3):

PROPOSITION 7.7. Let u,, i, be two distribution with finite support in R*
whose supports A, A, satisfy the condition (2.22). Then the system of
equations

Uixf=puxf=0

has the spectral synthesis property.

Proof. Proving the spectral synthesis property is equivalent, via the
Hahn-Banach theorem, to showing that every He 4,(C’) which locally
admits, near every point { e C*, a decomposition of the form

H=u g, +u-p-, (7.16)

where u,, u, are functions holomorphic near ¢, is in the closure of the ideal
generated by 4, fi, in A4,(C?).

Let 4,, 4, be the greatest common divisors of the polynomial coefficients
of 4, and f,, respectively. We can assume, by the Ehrenpreis—Martineau
theorem already mentioned above, that 4, and 4, are relatively prime. If
not, let 4 be their greatest common divisor, then one finds that H/4 is an
element of A p(Czj which belongs to the local ideal generated by the
exponential-polynomials f,/4, and f,/4, and we are in the relatively
prime situation.

Set F,=4,/4, and F,=i,/4,. and note that they are still exponential-
polynomials. Let .« ={L,...,L,} be the finite family of distinct affine
polynomials which divides both 4, and F, (affine polynomials which differ
by a constant non-zero factor are considered the same). Similarly,
sbh=1{M,,., M,} is defined with respect to 4, and F,.

We can write for convenient positive integers r,, s,, p;, 0,
o o
4,=4, ] L.  F=F]] Ly
j=1 i=1
b h
Ay=a5 [] M. F =F, T] M7,

J=1 i=1

— 1 1 — n{ !
and denote ¢, =min{r;, s;}, T,=min{p,, 7,}. .
A new application of the Ehrenpreis—Martineau theorem reduces us to

studying the pair of elements in A4,(C*) given by

b

a u b
(AiFi [T Ly~o [] My 42F; T] Ly o T M) (7.17)

j=1 =1 J=1 J=1
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which defines a discrete variety. We would finish the proof of the
proposition if we show they define an ideal ss.d. in A,(C?), since, as
pointed out in Section 1, this ideal will be closed and coincides with its
local ideal. In fact, this will show that the ideal generated by f,, 4, is also
closed and coincides with its local ideal.

The proof of Theorem 1 [11, pp. 138-139] shows that to show the pair
(7.17) is s.s.d. it is enough to show that all the pairs obtained by taking a
factor from the first product and a factor from the second also generate
s.s.d. ideals.

The pair (47, ii,) is s.s.d. since Remark 7.2 applies to this case. The pair
(F|, F;) generates an ideal that contains F,, F, hence it is s.s.d. by
Theorem 5.3. We are left to consider the pairs of the type (F}, L,) when
t;<s;and (F, M;) when 7,<p;, since all the remaining cases are similar.
By Proposition 7.1, the definition of </, and (2.22) we conclude that L,
does not divide F|; this exponential-polynomial is in the ideal generated by
Fy and L;, and it follows hence, as pointed out in Remark 7.2, that this
ideal is s.s.d. Let us consider finally the pair F|, M;; they generate an ideal
containing M; and F,/M?, hence we can apply Lemma 7.6 and conclude
that it is ss.d. ||

We give now the solution to Problem 2 of Section 4 when n=1.

ProrosiTiON 7.8. Let F,,.., F, be m exponential-polynomials of one
variable with rational frequencies and without any common zeroes, there exist
m functions G,,..., G, in A,(C) such that

FlGl+ e +Fme=1.

Proof. By the remarks from Section 1 it is enough to show
k>0, S |F(z)|zke ¥,  :zeC. (7.18)
1

We will assume, as always, that the frequencies are all integral and non-
negative so we can associate to F,,.., F,,, polynomials P,,.., P,, of two
variables, P/(z, e”)= F,(z). Consider, in C, the system

CZ—eiél’ Pl(Cla Cl)s---’ Pm(Cl’ CZ)

The algebraic variety defined by the polynomials P,,..., P, has dimension
0, hence there are constants C, k,, K, >0 such that

C=Y P
1> C= Y PO e
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On the other hand, for ||{|| < C the functions {,—¢*!, Py,.., P,, have no
common zeroes, hence there is a global estimate
S 1P+ 1 e > k)
’ } (14 [ ZI)7™

i=1

from which {7.18) follows immediately. |}

PROPOSITION 7.9. Let F be a non-zero exponential-polynomial of one
variable with rational frequencies, then its zeroes satisfy (4.4).

Proof. We can assume as above that F has entire non-negative frequen-
cies, and hence for some polynomial /e C[{,, {,] we have f(z, e”)= F(z).
We can also assume f has no multiple factors in its decomposition in
irreducible factors in C[{,, (5]

If /,, f, are two distinct irreducible factors of f then there are constants
C, k, K such that

Il > C= /(O + /(D] =k I

which implies
21> C = fi(z. e9)] + | falz, €7)] 2 0e " 27
for some positive constants J, D. Hence
20> C filz ef)=0=|fuz. %)) > e -

which says that outside a compact set the zeroes of f; stay away from the
zeroes of f,. Therefore it is enough to prove the proposition when f is an
irreducible polynomial.

