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In several problems in Harmonic Analysis, .and in Number Theory as 
well, lemmas on small values of holomorphic functions play an important 
role. 

Let us give first an example from Harmonic Analysis. Let p, ,..., p,,, be m 
distributions with compact support in 17%” whose Fourier transforms satisfy, 
in C”, a lower estimate of the form 

(0.1 f 

One can then solve Bezout’s equation 

p,*v, ..- +I*,,*v,n=fi (0.2) 

with v, ,..., v, also distributions with compact support 131, 33). 
In many examples (0.1) cannot be verified, even if one knows that the 

functions @I have no common zeroes in C”, without recourse to deep results 
in number theory (see, e.g., .[12]). On the other hand, using again exam- 
ples of a number theoretical nature one can find simple examples showing 
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that the fact the Gj have no common zeroes does not imply (0.1 ), for 
instance. let us consider on the real line the two measures 

where A is an irrational. One sees that (0.1) is satisfied if and only if i is not 
a Liouville number [20]. 

In the same vein, in the techniques used to estimate degrees of transcen- 
dency, it seems that knowledge about zeroes must be replaced by 
knowledge about the small values of the auxiliary functions involved 
[ 39, 40, 493. 

The lemmas on small values that we consider here relate to a very par- 
ticular class of entire holomorphic functions in C”, a class which appears in 
Harmonic Analysis as Fourier transforms of distributions with finite sup- 
port in R” (i.e., difference-differential operators), and also has a role in 
Number Theory, namely, being the exponential-polynomials with real fre- 
quencies. The class of exponential-polynomials with complex frequencies 
can also be studied using the methods we present here. 

The main question we consider is the following: given F,,..., F,,, nz 
exponential-polynomials with real frequencies and such that the set of com- 
mon zeroes in @” is either discrete or empty, is it possible to estimate the 
size of the connected components of the set where the inequality (0.1) is 
not satisfied? This would correspond to a refined type of transcendency of 
the exponential functions with respect to the algebraic functions. 

In the case of two variables we have shown elsewhere [ 111 that for two 
exponential-polynomials with rational frequencies the answer to the above 
question is positive. We will see here that this is still the case when we deal 
with ?M exponential-polynomials in two variables. We will also show that 
this is not always true, even for rational frequencies, when the number of 
variables n is bigger than two. Nevertheless we give here a general method 
to attack this kind of problem (Theorem 3.1), which together with techni- 
ques from the solution of Schanuel’s conjecture for formal power series [ 31 
and a method of “geometric duality,” which we develop in Section 8, allows 
us, for instance, to study exhaustively the case n = 3. 

The same kind of tools allow us to study certain problems in Harmonic 
Analysis which had not been tractable by known methods. In order to give 
an idea of the type of questions we have in mind, let us describe an exam- 
ple introduced by Delsarte [18]. Consider two distributions of finite 
support in 58’ of the form 
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where the supports of v, and v2 lie in the open square (0, 1) x (0, 1) and the 
coefficients of the Dirac measures satisfy the condition 

We show here that every solutionf’of the system of convolution equations 

p,*f=p&=O 

can be represented in terms of elementary solutions of the form 
p(.y, y) @=+ Pr), where P is a polynomial in a=[.~, J] and (e, /3) E @‘. In the 
original example of Delsarte, whose complete proof was only given later 
[IS, 411, the only case considered was when both v, and v2 where measures. 

Let us finish this introduction with an example that seems to us hard to 
obtain by methods different from those which we will use here, and which, 
it seems to us, might have further applications. 

Let F,, F, be two exponential-polynomials of three variables, with 
rational frequencies and no common zeroes, then the pair (F, , F,) satisfies 
an estimate of the form (0.1) (Proposition 8.7). 

1 

We will be concerned with non-zero functions in the space A, = A,,(V), 
where p is the weight 

p(i):=~ITmi,/+log(l+Iji/l) (1.1) 

and A,, is the space of holomorphic functions F in @” such that 

for some constant C = C(F) >, 0. This space, with its natural topology of 
inductive limit, coincides with the space &‘(UY) of Fourier transforms of 
distributions of compact support in R” [7, 203. One could also consider 
other weights, for instance, the weight p(i) = I[[ 11 corresponding to the 
space of analytic functionals. 

Given a finitely generated ideal 5 in A,, we say that Y is strongly 
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s/~/y decreas&g (s.s.d.) if it has a system of generators (F, ,..., F,) satisfy- 
ing the following condition: 

VE > 0, VC > 0, 36 > 0, 30 > 0 such that if [, c’ are two points in 
the same connected component of the open set 

S(F,,...,F,;~,D):=(~E@“:CIF~(~)~<~~~~~’~’) 

we have /I [ - [’ 11 < ~e-~~(~). (1.2) 

We note that under this hypothesis the variety V of common zeroes of the 
ideal F is automatically discrete. 

The condition (1.2) above is stronger than the condition “jointly slowly 
decreasing” introduced in [9, Definition 4.11, on the other hand no restric- 
tion is imposed to the number of generators of the ideal. It is also clear that 
(1.2) is a property of the ideal F and not only of the system of generators 
chosen. 

Let us recall some properties attached to s.s.d. ideals. The first one 
relates to the Spectral Synthesis problem. Given a system of m convolution 
equations 

where p, ,..., pL, E E’( KY), the spectrum of the system (1.3) is the analytic 
variety V in @” 

v:= {&IY:Fl(()= .‘. =F,(&=O), (1.4) 

where F,(i) = b,(l) := (p,(t), 8’: ) = !” eiZrkrk dpj(t). We say the system (1.3) 
is non-redundant if V is discrete (or empty). The spectral synthesis holds if 
all the solutions of (1.3) are the limits, in Ca’( R”), of linear combinations of 
solutions of the form 

P(t) eiAl-‘, 1~ Vand PE@[t ,,..., t,]. (1.5) 

The spectral synthesis always holds when n = 1 [45], on the other hand it 
is in general false for certain systems of equations when n > 2 [27]. A 
theorem due to Gurevich [28] and Kelleher and Taylor [34] implies that 
if the ideal F generated by (F, ,..., Fm) is s.s.d., then the spectral synthesis 
holds (in fact, it is enough to know that the components of the set 
SF, ,..., Fm; 6, D) are relatively compact for some choice of 6, D). 

In the particular case m = n, one can go further than the spectral syn- 
thesis [9] and show that every s.s.d. ideal is also closed in A, and, 
moreover, that every solution of the system (1.3) can be represented by a 
series of solutions of the form (1.5). This result has been extended to the 
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case in which 11, ,..., pm andfare vector-valued by Struppa [47]. In the case 
m =n and F s.s.d. with spectrum I/ empty, one has also a kind of 
Nullstellensatz, that is, a decomposition of the function 1: 

=,, 1 = f F,G,, G,+; (1.6) 
/=I 

hence the condition (1.2) implies in this case the Hormander Con- 
dition [ 3 I] 

3ti>o ClF,((-)I 3 hcKp(;‘, bf’i E C”. (1.7) 

The proof of (1.6) is just the fact that 1 E 5 (by the spectral synthesis) and 
Y is closed. It is well known that even when m fn the existence of 
(G, ,..., G,) satisfying (1.6) is equivalent to (1.7) [3 1, 331. Since we will be 
using this reasoning later, let us give here a direct proof that if m = n and 
I’= @ we have (1.2) + ( 1.7). Namely, introduce the continuous 
plurisubharmonic function in @‘I: 

(1.8) 

which is a solution of the MongeeAmpere equation 

(dd’u)” = 0 

(it is essential here that VI= n). Hence one can apply to each connected 
component of S( F, ,..., F,,; 6, D) the minimum principle [4, Theorem A] 
and the fact that the weight p can be considered to be constant in such a 
component. It follows that the estimate (1.7) that holds on the boundary of 
the components holds in the interior and hence everywhere. (Note that this 
reasoning works if we only know that F, ,..., F, are jointly slowly decreasing 
in the sense of [9].) The advantage of the proof we have just given is that 
it also works if we replace C” by a complex manifold of dimension n, this is 
simply a consequence of the fact that conditions satisfied by the function td 
defined by (1.8) are invariant under holomorphic changes of coordinates. 

Explicit solutions G, to (1.6) and even to (0.2) have been discussed 
elsewhere (e.g., [ 123) and have interesting applications to engineering and 
optics problems. Similarly, the spectral synthesis for s.s.d. systems has 
applications to control theory, mathematical biology, etc., and we plan to 
return to these applications in the near future. 