Consider the polynomial ge C[{,, {,]:

. o ¢
g(g)—av + i f (7.19)
61 062
We have
g(z, €")=F'(2)

We want to show that the variety { /= g =0} is discrete (hence finite). If
not, / would divide g, and by degree considerations there is A€ C such that

g=If (7.20)
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If ##0, we have
of

ac,

(Clwo):;:f(CIao)

which implies, since f is a polynomial,

In this case, since f is irreducible, f is the polynomial {, and F has no
zeroes. Suppose now that 4 =0. We can write

AO=B) 5+ with B £ 0.
By (7.19) and (7.20), with =0, we have
B'({,)+im B({,)=0. (7.21)

Since B is a polynomial this implies that m =0, and hence (7.21) says B is
constant. Therefore f is also constant in this case. Hence we can suppose [
and g have only a finite number of common zeroes, therefore we have ¢, &,
K >0 such that

ISl > e=F(O)| + (0] 2(—1+—“m§,

which in turn implies
lz| > c= |F(2)| + | F(2)| = 6e ~ 7P,

This last inequality implies also that the distinct zeroes stay away from
each other (and the only multiple zeroes occur in |z| <¢). |

8

We propose to study here systems of exponential-polynomials in C* with
frequencies in N*, always under the assumption that they define a variety ¥
discrete or empty. We know, by the example of Section 4, that in general
they do not generate an ideal s.s.d. in 4,(C’). We will also try to show why
this example (cos {,, cos {,, {, — A{;) is essentially the only type of example
where the property of being s.s.d. fails. This study will allow us to introduce
a new method, based on the concept of geometric duality, which looks
promising for use in a more general context (in particular, studying
analogous systems in more dimensions).
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We have seen that in the above example the difficulty lies in the fact that
the three functions do not depend on the variable (5, and this leads to the
following definition.

DEerFINITION 8.1, Let Y be an irreducible algebraic variety of dimension 3
in C® (where the coordinates are abways denoted ((\, 5, (3. X, X2, X3) and
Y is not contained in {X,X,X;=0}), we say Y is incomplete if there is a
coherent change of coordinates such that in the new coordinates Y can be
defined by a system of equations where the variables (i, X5 do not appear
explicitly.

This definition means that if Y is incomplete there is an irreducible curve
Y in a 4-dimensional space (i.e., the space given by {; = X; =0 in the new
coordinates) such that Y is fibered by linear varieties of dimension 2
over Y.

A way to decide whether Y is incomplete is using a family # of pairs of
differential operations, .# invariant under coherent changes of coordinates,
namely, the Q-vector space generated by the three pairs (6/0¢;, X;¢/0X,),
j=1,2, 3. If Yis incomplete then there is an element of .# leaving invariant
the ideal /(Y) of Y. For every element of # leaving invariant /{Y) we can
check whether its kernel contains a system of generators of Y, and all we
need to compute is the dimension of the algebraic variety defined by the
elements in this kernel; if it is 3 then Y is an incomplete variety.

We can state the following theorem:

THEOREM 8.1. Let F,,..F, be exponential-polynomials of three
variables with frequencies on N* defining a variety V of dimension <0.
Assume that the variety Y associated to them via (3.3) has dimension at most
3 and no irreducible component of Y is incomplete. Then there is a constant
0> 0 such that

Vpe(C*)  |1—pl <&=dim 1" <0, (8.1)

and hence the ideal generated by F, ..., F,, is s.5.d.

Remark 8.1. No condition is imposed on the irreducible components of
Y of dimension less than or equal to 2 if Y itself has dimension <2, then
the conclusion of the theorem holds.

Proof of Theorem 8.1. By Proposition 3.2 to prove that the system is
s.s.d. one can assume Y is irreducible, but in fact one can assume the same
thing to prove (8.1). Namely, if W is an irreducible branch of dimension
>1 of V'” for some exceptional p, then the variety Z= {({, X)e C* (e W,
X, = p,-e’ff. j=1,2,3} is contained in one of the irreducible components of
\ 4
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We will therefore assume that the p,,..., p,, defined by (3.2) generate a
prime ideal 2 in C[{, X]. Assume first that no affine polynomial of the
form r-{ -y, re @*\(0), ye C, belongs to 2.

Consider an exceptional value p and a branch W of V'*), dim W > 1. We
will show that W is a line and furthermore there is only a finite number of
possible lines to choose from. This will prove (8.1) as done in Theorem 5.3.

By Proposition 2.4 there exists r € @*\(0), ye C such that

We{r{—y=0} (8.2)

We make a coherent change of coordinates in C° so that the equation of
the plane containing W becomes (| =y". The algebraic subvariety of C°,
Y {{i =y}, has dimension at most 2 by the hypothesis made on the ideal
#. Let ¢q,=0,..,4,,=0 be the equations of Y in the new coordinates
(¢, X'). There is an element p’ e (C*)? related to p as X" is to X such that,
in the new coordinates,

W {GP(Ls, () = gy, (5, (5, pre”, phe™, phe™)=0,Y}. (83)
The algebraic subvariety of C*
(g0, 65, sy phe, Xy, X3) =0, j=1,.,m} (8.4)

has dimension <2, hence a new application of Proposition 2.4 gives us
(55, 53) € @%\(0), y” € C such that

We {n0+s0=y" 0 {li=y"} (8.5)

We see that W is indeed a line.