We would like also to show that the condition (1.2) for an n-tuplet of 
elements in A, implies an estimate of the number of points of V. The coun- 
terexample of Cornalba and Shiffman [ 173 shows that in dimensions 
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bigger than or equal to two, the order of growth of an equidimensional 
holomorphic mapping F from @” to @” does not allow us to estimate the 
number of points in a ball of radius R of the variety {F, = . . . F, = 0). We 
have, nevertheless, thanks to the fact that the Bezout estimates hold “on 
the average” [25,46], that in the case we consider we can obtain true 
estimates. 

PROPOSITION 1.1. Let (F, ,..., F,) be an n-tuplet of elements in A,(@“) 
s.s.d. with respect to the weight p defined by (1.1) (or with respect to the 
weight p(i) = I[[ 11). Denote by N(R) the number of points (counted with mul- 
tiplicities) of the uariety V = {F, = . . . = F,,} = 0 which belong to the ball of 
center 0 and radius R. There exist two constants C,, C2 such that 

YRE[W+, N(R)<C,R”+C,. (1.9) 

Remark 1.1. When F, ,..., F,, are exponential-polynomials such an 
estimate always holds due to the work of Khovanskii on Liouville 
functions [35-37, 141. 

Proof of Proposition 1.1. Let us fix R > 0 and denote by V, the set of 
points of V in the open ball 8(0, R). Given [ok V,, since (F, ,..., -F,) are 
s.s.d. we can construct a compact set r([,,) of smooth boundary, 
co E Z( &,) c B([,, 1 ), and such that on the boundary of f(&,) we have 

f IFj([)12~Ele-C’P’i’ 
j=l 

(1.10) 

for some positive constants sI, C, depending only on (F1,..., F,). 
One can write V, as a disjoint union of sets f(c,),..., r([,,). This follows 

from the fact that given co E V, and lb E VR\r(cO) we have for some con- 
stants e2, C2 

(this is just a consequence of the mean-value theorem). We can equally 
assume (see [9, Lemma 1.51) that each r(i) will be a small deformation of 
a set of the form 

and hence that 

meas( 8ZJ ii)) < AeEpciz), i= l,..., mR, 

for some constants A, B independent of R. 



IDEALS 7 

An application of Kronecker’s formula [24, p. 3691 shows that there are 
positive constants E, c such that for every 8 E 27r([w/Z)“, the analytic 
functions GJ’), j= I,..., n, defined by 

Gj”‘([) = F,(i) -z e’“j 
(l+R)’ 

have, in every Z(ci), the same number of common zeroes as the functions 
F,. The constants E, c depend only on sl, C,, A, B and on the fact that on 
each ar([,) we have, for some convenient K, ~ K,, 

p(i 16 K, + Kz R. 

Let N(R, 0) be the number of common zeroes of the functions Cl@),..., GLO) 
in &O, R + 1). By a result of Gruman [25, Theorem 2.91 or using the work 
of Stoll, one has for any y > 1: 

s 
2n 

. . . s 2rr N( R, 0) de, . de,, 
0 0 

< vol B(0, y”(R+ 1)) 

x fi (log+(M;(R+ l))+log- s+clog(R+l)), (1.12) 
/=I 

where M,(r)=max(IF,([)l:[EB(O,r)}. 
The left-hand-side term in (1.12) is bigger than or equal to 

(27r)” F card(r([;)n V), 
I=1 

which is itself an upper bound for (271)” N(R). The inequality (1.12) leads 
immediately to (1.9) since there are constants A,, B, such that 

log+Mj(r)<A,+B,r, v.i. I 

2 

While our aim is to study the condition s.s.d., we will see in the next sec- 
tion that its verification is tied to the discreteness of certain varieties. We 
give here some useful criteria to check such discreteness. 

PROPOSITION 2.1. Let W be an analytic variety in @” (n > l), suppose W 
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is of pure dimension d, d 3 1. Assume further that there is a non-zero 
polynomial P E @[X, ,..., X,,] and two positive constants C, K such that 

ie W=4P(i)l ev(!, lIm:,l)<C(l+ llill)“. (2.1) 

Then the variety W is included in the algebraic h+vpersurfhce { P = 0 1. 

Proof We are going to show that we can choose constants E > 0, M > 0 
such that 

f&&):=(P([))2 
( 

sin ~5, ” 
yx ... x- 

i,, ) 

tends to zero when II[ /I + cc along W. 
Let us fix a constant L, L > K. Denote ~2~ the open set in C” defined by 

J&L= ([EC”: IP( <(l+ llili) “). (2.2) 

By (2.1) there is a constant C, = C,(L) > 0 such that 

iE w, 14%.=~ I Imi,l6C,(1+log(l+/lilI)). (2.3 

Let E > 0, and M a positive integer so that 

M>2 deg(P)+ 1, EM< 1, &MC,, 6 1, (2.4 

where deg (P) is the total degree of the polynomial P. We are going to 
estimate f&(i) when [ E W and I( [ 1) is large. 

(*) Let us assume first that [ E W n aL, then 

If,.,di)l 6C, IP( IP( exp EM~ IImi,I 
( > 

for some constant C, = C,(E, M). This follows from the inequalities 

and 1 sin z I < e’rm” VZEC. (2.5) 

Since EM d 1 (by (2.4)) we have 

i E Wn eL * I fdi)l G C, I P(i)1 I P(i) fFrnr~’ I, 

or, using (2.2) and (2.1) 

ic WndzL* I.hAi)l QCC,(l+ IlillF”. (2.6) 
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(*) Let us suppose now that [E w\oaL. We can suppose that [ # 0 and, 

say, I[, ( > (l/&)jliyil at that point. Let us write 

L,(i) = gcdi) .A,. (2.7) 

It follows from (2.5) and (2.3) that for some C2 = CJE, M, P) > 0 

I gs.,di)l dCz(l + ~lill)2de~~P’+C~EM 

<C,(l + Il[ll)zdee’P’+’ (2.8 

(use (2.4) to obtain the last inequality). From (2.7) and (2.8) we obtain 

I .jy:.J,(i)I d (2nT’ c-2( 1 + /I [ /) )zdrg’f”+ ’ .&‘. (2.9 

By our choice of M, it follows that 

.Ldi 1 + 0 as [EW, l/[ll+8~. 

By the maximum principle for varieties [26, Theorem III B-161 it follows 
that fE,*, = 0 on W (it is here we use that W is of pure dimension d, ~13 1 ). 

Suppose that W has an irreducible component w’ not included in the 
hypersurface {P= 0). Once c, A4 are chosen arbitrarily but satisfying (2.4) 
we havej=j(E)E {l,..., H) and li=k(~)~Z* such that 

(2.10) 

because J,,M = 0 but P f 0 on w’. One can fix M, and pick a sequence 
(&,I, such that for all m E N, E, and A4 satisfy (2.4), and furthermore for 
every pair of distinct indices m, m’ the quotient c,,,/E,,,. is irrational. Since 
the sequence j(s,) has a stationary subsequence one sees that (2.10) is 
impossible for all E = E,,,. m E FV. This leads to a contradiction. We conclude 
that every branch of W. and hence W itself, is included in (P = Ol. 1 

Let us point out a strengthening of Proposition 2.1. 

PROPOSITION 2.2. Let W be an analytic variety in @‘I, n > 1, of’ pure 
dimension d, d 3 1. Assume that there is u non-zero polynomial 
PE@C51YY inl, an integer k E { l,..., n - 1 ), and two positive constants C. K 
such that 
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iew* i lKlic(l+~l K,l)“. (2.12) 
J=k+ 1 

Then the variety W is contained in the hyperswj2m ( P = 0 ). 