We need now to show that the number of possible directions of W is
finite. Since the variety V is discrete it is impossible that ali the polynomial
coefficients of all the exponential-polynomials F,..., F, vanish identically
on W (recall that the polynomial coefficients of the F{*’ differ from those o
F; only by non-zero multiplicative constants). By Proposition 7.1

We{(Ai-1){=a}l,

where A and A’ are two distinct frequencies of one of the F; and xeC. W
can now redo the above proof starting at (8.2) with r replaced by 41— 4
and y by a. We arrive at the situation (8.3) where we see that the frequen
cies of the exponential-polynomials G)({, {3) depend only on those ¢
F..,F,.

By Proposition 7.1 only two things could take place, either W is con
tained in a plane of the form (u, — u%) {5+ (us — p3) {5 = B, where (p,, -
and (u3, u3) are two distinct frequencies of one of the G/, and this fixe
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completely the direction of W among a finite number of directions, or every
polynomial coefficient of all the G{*) vanishes at W, and this implies that
the variety defined by (8.4) has dimension 3 in C*, which is impossible.
Now fix the direction of W (it is after all one among finitely many
possible ones), and we want to see that the parameters «, § that appeared
above are also in a finite set. We make a new coherent change of coor-
dinates so that in the new coordinates ({', X"), W is given by the equations

W:ll=o, (=f.

Let ¢q,,.., ¢, be the equations of Y in the new coordinates. There is a
p’ € (C*)? related to p as X' is to X such that

g, pe*)=0  in Wiorj=1,.,m (8.6)
Let us write the equations from (8.6) in the form

g;=Y (£ (phe™) A; AL, Ly, pre™s, phe) =0,
k.,

The identities (8.6) are equivalent to

Vi, k! Aips=0 if {{=a,0=p" (8.7)

Consider the algebraic variety Z in C* defined by
Z={A,; 01, 0, X1, X3)=0 VjVk i}

This variety has necessarily dimension <1 since dim Y<3. If dimZ=1,
the Y coincides with an algebraic variety fibered over Z and it is an incom-
plete variety. This case has been excluded by hypothesis, hence dim Z =0,
hence Z is a finite subset of C* and this says that «', §’ take values in a
finite set. Let us remark that we have also provided in this case a descrip-
tion of the exceptional set, namely, as a finite union of subsets of (C*)* of
the form {p" =¢,, p"?=c,}, where v, v,€ N*\(0) are Q-linearly indepen-
dent and c,, ¢, are two complex numbers distinct from 0 and 1. Since
(1, 1, 1) does not belong to the algebraic set we have just described this
proves (8.1) in this case (i.c., without appealing to the limit argument of
Theorem 5.3).

It remains to consider the case where the ideal & contains an affine
polynomial of the form r-{ —y with re @3\ (0), y e C. In this case, for every
such re @3\ (0) there is a single y, unless the ideal # contains the function
1 (in which case there are no exceptional values p). If there are in 2 two
affine polynomials ;- { —y;, r5-{>— v, with r|, r, Q-linearly independent,
then every possible branch W of dimension > 1 of ¥’ would always be the

607°60°1-§
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same line and we see directly, since V is discrete, that (8.1) is satisfied. In
any case, let us suppose that r-{ —ye# and make a coherent change of
coordinates so that in the new coordinates we can take as generators of the
ideal #

{’1_’)}/7 q,( /254”3, ’1’szan), jzl,..., M (88)
Consider the exponential-polynomials
gy, G5, phe”, prety phe),  j=1,., M. (8.9)

They form a family of exponential-polynomials of two variables with
integral frequencies and defining a discrete variety in C? by Theorem 5.1,
they generate an ideal s.s.d. in 4,(C*), hence the same holds for the ideal
generated in 4 ,,(C3) starting from the polynomials in (8.8). Therefore our
original ideal 1s s.s.d. But this reasoning does not prove the more refined
statement (8.1); this is what we are going to do now, supposing, to simplify
the notation, that in the original coordinates Y was generated by the
polynomials (8.8).

Let p be an exceptional value in (C*)? and W an irreducible branch of
V) dim W > 1. Consider the algebraic variety Z'*"" in C*:

{q_,-(Cza (s, P]eigl’ X,, X5)=0,j=1,., M} (8.10)

The dimension of this variety is at most 3, on the other hand there is at
least one value of p, (p, =1) such that this dimension is at most 2 since V
is discrete.

Using elimination theory one sees that the condition dim Z*V=3 is a
non-trivial algebraic condition on p,, hence this condition can be satisfied
by at most a finite number of values of p,, all different from 1, and there is
hence ' > 0 such that

[1—p| <d =>dim Z¥"<2.

(If we write everything in terms of the original p, we see that the set of
exceptional values is contained in the union of a finite number of algebraic
varieties in (C*)* which do not pass through (1,1,1) and have for
equations p* =c, ve N?\(0).)