Proof. It is very similar to the previous one. We can clearly assume 
K 3 1. Let L > K and J&~- be the open set defined by (2.2). From (2.11) we 
know there is a constant C, = C,,(L) such that 

i E W\ J1(, * 5 I Im i, I d C,) log ( 1 + II i II 1. (2.13) 
/=I 

We choose E, A4 similarly as done before so that 

M>(2deg(P)+ l)K, cA46 l,cMC,,d 1. (2.14) 

Consider the auxiliary entire function II,..,,, 

n, 

h,J)=(P([))’ fi y 
,=I i ! I 

As in the previous proposition h,,,,, satisfies the estimate (2.6) in Wn$?llA. 
The assumption (2.12) implies the existence of constants R, > 0, C, > 0 
(independent of E, M) such that 

<E w. II i II 3 4, * II i II 6 C2 i: I i, I ‘. (2.15) 

For those points for which I il 1 = max [ / i, / , j = l..... h- 1 we then obtain 

llill <C,k li,l^ (2.16) 

and writing down 

h,.,(i) =+ gs.,w(i) 
I 

we obtain, for those points in W\‘U,~ where I [, 1 dominates that for some 
c, = Cj(&, M) > 0, 

Ihudi)<CA1 + IIillY2deg’P’+” l5,l ” (by (2.13)) 
< c,(l + ,I ; ,I )*dW”+ 1 M/K 

(2.17) 
(by (2.16)). 

This last inequality holds in W\‘&, no matter which ((,I dominates 



IDEALS I1 

(j= l,...,k). Since 2deg(P)+ 1 -M/K<0 by (2.14), we obtain that 
h,,(i) + 0 as //[I/ + CC in W. The rest of the proof is the same as in 
Proposition 2.1. 1 

COROLLARY 2.3. Let W be an arlal~~tic varirtj‘ it1 UZ”, rz > I. Suppose that 
there are tu’o positive cotntullts C. K srrch thut 

< E W =$ i / Im c, 1 6 C lo@ 1 + II < II ), (2.18) 
in 1 

then W is a discrete variet!,. 

Proqf: If W is not discrete there is an irreductible branch U” of dimen- 
sion d, d > 1, w’ being irreducible is pure dimensional. Proposition 2.1 with 
P= 1 contradicts the existence of U”. 1 

Remark 2.1. If W were assumed to be algebraic then this corollary is a 
consequence of the SeidenbergTarski Theorem [22]. Note that there is a 
modification of this corollary corresponding to Proposition 2.2. 

We use Proposition 2.1 in the verification that certain analytic varieties 
in C” are discrete once we possess enough geometric information about 
them. We give here a very simple example of application of that 
proposition. 

We consider the analytic variety V’ in @,, defined by the equations 

e”l = P,(i),..., e’;” = P,,(i). (2.19) 

where P, ,..., P,, are elements in @[i, ,..., <,,I. We show that V is discrete. 
In fact, if k, > deg(P,), for some C, > 0 we have, just using the first 

equation, 

which only tells that - Im i , is bounded above. But we also have 

/ P,(i)1 le ~‘<‘I = 1 

which allows us to bound Im ii above. Using all the equations we see that 
the hypotheses of Proposition 2.1 are satisfied. It follows that if V had 
an irreducible branch W of dimension 3 1 we would have 
WG (P,P,*. P, = 0), hence WZ {Pi = 0) for some j, which is clearly 
impossible. 

We take the opportunity to introduce a different method to show the dis- 
creteness of the V we have just considered. This method does not depend 
on the geometry of V but on arithmetical conditions satisfied by the 
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equations of V. It consists in using the work of AX [3] on the Schanuel 
conjecture for formal power series. (It is interesting also to compare with 
the work of Chabauty [1.5], Kolchin [37], and Coleman [16].) 

PROPOSITION 2.4. [3, Corollary 2, p. 2531. Let k be an integer bigger 
than or equal to one and let y, ,..., yn be n functions of the complex vari- 
ables (t, ,..., tk), holomorphic in [ 11 t 1) < r)., r > 0. Let 3 be an ideal in 
@[iI ,..., i,,, X ,,..., X,,] such that 

VP E 9, P( )‘1 ,..., y,,, e l” ,..., e “n) E 0 in i 11 t 11 < r 1. (2.20) 

I” 3 denotes the algebraic variety in C”’ of‘common zeroes of the elements 
in 9 and if dim 9 < n, then there exist rationals r, ,..., r,,, not all zero, and a 
complex number r such that 

r,!,,(t)+ ... +rny,,(t)sx, lItI/ cr. (2.21) 

In the example (2.19) the variety 3 is given by 

x, = P*(i)...., x, = P,(i) 

and it is exactly of dimension n in C2”. If the variety V has an irreducible 
branch W of dimension k, k 3 1, one can parametrize that branch in a 
neighborhood of a regular point and apply Proposition 2.4, hence one con- 
cludes that the branch W is included in a hyperplane of the form 

r,cl+ ... +r,{,=Ix. 

One can assume that r, = - 1 and study in CM- ’ the variety defined by 

e’;‘= Qz(i2 ,..., i,,), . . . . e’;” = Q,,([:,..., i,), 

where Qi( iz ,..., i,,) = P,( a - r2c2 - . - r,,[,, cz ,..., i,). By induction one 
concludes that the existence of W is impossible. 

Note that the major difference in the two approaches lies in the fact that 
using Proposition 2.1 one gets a fixed algebraic hypersurface which con- 
tains all possible irreducible branches of V of dimension > 1, while using 
Proposition 2.4 one gets a hyperplane, but this hyperplane depends on the 
branch we are considering. Let us finish this section with an example 
generalizing (2.19) but which Proposition 2.4 seems badly adapted to 
handle. 

Recall that an exponential-polynomial of n variables (with frequencies in 
W-or sometimes one says iRn) is a function of the form 
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where the set ofj&quencies ,4 is a finite subset of R”, (PJj,, ,, is a family of 
polynomials in @[[, ,..., [,I] which we suppose nonzero, and I. i denotes 
always the bilinear form 

PROPOSITION 2.5. Let F, ,..., F, he exponerztial-po1~xorninl.s whose sets qf 
frequencies are A , ,..., A ,I. respectivel~~, and satisJIS 

Vj., , 2; E A, ,..., Vi,,, i:, E A,,, 2, # i.;,for ull,j, (2.22) 

det iI E. I - E.‘, ,..., i.,, - j.:, // # 0. 

Let Z,= j[~@“: P,(i)=OVi.EA,). 
Jf W is an irreducible branch qf dimension strictl?‘ positive sf the variet?, 

V= {F, = ... = F,,=O), there is jE Cl,..., n) such that WGZ,. 

COROLLARY 2.6. Jf’ all the varieties Z, are discrete, then I’ is also dis- 
crete. 

Remark 2.2. If one applies Proposition 2.4 to this situation one is 
bothered by the fact that the Z-rank of the abelian group generated by 
A, u ..’ u A,, could be very big, hence even under the conditions of 
Corollary 2.6 one obtains a rather bad bound for the dimension of W. 

Remark 2.3. As the proof of Proposition 2.5 will show one can improve 
on the statement if one uses geometric properties of each A, and not only 
the relative position of the different Aj. 

Proof of Proposition 2.5. Let Q, be the product of the polynomial coef- 
ficients of the exponential-polynomial F,, denote Q = Q, . Q,Z, and let W 
be a branch of C’of dimension strictly positive. We are going to show that 
Q is identically zero on W. The proof follows immediately out of this by a 
simple induction on the cardinality of the A,. 

Let roe W, F, has the form 

F,(i) = c P;(i) e”-:, 
it .I, 

either P,([,) = 0 for all 1. E A, (in which case Q ,(iO) = 0 and hence 
Q(iO) = 0 and we are done) or there are two distinct indices i., = i,(<,). 
n’, =/2;([,)in A, such that P;,(io)#Oand P,;(i,)#O, furthermore, onecan 
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show that they can be chosen in such a way that the following inequalities 
hold: 

. 

p&J. fyi”) # 0, 
1 p. (id 

Aexp[i(R,-l;).[,] <2. 
” ‘j.;(iO) 

(2.23) 

Let us assume (2.23) for the moment and continue with the proof. It 
follows from (2.23) that there are two constants C, , K, , independent of &,, 
such that 

toe W-lQ,([,,)l ,‘(ll~A~“lmio’<C,(l + ~~<oII)K’. (2.24) 

One can repeat the reasoning for the same point co with the other F,. On 
the other hand, the hypothesis (2.22) implies the existence of two constants 
0, > 0, e2 > 0 (independent of co) such that 

0, i lImi,,I d i I(Ai-iJ.Imi,I 
,=I /=I 

Go2 i IImi,,l, (2.25) 
,= I 

where co = ( <0,1 ,..., <o,n). From (2.24) and (2.25) we obtain two constants C, 
K such that 

iEW*lQ(i)lexp G C( 1 + II i II Y. 