Assume now that dim Z”V <2, then Proposition 2.4 applies and it
follows that W is a line. It is impossible that all the polynomial coefficients
of all the exponential-polynomials g/((,, {5, p,e“', p,e®, p;e®) are iden-
tically zero on W, for if they were dim Z*"'=3. We find ourselves in the
same situation as before since it is clear now, by Proposition 7.1, that the
number of possible directions of W is finite. In the same way we arrive at
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the fact that W belongs to a finite family of lines. This ends the proof of
Theorem 8.1. |

We still have to consider the case where the algebraic variety Y, which
we assume to be irreducible, has dimension bigger than 3. Since we assume
V is discrete it follows in this case that dim Y = 4. The variety Z of singular
points of Y then has dimension less than or equal to 3, and let us consider
a system of generators g,,..., g, of the ideal /(Z) and the corresponding
exponential-polynomials G,,.., G,. It is clear that the analytic variety
{G,= -+ =G,=0} is contained in ¥, hence it is discrete; on the other
hand, if the G,..., G, generate an ideal & ss.d. in A4,(C*) this property of ¥
is independent of the choice of generators of I(Z).

THEOREM 8.2. Let F,,..,F, be exponential-polynomials of three
variables with frequencies in N°, and assume that the variety V is discrete (or
empty) and that the algebraic variety Y is irreducible and dim Y =4. If the
ideal & is s.s.d., then the ideal I generated by F,.., F,, is also s.s.d.

Remark 8.2. Tt is clear that if .7 is s.s.d. then % is also s.s.d.

Proof of Theorem 8.2. The idea of the proof is to add to the exponen-
tial-polynomials F,... F,, a new one, u-{=u,{, +us{;+u{y, with u
generic, show that one can arrive at estimates of the type mentioned in
Remark 3.3, and, finally, using a method of geometric duality eliminate the
parameters u.

Consider in C(u)[{, X] the ideal # generated by p,..., p,., 4, where
Diss P are the polynomials associated with the F,,.., F,, by (3.2). We
decompose, in C(u)[{, X], the ideal ¢ in primary components #..., £
and denote (q;,,., 4,,) a family of generators in C(u)[{, X] of the radical

#,. Off an algebraic variety in u, the algebraic subvarieties of C® defined
by

YiO={({, X)eC g (), X) =+ =g, (u)(, X)=0} (811)

are well defined and of dimension <3, the numbers g, (#) being chosen as
function values of ¢;, belonging to the allowable arguments [48]. Denote
A, 150 A, all the 3x 3 minors of the matrix of partial derivatives of the
polynomials ¢,,({, X) with respect to the variables {, X; at least one of
these minors does not belong to the ideal & Hence, outside an algebraic
variety in u, the algebraic varieties defined by

X eColg () X) = =q,, (), X)

8.12
= A, )l X)= " =4, ), X)=0} o

are well defined and of dimension less than or equal to 2. The varieties we
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have introduced in (8.11) play the rble of the varieties Y{',... considered at
the beginning of Section 6 (on the other hand, here the defining equations
depend on parameters), while those introduced in (8.12) play the réle of
Z\o,....

Let us consider now the exponential-polynomials Q;(u)({), j=L.... 1,
k=1,.., n;, defined for generic values of u by

O, (u)(0) =g ()L, ). (8.13)

All the minors of rank 3 of the matrix [|0Q;, /E?C I« can be written in the
form h, (u)({, e*), where h, (u)({, X)eTu)[{, X
We can at this moment ClaSSlfy the ideals j, into two classes:

(a) those for which the polynomials h},‘,e\/}/ for all t;

(b) those for which at least one of the polynomials /;, does not
belong to \/Z

In the class (b}, for u generic, the algebraic subvariety of C¢,
(g, X)=0Vk, j; (), X)=0Vt], (8.14)

has dimension <2.

In order to study the exponential-polynomials depending on parameters
associated with the polynomials in C(u)[{, X] appearing in (8.12) or in
(8.14) (class (b)), we need the following lemma.

Lemma 83.  Let S((),..., Syll) be exponential-polynomials with frequen-
cies in N* and coeﬂzczents in C(u)[{]. Assume that the ideal generated in
C(u)[L, X] by the polynomials S,((, X),-s Syll, X) contains a power of u-{
and that the algebraic subvariety of [C(u)]® that these polynomials define
has dimension <2. Then for u generic

Vpe(C*), (8.15)
dim{{ e C*: S, (u)({, pe®) = -+ = Sp(ul{, pe®) =0} <0.

Proof of Lemma 8.3. Let us consider a value u such that the algebraic
variety defined by the S;(«)({, X) has dimension <2 and that u,, u,, u; are
Q-linearly independent.

Let p € (C*)® and W be a possible irreducible branch of dimension >1 of
the variety

20 = (1) pet) =+ = Sy (u)(C. pet) ) =0.

By Proposition 2.4 we know there are 1e @*\(0) and xeC such that
We {i-{—a=0}. Let us make a coherent change of coordinates so that



IDEALS 67

this hyperplane becomes (| =a'. Consider the exponential-polynomials
obtained by replacing {; by o’ and et by ¢® in the equations defining 2’
in the new coordinates. Since the associated algebraic variety remains of
dimension less than or equal to 2 in C* we can apply once more
Proposition 2.4, and there is then a line with rational direction numbers in
the plane of the variables {5, {% which contains the projection of W into
this plane. Returning to the original coordinates we have two elements
4, e @3\ (0), Q-linearly independent, and two complex numbers a, § such
that
Well-{—a=u{—-f=0}

But on the other hand, due to the hypothesis of the lemma, we have also
Wcilu- (=0}

The Q-linear independence of u,, u,, u, implies that this branch W must be
of dimension 0, which shows there cannot be any exceptional values p. ||

We are hence exactly under the conditions needed to apply Proposition

3.3 to the ideals ./ ¢ of class (b) or to the ideals associated to the
equations in (8.12).