Thanks to Proposition 2.1 we obtain that Q is identically zero in W. 
Let us prove (2.23), the simplest proof consists in using a trick from [40, 

Lemma 2, p. 2801. Let a, ,..., uk be non-zero complex numbers such that 
Caj = 0, then there are two distinct indices j,, j, such that 

t < I a;, l/l a,> I < 2. 

If this were not true one could rearrange the a, so that their absolute values 
were decreasing and conclude that 

IUkl Gi lk-ll, IUkL-ll f$lUk&21,..., la,1 64 la,l, 

hence 

Ia,+ ‘.. +a,(>lu,/-((a,++ “’ +I&[) 

2lu,( ( 1 1 1 
1-5-i- “‘F >o. 1 

1 
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3 

We propose to give here for an ideal F in A,, finitely generated by 
exponential-polynomials, a necessary and sufficient condition for F to be 
s.s.d. That is, we consider m exponential-polynomials F,,..., F,,, (with fre- 
quencies in Rn) and try to find under which conditions does the property 
(1.2) hold. In what follows the sets of frequencies /1, ,..., A, will be con- 
sidered as a subset of subgroup r of R”, r of finite type. It is well known 
[48] that there are N elements c(, ,..., c(,~ in R” such that 

r =Lcc, @ “. @.zx,Pg. (3.1) 

In the case of rational frequencies we will always assume that l-z L”. We 
can associate to each function F, a polynomial p, E C[[, ,..., i,, X1 ,..., X,,,] 
such that, up to an exponential factor, we have 

F,(c) =pj(il ,..., i,,, c?“~~ ,..., P”-;) for all c E C”. (3.2) 

Since the exponential factors are invertible in A,, we could really consider 
polynomials in @[[, ,..., i,, X, ,..., X,, l/X, ,..., l/X,]. We will use implicitly 
this remark in the future. 

Associated to the polynomials p, ,..., pm we consider the algebraic variety 
Y in C” + N defined by 

Y= ((i, X):p,([, X)= ‘.. =p,([, X)=0). (3.3) 

Thanks to the above remark we can suppose that no irreducible com- 
ponent of Y is included in the variety (X, . . . X, = 01. 

There is a natural action of (C*)” on those algebraic subvarieties of 
C” + N that have no components included in {X, ... X, = 0). It is the trans- 
formation which associates to the variety Y the variety 

Y(P)= ((i. X):p;(<, /9,x I,..., p,vX,)=O,j= l)...) ml, (3.4) 

where p E (C*)“. This transformation is an algebraic isomorphism between 
Y and Y’P1. 

Denote Fjp) the exponential-polynomials defined by 

F(P)([) :=p-([, pIei”“,..., pNcPy’;) I I v’i E c)“. (3.5) 

We also denote I”“’ the subvariety of Cc” of common zeroes to the 
functions Fjp’, j= l,.... ~1. 
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THEOREM 3.1. Let F,,..., F,,, be exponential-polynomials as above, the m- 
tuplet (F1,..., F,,,) generates a s.s.d. ideal fund only if: 

IQ, > 0, Co > 0,6, > 0, Do > 0 such that: 

Vi,E@” VpE(@*)N 

sup 11 -piI <6,e-Dw’i0’= VP’n {II[-[Oli ~~~~~~~~~~~~ (3.6) 
I<j$N 

is discrete. 

Proof of the sufficiency of the condition (3.6). This proof is extremely 
technical and that compels us to give all its details; on the other hand the 
reader can get a good idea of its basic principles by comparing with [ 11, 
pp. 12771291, where a particular case is dealt with. 

We will denote B(Z, r) the open ball of center Z = (c, X) E c)n+ N and 
radius r > 0. Recalling that p is the weight defined by (1.1) in @“, we 
introduce a weight P in @“+ N by 

P(i,X)=lOg(l+ llill+ llXll)+ i IIm<i(. 
,= I 

We introduce further the exponential map 

cp,(<, X) := X,e-l”s - 1, j = l,..., N. (3.7) 

We are going to prove in fact that the m + N-tuplet G = 
(pl ,..., p,, $~i ,..., dN) of elements in AP(C”+ “) is s.s.d.; i.e., for every pair 
(E, C) of positive constants we can find another pair (pi, C,) of positive 
constants such that if %? denotes a connected component of the set 

(i>x)~@“+“: f I Pj(i,X)l + i l4,(i,X)l 
,= I /=I 

(3.8) 

and if (co, X0) and (c, X) are two points in %:, we have 

11 i - co 11 + 11 X-X, 11 < ~e-CP’co~Xo’. (3.9) 

It will follow immediately that the m-tuplet ( F1 ,..., F,,) is s.s.d. in @” with 
respect to the weight p. 

Let us prove by induction on the integer k E IO,..., n + N - 1 > the follow- 
ing result: 
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(3.10) Let W be an algebraic subvariety of CnnNN, dim W=k, WC Y, 
assume that W is defined by the following algebraic equations: 

w={(r,X)E~=“+N:q,(i,X)= ... =q&Y)=O}. 

Let E, C be two positive constants. There are two positive constants 
E~ = E~(E, C, W), C, = C,(E, C, W) such that: 

(a) if%? is a connected component of the set S( W; E,, C,), 

S(W;E~,CI):= (LX): i Iqj(i,x)l+ f /~j(i’X)I<E,e~C’P’~.X’ 
i I 

, 
j= I j= 1 

then GF? is a bounded subset of @“+ N; 

(b) if (i,, Xl), (iz, X2) are points in %?, %? as in part (a), then 

11 i, - ir )I + II X, - X, I/ < Ee- cp’il,xI’. 

This result (3.10) is trivial when k = 0 or when W is empty. It is also 
clear that in (3.10) the constants .sl, C, are not really dependent only on W 
but on the choice of generators q, ,..., q, for W. 

We will assume that k 2 1 and that (3.10) is true up to dimension k - 1. 
The first step is to show that we can reduce the problem to those varieties 
W which correspond to a prime ideal P in C[[, X], and ql,..., q, are the 
generators of 9. 

Consider hence the prime divisors P,,..., 8 of the ideal P associated to 
W [48], for each g. we have a corresponding algebraic variety W, and 
polynomials qs,r ,..., qs,n, generating g, 

W,= I([, X)EVfN: q,J[, X)=O,j= l,..., n,).. 

To every pair (Ed, C,) of positive constants we can associate a pair 
(iI, C,) also of positive constants such that 

i Iqi(<, X)1 <.zle-‘1P’;,.Y’*3sE {l,..., t}, 
,= 1 

2 lq.J[, X)1 <&2P-c~p(;J’ 
/=I 

(3.11) 

(it is clear that s depends on the point (i, X)). Suppose (3.11) does not 
hold, hence for each s E ( l,..., t > there is an index j(s) E ( l,..., n,Y> such that 
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On the other hand. the polynomial n,, q,5,,,,s, is in the radical of the ideal ,‘P 
generated by ql,..., q,, and hence it satisfies an inequality of the form 

for some positive integer I’, and positive constants A, B. This shows that 
one can in fact find aI, C, so that (3.11) holds. 

We will suppose hence that (3.10) holds whenever W is a variety of 
dimension k’ < k (which is the case for the varieties W, n W, , s # s’, which 
are also included in Y) and also that (3.10) is true when W is one of the 
varieties W,, s = l,..., 1. 

Fix E, C and let E;, C; denote positive constants to be fixed later satisfy- 
ing the inequalities E’, < $a, (e, C, IV,,, n W,,,), C; > C, (c, C. W,,, n W,,;,) for a 
pair of distinct indices so, sh in ( I,.... t ). Let ‘6 be a connected component 
of S( IV; E’,, C’,). By the inductive hypothesis either % satisfies (3.9) or there 
is a point Zr6 = (;,A, X,, ) E ‘6 such that 

(3.12) 

where s1 =E~(E, C, W,,,n W,;,), C’, =C,(E, C, U’,,,n W>;)). This inequality 
remains valid with f replaced by i in a ball B(Z.,,. xc p’Ld ‘) for some 
u, A > 0, which we can choose z < I:, A > C. Given a second pair .P, , .s; if we 
had taken 

4 <inf{+e,(c, C, W,,,n W,;,),$,(a, A, W,,n W.,;)) 

Ci >sup{C,(c, C, W,,,n W,6), C,(x, A, W,,,n WY;)), 

then either % is a subset of B(Z,, rc ~.‘rrz*‘) or it would exist a point Z>, 
in % where one has two inequalities: 

(3.13) 

with the same E,. C, as in (3.12), and 

where I, =&,(a, A, W,,n W,;), ?, =C,(cc, A, W,,n W,;). By iteration we 
obtain two constants i., p such that if E’, , C; are correctly chosen only two 
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kinds of situations can occur for the connected components % of 
S( W; E;, C;), where E;, C; are any pair, 0 < E; < E;, Cy > C; : 

(*) either 44 satisfies (a) and (b) from (3.10) for E, C, or 

(*) there is ZE% such that 

V’S, 3’ E { l,..., f)T .5.#.s’* ; IqJZJ + i l4,~,,(Z,)l 
,=I ,= I 

3/k . /‘PI%, 1 (3.15) 

Remark 3.1. We have just proved a version of Proposition 2.2 from 
[ 111, valid for any number of variables. That is, given a finite family 
{ V, , I’,,..., > of algebraic subvarieties of Y of dimension strictly smaller 
than k, V, defined by V, = (R,, = O), and a pair (e, C) of positive constants, 
there are, by the induction hypothesis, two pairs (E,. C, ), (q, K) such that if 
E’, <G,, C’, > C, only two situations can occur for any connected com- 
ponent % of S( Y; E; , C; ): 

(*) either % satisfies the conditions (a) and (b) from (3.10 , or 

(* ) there is a point Z E % such that 

Let us return to the proof of the theorem and suppose (3.15) holds while 
we suppose (3.10) has been proved for all the varieties W,, s E ( l,..., 1:. 

Consider two positive numbers 0, T such that 

vz E B( z, , oe rP’zT 1). vs. s’ E ; l,...) t ), s # s’, 
(3.16) 

We suppose now that E’,‘, C’y have been further restricted by the con- 
dition that (3.11) holds with (c;, Cy) in the role of (cl, C,) and c2 = 
inf(i/8, $E~((T,T, W,,)Vs). C,=sup{p, C,(Q,Z, W,y)Vs). In this case, for 
every ZE B(Z, , ce rr’Zs ‘) there is an s = s(Z) E ( l,..., tJ such that 

,g, ,q,,,,(z)l <E2e-c2P’z’. 

Because of the choice of e,, C,, if we take into account (3.16) we see that 
the index s is independent of Z, we could as well take it as s = s(Z,). If we 
also impose on al, C’,’ the further condition that E’,‘< $&,(a, r, W,), C’;3 
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C,(a, r, W,) Vs, then we would have that for all points ZE%?~ B(Z,, 
cre--rP(Zy)), where as always s = s(Z,), 

Since we have assumed (3.10) to be valid for W = W,, if we had taken the 
care of choosing c < E, z > %’ we see that ‘2? also satisfies (a), (b) from 
(3.10). 

The above lengthy argument shows that we can limit ourselves to prove 
(3.10) when W= W, for s E ( l,..., t}. Let us suppose that E < sO, C > C,, 
where q,, Co are the constants appearing in (3.6). 

We are supposing from now on that W corresponds to a prime ideal 9 
generated by the polynomials q,, j= l,..., 1, and we assume that (3.10) has 
been proved for k’ < k. Let { d,}j= l.,,.,L be the family of all (n + N - k)- 
minors of the matrix 1) dqj/a[i I(, where for simplicity we have denoted by 
i in+N n + I ,.‘.Y the variables X, ,..., X,,. By Theorem 5.3 from [30, Chap. 1, 
Sect. V], we have I b n + N - k and, moreover, 

dim{ZE W,d,(Z)=O,j= l,..., L} <k. (3.17) 

The algebraic variety w’ appearing in (3.17) could be empty. 
Let us choose cl, Ci arbitrarily for the moment, but satisfying 0 < E, < 

442, C, > 20,, where 6,, D, are the constants appearing in (3.6). Let %? be 
a component of the set S( W; si, C,). By the induction hypothesis applied 
to w’, there is a pair of constants E,(E, C, W,), CI(s, C, II”) associated to 
(E, C) by the condition (3.10). We can also assume that 

&I <q=;&,(E, c, W), Cl > K= C,(&, c, W). 

If for every Z E % we have 

i Id,(Z)1 <?je-KP(z) 
j= 1 

then the component %? satisfies the conditions (a), (b) in (3.10). Hence we 
can assume that no matter which is the choice of (E, , C, ) there is a point 
Z,E% such that 

(3.18) 

There are two constants q i, Kr such that 

(i) v,<(@)e-C,Kl>C, 
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(ii) if 2, is a point satisfying (3.18) then 

lIz-zoII <rl,e 
-KIP(ZO)* i IAi( g;e-“P”‘. 

,=I 

After reordering the variables and the polynomials qi we can suppose 

/IZ-Z,Il <Yfle-K’p(=o’a IA,(Z)/ >&e-“P”‘. (3.19) 

where A, is the Jacobian determinant of the first n + N- k polynomials q, 

with respect to the first n + N- k variables, let us call these variables 
z=(zr ,..., -?n+N .k) and denote z’=(~,,+~-~+ ,,..., zn+N) the last k 
variables, i.e., Z = (2, z’ ) in the reordered variables, Z= ([, X) in the 
original variables. Therefore, except for modifying conveniently v] r, K, , we 
can assume that (ql ,..., qn+,vpk, z~+~-~+, ,..., zn+ N) is a system of local 
coordinates in the ball of center Z and radius q1 e-KIP(Z) for all possible Z 
in (3.19). (All one has to obtain is the injectivity of the map (2, 5) + (q, ,..., 

4 ntN-k3 =n+N-k+lm=n+N ) which follows from (3.19) and Taylor’s for- 
mula, so the choice of q,, K, is dictated by the polynomials qi as well as 
ye, K--compare with the argument in (3.21) below.) The choice of ‘I,, K, is 
not modified anymore. 

Let us pick two further constants q,,< q,, K, > K,. Since we have 
assumed E, < $a,, Cl > 20,,, and Z,, E %, we can choose q,,, K, so that 

I/ z - -&I II < Yloe KoPfzra) - sup I Vi(Z) I < 6,e D@(=). (3.20) 
1 <,<N 

We want to show, and this is the critical point of the proof, that the 
algebraic variety W, given by 

w,= (Z:ql(Z)= ..’ =qn+Npk(Z)=O} 

intersects the set defined by the left-hand side of (3.20) if sr, Cl are chosen 
correctly. Recall that Z, = (z,, 2; ). Writing the Taylor expansion of 
qjCz, zb) - 4,t20, z ‘) and using Cramer’s rule to solve a system of n + N-k 
equations, one sees that 

n+ N-k 

jlZ-Z,Ij <~oe-Kop’zO’~ c ]qj(z,2~)-qj(z0,2~)~ 

(3.21) 

where 4 and k have been obtained using (3.19) and the bounds we have on 
the qj  and their partial derivatives. We concludes that if in the Cn+N-k of 
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equation z’ = zb, we consider the bail B of center z0 and radius r],e Kof(zoO,, 
we have on the boundary i?B simultaneous lower bounds for the functions 
q,(z, zb) - qj(z,, zb). These functions vanish simultaneously, of course, for 
z= zO, and Kronecker’s formula tells us that if C Is;(Z,)j is sufficiently 
small, then the functions q,i(z, zb ) have exactly one common zero in B; 
hence if E, , C, are chosen conveniently we will have a point 
z, = (z,, L”;)E Wn B(Z,, ljOePKP’Zo’) with 2; = ;A. The conditions we have 
imposed on the minor A, and what we have just shown tell us that only 
one branch of W,, (and hence at most one branch of W) intersects the ball 
of center Z, and radius ‘7, e PK’P’zl), that this branch (which we will call 
WO) has dimension k, and that the coordinates ;’ form a system of local 
coordinates on WO. One can also see that W0 is contained in W, if not the 
dimension of Wn Wb would be strictly smaller than k and applying the 
Remark 3.1 we could have used a point Z, E %? such that the existence of Z, 
would be impossible. By considerations of dimension we have then 

wbnB(Z,, rtlep hP(zII) = Wn B(Z,, q,e”lp(z~‘). 

Let B’ be the ball in ck of center $, and radius n i e K’P(Z”. In this ball we 
consider the holomorphic functions fi ,..., fN obtained by restriction of the 
functions ‘pi ,..., (Pi to the variety W parametrized by the coordinates L’. 