To study the exponential-polynomials corresponding to the generators of
an ideal \/:{ in the class (a) we need several lemmas.

Lemma 8.4. Let py...,p,,€C[{, X] generate a prime ideal of dimension
4 in C° and assume that the variety V associated to the corresponding
exponential-polynomials F ..., F,, is discrete. There exists a finite family F
of non-zero elements of Q° such that for u generic, pe(C*)’, and W an
irreducible branch of positive dimension of V"' {u-{ =0}, there are
lo€F, v=y(p, Ao, u)eC such thar W is contained in the hyperplane
Ao C—v=0, where y satisfies the conditions

Y F A )=0
Y (e“p™) B, (u)=0.

The coefficients A, ,,, B, ;, belong to two finite families of polynomials
(depending on the index 1y€ F).

(8.16)

Remark 8.3. We see that the lemma implies the existence of polynomial
Q and of a finite family # of holomorphic functions such that if Q(u)#0
and wu,,u,,u; are Q-lincarly independent, then the exceptional p
corresponding to such a u satisfy an equation of the type

p = h(u)

for some A, % and some he .
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Remark 84. When u,, u,, u,; are fixed and Q-linearly independent, the
variety defined by p,=-- =p,=u"{=0 does not have incomplete
irreducible components. It is then natural to find a description of the excep-
tional set as we have done in the proof of Theorem 8.1.

Proof of Lemma 8.4. When u has been chosen generically, the dimen-
sion of the algebraic variety Yn {u-{}=0is <3. Let W be a branch of
V@~ {u-{=0}, dim W> 1. By Proposition 2.4 there are 1€ @*\(0), yeC
so that W is the line of equations

W={A-{—y=u({=0} (8.17)

(recall that u,, u,, u; are Q-linearly independent). Since W is a line we can
use Proposition 7.1 and conclude, thanks to the discreteness of V, that A
can be replaced by an element iye #, # a finite subset of @°\(0).

We can assume, for instance, that

A=uyhos—Usho, #0

and parametrize the line W using the variable {;:

Caltahos—tzhos) —yus

(= A

=a; {3+,

Calusdoy —uiAos) +yuy

(= A

=B+ B,

Let us make explicit the fact that F{*) vanish identically on W:

Y, Apfailstoy, Bilat Ba (s) pretikza —kua)d

ke N3
% ek + ks +k3) = (3, (8.18)

In order to group the terms in (8.18) following the frequencies of the dif-
ferent exponentials in {;, one must find those k € N* such that

arky ok, +ky=0.

This condition is equivalent to

U /10,1 k
uz ).0_2 k2 :0. (8.19)
Uy Aoy ks
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The Q-linear independence of the u, shows that (8.19) is satisfied if and
only if

k=ri,, reQ. (8.20)

The expression (8.20) defines an equivalence relation on the family of
indices k& appearing in (8.18). This leads to a finite number of equations
(obtained after grouping together the terms in the same equivalence class):

Y B, ) pP Ty =0. (8.21)

The index s in (8.21) corresponds to the equivalence class, and the sum
takes place along a finite collection of rationals r. The B, . € C(u)[y].
After chasmg the denominators of the r and of the B, ,, we find
polynomials B, ,eC[u][z, T]. Since p™e”#0 we can assume these
polynomials are not divisible by T. Fix i,e %, if there is a polynomial
Be C(u)[z, T] which divides B, , for all j and s, this polynomial canhot
be a polynomial multiple of 7, and this implies that for a generic value of
u, B(u)(o, e”) has a zero y,, hence the line W= {i,"{—y,=u-{=0} is
included in V'~ {u-{=0} and a fortiori in ¥, which is impossible. Hence
we can use elimination theory and find, for the given i,e.#, two finite
families of polynomials A4, , , B, ,, € C[u] such that the equations

Bj./l[),.\'(u)[:s T] = 0 Vj VS

imply, for generic u,
ZAk,n(u ZB“D T*=0.

This ends the proof of Lemma 84. ||

Lemma 8.5. Let X be one of the ideals \/;, introduced above having the
following properties:

(i) X has dimension 3 in T(u)[{, X] (this corresponds io the fact
that for generic values of u the variety defined by (8.11) has dimension 3 in
CG).

(it) A" contains an irreducible polynomial in C(u)[{,] of the form
A C e+ AO s
(1) A" contains an irreducible polynomial in C(u}[X,] of the form

=B, XY+ +B,.

Then we have n=1 and there is a € C* such that Ay=aA,.
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Proof of Lemma 8.5. The ideal ) contains the polynomial - { since
this polynomial belongs to ¢, hence " contains also the polynomial

A (—uxl ~u303)"+ 0+ Agul.

Since " is a prime ideal, it contains also an irreducible factor in
C(u)[{;, {5] of the above one, i.e., of the form

3 =Z AS,Y{%C;'

The ideal generated by =n,, n,, n; is prime and also has dimension 3,
hence it coincides with J¢". Since u-{ e #", we can find polynomials y,, x,,

x3€ C(u)[{, X] such that
U {=xm+xm,+ x373, (8.22)

the parameter u being generic we can choose X, {;, {5 such that n,(X,) =
73({5, {3) =0. The identity (8.22) is then an identity between polynomials in
¢, (coefficients in C(u)) and hence the degree n of =, is exactly 1.