Thanks to the hypothesis (3.6) and the fact that WC Y and one of the 
minors @ of maximal rank of the matrix 11 af;l&, /I is not identically zero in 
B’, the same hypothesis allows us to conclude that k d N. In fact, if that 
were not true, by [26, Theorem 10, p. 1601, the subvariety of B’ defined by 
the equations 

r;Cz’, =f,(4), j= I,..., N 

would not be discrete in B’; on the other hand, for every 
have 

f,(z’)=,f,(z;)oexp(--ior;[) X,=cpj(Z,)+ 1. 

.ie 

(3.22) 

{I,..., N) we 

It now follows that if the variety (3.22) is non-discrete in B’, then the 
variety Vtp) will have non-discrete intersection with B({, , c,,e -cop’cll) ([, is 
the i-coordinate of Z,), where pi= 1 + cp,(Z,). By (3.20) this would con- 
tradict (3.6). 

Now we can compute the minor @ by the chain rule and using the fact 
that the f, are the restrictions of the dj to the algebraic variety W, and we 
see that there are indices si ,..., sk E {l,..., N} and a polynomial R non-iden- 
tically zero on W such that, in B’, we have 

> 
, (3.23) 
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where, as always, Z= ([, X) corresponds to the point of I&’ associated to 
-’ E B’. i 

Since the variety Wn {R = 0) has dimension strictly smaller than k we 
can assume, by the Remark 3.1, that we have 

( R(Z,,)/ 2 tie Kp(z[~‘. 

One can assume also that ‘lo, K,, are such that 

We have then 

1 R( z, ) 1 > 2 g - KP’zI ). 
2 

(3.24) 

The inequality (3.24) and the identity (3.23) give us a lower bound for 
@($). Using now the reasoning based on the Taylor expansion of the 
functions f;(?) -A(?, ). as we did to prove (3.21) we construct a ball 
B” G B’ of center ?, and radius q2e K2P(%” such that on dB” we have 

,g, lS,c:‘,-.&;,l 3’13e-KqP’Z’), (3.25) 

where qz, Y]~, Kz, K, can be explicitly determined in terms of the q, K, II,, 
K,, the coefficients of the polynomials q,, R, and the size of the G(,. 

Choosing carefully u,,, K0 (i.e., imposing extra conditions on E,, C,) we 
can assume 

(3.26) 

This essentially ends the proof, but let us just finish up the last details. 
Recall that (q, ,..., qn+ N-k, zn+ NPk + , ,..., =,,+ N) form a system of local 

coordinates in the ball B, B = B(Z, , yl, e--KIP(ZI’). We can always go back 
to the original coordinates, and the quantitative part of the reasoning can 
always be taken care of by just using the estimate (3.19) for A, in B. Let us 
define a “box” 

(3.27) 

Once a has been chosen, one can choose cl, C, in such a way that Z, 
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belongs to the box (3.27) (i.e., c/n_+;YPk 1 qj(Z,)( <a, since zb = z’, is the cen- 
ter of B’). We need to assume that in (1 1 qil <u} x 3B” we have 

The choice of a can be done effectively since on W= { q1 = . . = 
4 ntN-k = 0} we have 

VI’ E S B” 

by (3.25) and (3.26). In fact, a is of the form q,ePK4P’Z’t. On the remaining 
portion of the boundary of the box we will have then 

n+N- k 

1 lq,( =ij/QP’ZI’. 
/=I 

After making certain that E, <inf(qJ8, q4/8}, C, >sup{K,, K4], we see 
that the component %’ remains necessarily in the interior of the box, hence 
is a subset of the ball of center Z, and radius se- cp(zU’, since we had 
already chosen q,, K,, qO, K, so that this was precisely the case. 

Proof of the necessity of the condition (3.6). Since the m-tuplet F, ,..., F, is 
s.s.d. there is a pair (E 1, C, ) such that every connected component of 
S(F,,..., F,,,; E,, C,) has diameter less than one. There is a pair (6,, 0,) 
such that 

SUP 11 -pi I <d,e DIP(cl 

and 

F~J”([)=O Q-2 IFi( <;e-c@CC). 
1 

By the properties of the weight p, there is a pair (6,, D,) such that 

Hence, if VP’ (with sup I 1 - p,l < 6,e ~ DOp(rO’) intersects the ball B(i,, 1 ), 
every point of VtP’n B([,, 2) will be in S(F, ,..., F,,,; sl, C,) and I’(“) should 
have a connected component which escapes from B([,, 2) if VcpJ n B(c,, 2) 
is not discrete. Hence S(F,,..., F,,,; E,, C,) will have a component of 
diameter bigger than one, which is impossible. 1 

Remark 3.2. Recall that in the sense of Berenstein and Taylor [IS], an 
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m-tuplet F of elements of A,, is “jointly slowly decreasing” if there are con- 
stants si, Ci, K,, K, such that the connected components of S(F; cl, C,) 
are bounded and, if [, {’ are points in the same component, 

P(C) d K, ~(0 + Kz. 

If the entries F,,..., F,,, of F are exponential-polynomials, then the proof of 
the necessity of (3.6) shows that given r > 0 there are S,, D, such that 

1) 1 - p /I < 6,eP noprioJ =S VP’ n B(<,. Y) is discrete. 

That shows that condition (3.6) is satisfied and hence for such m-tuplets, it 
is equivalent to be s.s.d. and to be jointly s.d. 

Let us point out that in the proof of Theorem 3.1 one finds also a proof 
of the following: 

PROPOSITION 3.2. Let $ be the algebraic ideal in C[(‘, X] asociated to 
the exponential-polynomials F, ,..., F, (via the polynomials p1 ,..., p,). Let 
22 1 ,,.., Z$ be the radicals of the different primary components of 2 and let 
Jr 1,..., K be the ideals in A, generated by the corresponding exponential- 
polynomials. Then, Y is s.s.d. if and only if Y, . . . . . .9: are s.s.d. 

Remark 3.3. Following the proof of Theorem 3.1 one can see that 
under the condition (3.6), one can make explicit the relation between the 
pairs (E, C) and (6, D) that appear in Definition 1.2. Namely, there are 
three constants fl> 0, B > 0, k E N* such that 6, D can be chosen as 
follows: 

6=pEk 

D=kC+B 
(3.28) 

(we assume E < 1). 
In Section 8, we will need to study exponential-polynomials depending 

on k parameters in an algebraic way; more precisely, these are formal 
expressions which can be considered as functions from @ to @(u, ,..., u,) 
(where @(u) denotes an algebraic closure of c(u)) of the form 

here {A,!} denotes a family of elements in @(u) and r is a fixed subgroup 
of R”. 
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Let us consider m such exponential-polynomials F, ,..., F,,,, with frequen- 
cies in r, each F, being of the form 

We may associate through the procedure (3.2) to such F, polynomials p, 
in @(u)[i, Xl. 

Let us use here the terminology of [48, II, Sect. 32, p. 491. As soon as u 
is, in Ck, an allowable system of argument values of the elements (A$‘/) 
(which is equivalent for u to be outside an algebraic hypersurface F’ of @” 
depending on the A$<;), one may introduce the exponential-polynomials of 
m variables 

F,(u)(<) = c ix A,,,,(u) (‘1 e”. ;, j= l,..,., ni, 
,.tF / 

where the complex numbers A!.!/(U) are function values for the A\.$ belong- 
ing to the allowable arguments (u, ,..., u,) [48]. Of course, this definition is 
not quite unique, for one has many possible choices for the numbers A;!)(u) 
when u is fixed in Ck. Anyway, when the A?!(u) have been chosen, one can 
also define as elements in C[[, x] the polynomials p,(u, <, X) associated 
through (3.2) to the exponential-polynomials F,(u). 

In all the following, “U generic” will mean “11 outside a countable union 
of algebraic hypersurfaces W, of C”,” with V/c IV,. 

We can now state the following proposition: 

PROPOSITION 3.3. Let F, ,..., F,, be exponential-polynomials depending on 
parameters (u, ,..., uk) such that the condition (3.6) holds for u generic,for the 
exponential-polevnomials F,(u)([) with constants E(,, C,,, o,,, D,, independent of 
u and of the determinations qf the numbers A$$u) among the function values 
for the Ayj belonging to the allowable argument II. Denoting by ‘pi the 
functions defined by (3.7) and P the weight in @n+N, P([, X) = 
Log( 1 + jI[ // + I/ .Y 11) + C? 1 Im i, 1, there is a non-zero polynomial R E C[u] 
and three positive constants p, B, K such that, given 0 < E d 1, c > 0, ij‘ u is 
generic and 

I R(u)1 
6 = B (1 + ,( u (, )” EK, D=tiC+B 

then every connected component %? of the open subset of @“+ N defined by 

K(P I,..., pm, (PI,..., (~,v; 6, D) 

(i,X):~/P,(u,r.X)l+~I~,(i,X)/<jr DP(I.XI 
I I 
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satisfies 

V([, X) E %, V((‘, A-) E %‘, 11 < - y 11 + I/ .Y - I I/ < IP c.p(c-y’. 

Proof: The method of proof of Proposition 3.3 is exactly the same as 
that of Theorem 3.1. The ring @[[, X] being replaced by C(u)[[, X], the 
induction is always on the dimension (in @(u)[i, X]) of the ideals contain- 
ing the original ideal generated by p1 ,..., p,,,. The only extra thing we need 
to study is what happens on the initial point of the induction, that is, when 
the ideal generated by the q,([, A’) is of dimension 0. But in this case, 
thanks to Noether’s normalization lemma [48], there are in the ideal II + N 
irreducible polynomials in @(u)[[. A’] of the form 

i A,,,$ j = l,.... II 

and 
I’# + n 
4 AA.,+,,X:, .i= I,..., N. 

Let us choose allowable arguments for all the elements of C(U) written 
above and function values belonging to these arguments. 

By a well-known lemma due to Polya [7, 201, if we denote by 1’ the 
maximum of the degrees of the above polynomials (II= max [v,) ), there is a 
positive constant a which depends only on 1’ such that if 0 < c < 1 is given, 
there is for any IE@ a real number O-CT(I) GE such that 

To arrive at the final estimation one needs only to observe that if we con- 
sider the product r of all the A,#, we obtain an element R of C [u] and a 
constant L > 0 such that 

IR(u)l6Lmin (lA,.ii(u)l)(l+/l~~Il)‘. I 
I 

Before going any further we give here an immediate application of 
Theorem 3.1 and Proposition 2.5. 

PROPOSITION 3.4. Let p, ,.... p,, he n distributions in KY’ trith ,finite sup- 
ports A , ,..., A,, . Assunle the sets A , ,..., A,, satis[v the condition (2.22 ) and 
write down the p, ,..., p,, in the ,ftirm 
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Suppose that the algebraic subvarieties of @” given by 

z,= (pr=OVkA,) 

are all of dimension ~0. 
Then the ideal generated by the fi, ,..., fin is s.s.d. 

We end this section with the remark that if one is interested in the 
analytic functionals corresponding to exponential-polynomials with com- 
plex frequencies, every result we have stated holds after replacing the 
weight p by the radial weight /I < (I. The auxiliary weight P that appears in 
the proof of Theorem 3.1 would this time be the weight P(<, X) = 

log( 1 + II XII I+ II i II. 

4 

Theorem 3.1, which we have just proved, reduces us to studying the set 
of elements (pi ,..., pN) E (C*)“‘, which we will call exceptional, for which the 
variety I’(P) defined by (3.5) has dimension bigger than or equal to one. 
Since the dimension of the algebraic varieties Y(“’ in @n+N remains con- 
stant, one could ask whether there are simple conditions about the 
algebraic variety Y which imply that the corresponding analytic variety V 
is discrete. 

Let us recall that the relation between the varieties V and Y seems very 
simple: 

V= {[EC”: 3XeCN such that ([, X)E YnExp}, (4.1) 

where Exp is the n-dimensional submanifold of Cn+ N defined by the 
equations 

x, = eial i )...) x, = ew i, 

When V is discrete but not empty, in the set of varieties Y such that (4.1) is 
satisfied one can find an algebraic variety Y,, not necessarily unique, of 
minimal dimension, and one has then 

dim Y, f N. (4.2) 

In fact, since Y, is of minimal dimension and V is non-empty, one can 
always assume there is an irreducible branch Y0 of Y,,, with dim Yb = 
dim Y,, and such that Y0 intersects Exp in a non-singular point of Yb. At 
that point one can use the formula [30, Proposition 7.11 which gives a 
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lower bound of the intersection at a point of two analytic varieties in 
@ . n+N. 

dim( G n Exp) 3 dim Yb + dim( Exp) - (n + N). 

By Remmert’s theorem the dimension of Y;, n Exp at the point we are con- 
sidering is the same as the dimension of its projection V in C”, hence we 
have 

which is what we wanted to show. 
The problem about the variety Y, we have just introduced is that it is 

not at all related to the generators of the original idea y. We can, on the 
other hand, consider first the irreducible components of Y, then the 
singular varieties of those components; by repeating this process, one finds 
a variety Y, which satisfies both (4.1) with Y, instead of Y and (4.2) with 
Y, instead of YO. 

On the other hand, the condition dim Y6 N does not ensure that V is 
discrete. Let us give the following example (n = N = 2 ): 

F,(i)=i,-i, 

in this case V is of dimension 1 in @’ and Y is the algebraic variety of @’ 
defined by 

i, = i2, x, = x2 

which is an irreducible variety (also smooth) of dimension 2. 
Modifying this example we can see that in general there are exceptional 

values of p even though (4.2) is satisfied for Y. For instance, let us consider 
in @’ 

F,(i)=<, -i: 

then (p E (@*)2: p1 = 2p,} is the exceptional set. 
Even under restrictive conditions on Y the problem of the discreteness of 

V as well as the nature of the exceptional set appears to be tied to 
arithmetical conditions on the coefficients of the exponential-polynomials, 
even when the frequencies are rational. To give a more precise idea let us 
recall here Schanuel’s conjecture [ 3 ] : 
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Given n numbers y,,..., y, Q-linearly independent, the trancendency degree 
over 0 of the extension Q( y, ,..., yn, e”‘,..., eYn) is at least n. 

Let us admit Schanuel’s conjecture for n = 2. (For n = 1 it is true. It is 
just the Gelfond-Schneider theorem.) Assume Fl,..., F,,, are exponential- 
polynomials of two variables, not all zero at the origin, with integral fre- 
quencies and such that the variety Y is irreducible, dim Y = 1, and Y is 
defined over Q. Furthermore, let us assume, so that the problem is one 
really of two variables, that Y is not included in any hyperplane of C4 of 
the form 

r,i, +r2C2=0, (r,, r2) E Q’\(O). 

Under all these conditions we can conclude that V is empty. If not, let 
( y,, y2) E V, and the transcendency degree of a( +v,, JJ~, e@‘, e’-“‘) is at most 
1 since the point (~1~~ y,, eiyl,eh‘z) E Y. By Schanuel’s conjecture there are 
rationals rl, r2 not both zero such that r, y, + r2 y2 = 0. Now, the algebraic 
variety Y n jr, <, + rzcz = 0 > is a variety of dimension 0 defined over Q,. 
Hence the pairs (yl, e’!‘) and (pl?, e”“) belong to 0’ which contradicts the 
theorem of Gelfond and Schneider since (y, , y2) # (0,O). 

This group of very simple examples leads us to pose the following 
problem. 

PROBLEM 1. Given m exponential-polynomials of n variables with fre- 
quencies in Q” and algebraic coefficients which define a variety V discrete 
(or empty), is the ideal generated by F, ,..., F,,, s.s.d.? 

When n = 1, the ideal generated by a single exponential-polynomial with 
real frequencies (and a posteriori one generated by any finite number of 
exponential-polynomials) is s.s.d. [20. 91. Hence the answer to Problem 1 
in this case is positive without restrictions on the frequencies or on the 
coefficients. 

When n = 2, we have given a positive answer to this problem when m is 
also equal to 2 and without any restriction on the coefficients [ 111. In the 
next section we will show that the condition m = 2 is not necessary. On the 
other hand, the conditions on the frequencies are necessary, even when 
n = 2. For instance, the pair cos iI, cos I,[, , i $ Q, considered in A,,(C*) is 
s.s.d. if and only if 1, is not a Liouville number. In fact, since 1 is irrational 
the spectrum I/ is empty; if this pair was s.s.d., the remarks after (1.7) show 
that we would have a Nullstellensatz, i.e., a pair of elements in A,(@‘) such 
that 

1 = G,(i) cos i, + G,(i) cos Ai,. (4.3 1 

Taking [, = 0, one sees that one would have a Nullstellensatz in dimen- 
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sion 1 for the functions cos i, cos A[, which is equivalent, in this case, to 1 
being non-Liouville (cf. the example given in the Introduction after (0.1)). 