Using this new information we obtain

n3(0s, {3) = A (—urlo—us{3) + Aguy.

Recall that the original polynomials p,,..., p,, have coefficients in C and
define an irreducible variety of dimension 4 in C° Using elimination we
obtain a non-zero polynomial feC[{, X,, X5] in the ideal generated by

D1y Pm» hence f€ A also. There are i, Y5, 1€ C(u)[{, X such that
[=2 1 XX =+ mpf, + 15y,

This identity implies that the polynomials f,, are in the ideal generated by

ny, n5 in C(u)[{]. Fix one of these polynomials £, and set

A u u
C1=ZQ, C3=“‘—2C2'——1C1, (,eC
i Us Us
We will have
f:l1,85,45)=0  as a function of {,. (8.23)

This identity tells us that the coefficient ¢ of highest degree in {, in (8.23)
and the coefficient n of lowest degree must be identically zero (for u
generic). Now, &=¢({,, u,/us), where £({,, T) is a non-zero polynomial
with constant coefficients. Similarly for n=n({,, u,;/u;). Compute the
Sylvester resultant of &, n with respect to the first variable. There are two
possibilities:
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—either this resultant is trivial, meaning that at least one of the two
polynomials ¢, n does not depend on the second variable (in this case (| is
one of the zeros of this polynomial and hence it is in C, which is the desired
conclusion),

—or both polynomials depend on the second variable and hence the
Sylvester resultant gives a non-trivial relation between u,, u,, u; which
must be identically zero for u generic, and this is clearly impossible. ||

Let us go back to the proof of Theorem 8.2.

If ./ .# is an ideal of the class (a) and dimension 2 in C(u)[{, X1, then we
are in the situation of Lemma 8.3 and hence Proposition 3.3 can be applied
to the system of exponential-polynomials with parameters corresponding to
the generators of /2.

To show that the same conclusion applies in the case \/2 is of class (a)
and dimension 3 we will show that after a coherent change of coordinates
the hypothesis of Lemma 8.5 holds. Assume this claim for the moment, the
ideal contains the polynomial «-{, a polynomial of the form {, +a, and a
polynomial with coefficients in C(u) of the form B, XY+ - + B, which
are then its generators.

Let us consider the element of C(x)

r=Bye N+ - +B,.

This element cannot be zero, otherwise for u generic, the subvariety of C*
defined by the exponential-polynomials associated to \/Z would have as
equations

C1+a:O
u-{=0.

We have here a line contained in ¥ n {u-{ =0}, hence in ¥, contradicting
the fact that V is discrete.

The ideal, in A,(C%), generated by the exponential-polynomials
Q; (u)({) which corresponds to the original generators of |/ contains
then the element r(x), hence we have the estimation

|R(u)|

= Dp($) v C3
e e

i [Q;x(u)() =0
k=1

for a convenient choice of positive constants §, D, k, where Re C[u].
Therefore it remains to show that in the case we are considering the

hypothesis of Lemma 8.5 holds. The parameter u being generic, consider a

regular point ({,, X,) of the variety (8.11), assume ({,, X,) € Q, and set

pe=Xope P05 k=123
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Consider the intersection of the algebraic variety Y{* with the analytic
variety {X, = p,e™, k=1,2, 3} in a neighborhood of the point ({y, X,). By
the definition of p this intersection is not empty. We want to see that the
analytic subvariety of C* defined by {0 (u)({)=0Vk} has a branch of
dimension >1 passing through the point {,. Since the point ({,, X,) is a
regular point of the 3-dimensional algebraic variety Y{“, the analytic
variety can be locally defined by exactly three equations, say,

Q)= = Qi (u)({)=0.

If this variety were discrete at the point {;, the Jacobian det 0QR A8 4.
cannot belong, in the ring of germs of holomorphic functions at {,, to the
ideal generated by the Q!4 (this follows from the residue theorem, see, e.g.,
[9, 217). But, this Jacobian can be written in the form h({, pe™) where the
polynomial A({, X) belongs to the \Fjg; hence the variety V' n {u-{=0}
is not discrete and the point ({,, X,) is a point in an exceptional variety
corresponding to the exceptional value p=Xye . If we apply now
Lemma 8.4 we see there is 4,6 % such that

Y, (Ao Col Ay () =0 (8.24a)
k
2 (XY By y(u) =0. (8.24b)

k

Let us consider the polynomial in C(u)[{]

H(Z (Ao O Ay fu )) (8.25)

Ao k

For u generic, this polynomial vanishes on the variety ¥{*), it belongs hence
to the ideal \/Z this ideal being prime, one of its 1rreducible factors
already belongs to \/;{’,-, and we can assume this factor is given by (8.24a).
On the other hand, one can assume without any problem that all the
entries of 4, are integral. By Lemma 8.4, the second equation (8.24b) is also
satisfied at every point of Y!“)n Q. After a coherent change of coordinates
we are in conditions to apply Lemma 8.5, which it what we wanted to
show.

What we have just done was to follow the method described in Section 6
which allows us to verify whether Theorem 3.1 is applicable, and we con-
clude that the properties stated in Proposition 3.3 hold for the exponential-
polynomials with parameters F,..., F,,, u- (; this means, let us recall, that if
P denotes the weight in C°, P(¢, X)=log(1+ ||| + | X|)+ |Im £, then
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there is a non-zero polynomial Re C[u] and three positive con-
stants B, B, K such that, for 0<e< 1, C>0, if we define § and
D by

R )
[ R(u)] ok D=KC+B,

AT

every connected component % of the open subset of C°

S.F,.. F

1

130, D)
m 3
1= {(C« X:X opl+Y | Xe =1+ |u-{] <5e”DP‘5“""}
1 !
satisfies the property
YV, X)e® Y X)e%:
=L+ X = X)) <ee PN, (8.26)

We proceed to eliminate the dependence on u from all the estimates.
First we want to show that R in (8.26) can be chosen to be a homogeneous
polynomial. Set, for e C,

R(Au)=Ro(u) i+~ + Re(u) i"**

Ri(u) o Ru)
Ro) " " +Rotu)")'

=R0(u)z"<1 +

Define

Ro(u)

A= T T

for some A, L sufficiently large so that [A(u)| <1 and

I

| R(A(u) u)| >W

| Ro(a)|"+ 1. (8.27)

If we take now, for u fixed.

|R0(u)|n+l X
= &y
247(1 4 uf)k 2

0,=8

then every connected component of S, (F;,.... F,.; d,, D) is contained in
a component of SM,,,M(F“..., F, ; 0(A(u) u), D). On the other hand, because
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|A(u)| <1, every connected component of S (F,,.., F,;d,, D) is contained
in a component of § sy (F 1y Frpy 64, D). This shows that after modifying
the constant K in (8.26) we can assume R is homogeneous.

Our idea of the geometric duality is based on the following lemma.

LEMMA 8.6. Let R be a non-zero homogeneous polynomial of n variables.
There are a finite number of points .., %y of the unit sphere of C",
generating distinct (complex) lines in C", a constant v >0, and a sequence of
positive integers V..., vy, such that for every {,, (ol =1,

max |R(u)| 2 n(d(Lo, 2, ))" -+ (d(Coy )™ (8.28)
bl =1

Here the distance d in the unit sphere is defined by
di,)=(1-10-01H'?
(it is really the distance between { and the circle {{'e”: 0 e R}).

Proof of Lemma 8.6. We factorize R in C[u], there are a finite number
of distinct linear factors u- «,..,u-ay, |la,| =1, and we can write

R(uy= (u- o) (u- o)™ Q(u),

where O does not admit any linear factor.

We now prove the lemma by induction on the number N of linear fac-
tors.

We consider first the case N =0. The function on the unit sphere "'

{o—»max{|R(u)|: u-{,=0, flull =1}

is lower semicontinuous, it is also strictly positive since given {,, the
polynomial u-{, does not divide R{u). It follows that it has a positive
lower bound in §7"~ L,

Suppose the lemma is correct when R has at most N — 1 distinct linea
factors. There is a constant 7 >0 and positive integers v,,.., v, such tha
for every {,e §" !

u- ()‘

N

max u- ap| - fu- ap | |Q(u) 277 [ dllo, o
2

hul =1 :

There is an element u, achieving the above maximum. By the mean-valu
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theorem there is a constant 0<g <4 which depends only on the
polynomial R such that

N
VueC”", ”u-uo” <o “ d(£09dj)
j=2

. (8.29)
= e Ll e a4 1Q(w)] > g [1 dCos )"
We distinguish two cases:
. o ad
(1) lug - oy = Z d(Co> 2 H 0’9‘)

_

In this case one can immediately estimate |R(u,)|, with v, =2k,
v,=(k,+1)¥ forj=2,., N

o N .
(i) lu‘a1)<z d({o, 2y)* n d(Co» %)

Consider v=uq+1(d; — (&, {o) {o). Take 1=(a/3) 1), d(lo. ;)" One
verifies that v-{,=0 since uy- =0 and |{,| = 1. Moreover

[v-ay ] =lug oy + (1= o~ {ol?)]
2(%—9_) CO’ H d 605 % .

Hence, thanks to (8.29), one finds

N
|R()] = const || d(ly, )",
j=1
with v, =2k,, v,=(k,+1) ¥, for j=2,.., N. Using that |v]|<2 and R is
homogeneous we arrive at (8.28). |

Given an element xe S* ', let Ca denote the complex line through the
origin and « and dist({, C«) the Euclidean distance from a point { e C" to
that line. If { 20 we have

dist(¢, C2) = |C] d( - )

Thanks to Lemma 8.6 we can construct in C* a family of distinct lines
Cay ey Coty, oc,eSS, associated with the homogeneous polynomial R from
(8.26). Choose a point w, e C* which does not belong to any of these lines.
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Reasoning in the same way as we have done above but adding this time to
the exponential-polynomials F.,..., F,, the linear polynomial - ({ — ), we
obtain (8.26) with a homogeneous polynomial T(«) in place of R(u) and
u-({~wp) in place of u-{. Again by Lemma 86 we find a family
Birs Brre S° associated with T. The two lines wy+ Cf; and Cu, either
intersect at a single point or they are at a strictly positive distance in C°.
Therefore there are two constants ¢ >0, £>0 such that

dist(Co, v {0l 2 E}, 0o+ CBn {ICIZEN 20 V) VK

Hence, if we denote by v,,.., vy the integers corresponding to R and
Uy fyy those corresponding to T by Lemma 8.6, there are three constants
o, E, L> 0 such that

e ) f o )

o A= alt”
o

2(1+ncn)‘* 0

We can now conclude the proof of Theorem 8.2. Given C >0, 0<e<1,
consider a connected component 4 of the set S(F,,..., F,,;d,, D,) for a pair
{0, D) which will be chosen later on. Since, by the hypothesis of Theorem
8.2, the ideal & is s.s.d. there are constants &,, D, tied to ¢, C, and & such
that if §, < 1d., D, > D,, and ¥ does not satisfy (1.2), then there is a point
{o € ¥ verifying the condition

1Ll = E+1  (Eis the constant in (8.30))

y 1 ]
Y 1 4,(Lo, €)= 5 Sy Parti),

where 4, are the 2 x 2 minors of the matrix {|dp,/d({, X)I.

Consider the point ({,, ¢“)e C° As shown when going from (3.18) tc
(3.19) we can see there are two constants #,, K, tied to d,, D, and the
polynomials p; such that

dist((Z, X), (Lo, €°°)) < e~ F17te0)

:Z 14,48, X) )% Sy ~Drollo),

Let us choose, for the moment, arbitrary n,<4n,, K,> K,. Except fo
possible improvements in the choice of §,, D, (depending in 7,4, K;) on
sees that one can find a point ({!, X') of the algebraic variety Y such tha

dist((Co, €%°), (£, X)) < noe KoPtoXo),
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the same weight P as in Theorem 3.1. (This follows also from the theorem
of Lojasiewicz [38] in the algebraic case.) One chooses #,, K, (this choice
depends only on #,, K,) such that if

dist(('g‘, X! L (& X)) < e K-P(Ix!) (8.31)
then
dlSt((C’ ‘X'), (CO‘ ei;))) < /B e K r,(;”)‘

This is possible since n,<3n,, K, > K,. It follows that every point of ¥
satisfying (8.31) is a regular point of Y.

Since the variety Y has dimension 4 and the spectrum V is discrete, the
functions p,,..., P, @1, @1. @5 (defined by (3.7)) do not have any common
zero in the ball (8.31).

Let u,veS°, consider the two families of exponential-polynomials
(Prsees Pous @15 @2, 93w L) and (P vy Py @14 025 @32 07 ({—wy)), and
apply (8.26) with e=n,, C=K,.

For the first family we have two possible cases:

(i) either 3 (@' X) + |u- ' = B [R(u)| nhe KK+ BPCYD for g
convenient f3;

{ii) or the strict opposite inequality takes place at ({', X'), hence the
connected component containing ({', X') of the points in Y where the same
inequality takes place is contained in the ball {8.31). In this case we have
four holomorphic functions without common zeros on a manifold of
dimension 4 and the application of the mimimum principle to the solutions
of the Monge-Ampere equation (see Section 1) tells us that the minimum
of the quantity 3 [¢,°+ ju-(|" is taken on the boundary of this com-
ponent. We have then, except for a modification of the constant f, that the
same inequality as in (i) takes place at ({', X").

The same reasoning applied to the second family shows that

Z oA X+ ju- M+ e (D — o)l
1

>5 (|Rw)] + | T(v)]) nhe KKx Brctahy (8.32)

ST

Now, we can estimate from below the quantity

max  (|R(u)] +|T(v})]) >
(urte S x 55

w-1=0
e g =0

7
(T+"H*
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if ¢! = E, which is precisely the case here. Therefore,
3
Z (L XYY 2 nye~ KPEXD, (8.33)

where the #,, K5 have been obtained by replacing |R(u)| + | T(v)| in (8.32)
with a/(1+ (11"

On the other hand, ¢({,, €*)=0, hence choosing #,, K, conveniently
we have also

: 1 Al
2 o8 XNl <5 nse B (8.34)
j=

This choice of #,, K, fixes the choice of the original é,, D, and the
existence of the original point {, leads to the contradiction between (8.33)
and (8.34). This finishes the proof of Theorem 8.2. |

We can also obtain out of the proof of Theorem 8.2 the following special
case of the Nullstellensatz:

ProrosITION 8.7. Let F,, F, be two exponential-polynomials of three
variables and rational frequencies. Suppose they have no common zeros in C>,
then there are two elements G,, G,€ AP(C3) such that

1=F,G,+F,G,.

Proof. 1n fact, thanks to (8.26) and the minimum principle this time
applied in C* to the triplets

(FlaFZ’u-C) and (FlaFZHU‘(C_wO))a

u,ve S°, one obtains (after repeating verbatim the end of the proof of the
above theorem)

36>03D>0, |F (O 4 |F(O) = 8e 279 ]

It seems to us that this duality method will be useful in studying the
systems of partial differential equations with delays that appear in control
theory and in mathematical models in biology, where the delays appear
only on the time variable. From the point of view of exponential-
polynomials, this is a very degenerate situation, completely opposite to the
conditions we gave in Section 6 (see, for instance, Corollary 6.7) to show
that a non-redundant system is in fact s.s.d. It would also be interesting tc
study for this type of system the validity of the spectral synthesis or the
asymptotic stability of the solutions [5]. We plan to return to thess
questions in the future.
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