Modifying the same example, we see the necessity to impose conditions 
on the coefficients in Problem 1, even when the frequencies are rational. In 
fact, consider in C3 the following three exponential-polynomials, with 
integral frequencies and empty variety V: 

F,(5)=cos11, F,(C) = cos iz, F,(i) = 12 - Xl (nER\Q). 

The ideal generated by F,, FI, F3 being s.s.d. is equivalent to the 
Nullstellensatz for this triplet, which by restriction to the line cj = 0, 
cZ - Ai1 = 0 implies a Nullstellensatz in dimension 1 for the pair cos [, 
cos A[, hence one has to impose conditions on A. If ,J is algebraic it will be 
non-Liouville and we can solve (4.3) with G,(c,), G,([,) E A,(C), so we will 
have 

1= G,(il) ~0s i, + Gz(il)cos Xl 

= G,(il) ~0s i, + (GAilI WX, -id) ~0s 12 

+ G,(i, 1 sin iz 

which is the Nullstellensatz for the above triplet. 
These examples show that to obtain a positive answer to Problem 1 it is 

necessary to solve the following: 

PROBLEM 2. Let F, ,..., F,,, be m exponential-polynomials in @” with fre- 
quencies in Q”, algebraic coefficients, and empty spectrum V, are there m 
elements G, ,..., G, in Ap(Cn) such that 

1 =F,G,+ ... +F,,,G,? 

It is easy to see that Problem 2 has a positive answer for n = 1 (see Sec- 
tion 7), but we do not know the answer for any other value of n. 

Let us add to this list a problem similar to the above and which has been 
posed by Ehrenpreis. 

PROBLEM 3. Given an exponential-polynomial F of a single variable 
with algebraic coefficients and real algebraic frequencies, do the distinct 
zeroes stay away from each other? More precisely, are there positive con- 
stants c, N such that 

F(i) = F(Y) = 0, (#[‘=eIi!-[‘I >ceCNP’i’? (4.4) 

Using the work of Polya on zeros of exponential-polynomials in the last 
inequality the factor e- Np’s’ can be replaced by (1 + I[ 1 )-,w for some 

fl07m-i 
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M > 0. A positive solution to this problem will have several applications in 
Harmonic Analysis. The first one is that the variety V= (F= 0} will be an 
interpolating variety in the sense of [lo]. The second one is that, under the 
additional assumption that the spectrum is real and simple, every con- 
tinuous solution 4 of the equation p * 6 = 0 (where c = F) must be almost- 
periodic [23]. 

When r denotes, as above, the subgroup of iw generated by the frequen- 
cies of F and rank r= 1, then a positive answer to Problem 3 is equivalent 
to a positive answer in dimension 1 to Problem 1. When rank f = 2, under 
the additional hypothesis that V is real and simple, it was shown by 
F. Gramain [23] that the answer to Problem 3 is also positive. 

5 

We give here some applications, in the case of two variables, of the 
results in Sections 2 and 3. 

Let us give first a generalization of the main theorem in [ 111. 

THEOREM 5.1. Let .Y he a finitely generated ideal in A,(@‘), generated 
by exponential-polynomials with rational frequencies, assume also that the 
spectrum V qf .Y- is discrete or empty. Then the ideal .Y is s.s.d. 

Proof. We can assume that the generators of .7 are m exponential- 
polynomials F, ,..., Fm with frequencies in N’. Consider the algebraic variety 
Y in C4 associated to F,,..., F,,, via (3.3), and defined by polynomials 
PI >...? pm. We can suppose that none of these polynomials are divisible by 
X, or X2, in fact, by Proposition 3.2 we can assume that Y is irreducible 
and the pj generate a prime ideal 9. 

We are going to show that there is a constant S, 0 < 6 < 1, such that 

sup (1 -p,I <6*dim V’“‘dO. 
, = 1.7 

(5.1) 

The theorem will then follow from Theorem 3.1. 
If the algebraic variety Y has dimension bigger than or equal to 3, there 

is a polynomial q E C[[, X] dividing all the polynomials pi, which is 
impossible (it would even contradict the discreteness of V). Hence 
dim Y62. 

Suppose p E (C*)2 is an exceptional value. Let us consider an irreducible 
branch Wcp’ of dimension 1 of Vfp’ (the case of dim VCp’ = 2 being 
impossible since the FQ” are non-zero). By the Proposition 2.4 there are 
(rl, r2)EQ’\(0) and ,:C such that 

bVp)G {[EC2:r,[,+r2[z=Y).. (5.2) 
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By dimensionality considerations we obtain that IV’ is the line 

r1 i, + r,i, = y. (5.3) 

It follows from [ 11, Remark 6, p. 1221, since the variety I/ is discrete, that 
the pair (r,, r2) can be taken to lie in finite subset .F of&p’ which is related 
only to the frequencies of the exponential-polynomials F, ,..., F,,,. We will 
prove this in a more general context in Proposition 7.1. 

Let us assume first that the polynomial r, <, + rziZ -B does not belong 
to the algebraic ideal 9 generated by pi ,..., pm; hence the subvariety of C4 
(pl= .” =pm=rl(,+ rziZ - 1’ = 0 ). has dimension at most 1 and one can 
use another time Proposition 2.4 and obtain a second line sl<, + s2il - 
7’ = 0 containing also I@’ and such that r 1 s2 - r2s, # 0, and this leads to a 
contradiction. Hence, in order that IVp’ could exist, one must have 
rI {, + r2i2 - y E 2. This is only possible for fixed (rl, rJ and for a single 
value of y. otherwise 1 E 8, Y = 0, and, a fortiori, IV@’ = 0. 

We conclude that IVp’ could only be a line belonging to a certain finite 
set of lines, independent of p. If there were a sequence of exceptional values 
pk, pk -+ (1, l), one could extract a subsequence such that WCPk) is 
stationary, namely, a line IV’,, with equation of the form (5.3). But on this 
line IV’, all the Fj”“) z 0, hence by letting k + x we have 

F, E . ..F.,,=O on W, 

contradicting the discreteness of I’. l 

Remark 5.1. One can in fact prove, decomposing the variety 
Y = ( p, = . = pm = 0) in irreducible components and taking the smallest 
6 corresponding to the different components, that (5.1) is always valid 
under the assumptions of Theorem 5.1. We can in fact go further and see 
that there are no exceptional p unless there is an equation of the form (5.3), 
considered in C4, which is satisfied on a whole irreducible component of Y. 
Looking at this in more detail, one arrives at the conclusion that there is a 
finite number of pairs (rl, r2) in Z’\(O) and non-zero complex numbers 
y # 1 such that every p exceptional satisfies one of the equations 

Let us now give an application of Theorem 3.1 to a type of system of 
convolution equations proposed by J. Delsarte [ 181. We need a certain 
amount of extra notation. Q denotes a convex compact polygon with non- 
empty interior in [w2. Its vertices ordered counterclockwise are A, ,..., A,,. 
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We adopt the convention A,,+ r = A,. We fix two n-tuplets (a,,..., a,) and 
(b r ,..., b,) in C” satisfying the condition 

ii (sib,+,-u/+,b,)#o 
,= 1 

(5.4) 

(with the convention a,, r = a,, b,, , = b,). 
One considers two distributions with support in Q of the form 

n 
/J= c q!,,+cJ+cp 

i= 1 

v = 5 hi&, + 5 + II/, 
/=I 

(5.5) 

where 6,, denotes the Dirac mass at the point A,, B, t are two distributions 
with finite support in the interior & of the polygon Q. and cp, $ are two C” 
functions with compact support contained in Q. The case not considered in 
[9, 18,411 is the case where the order of at least one of the distributions 
c, T is strictly positive, and this case seems to escape the previously known 
methods. We prove the following theorem. 

THEOREM 5.2. Let p, v be two distributions of the form (5.5), then the 
ideal Y- generated b,v 8, 0 is s.s.d. in Ap(C2). 

Proof: We first assume that cp = II/ = 0, hence we are in the case that fi, 5 
are exponential-polynomials with frequencies in R”. We are going to show 
that in this case there are no exceptional values p, hence the theorem will 
follow immediately from Theorem 3.1. Fix p E (UZ*)N, where N denotes the 
rank of the group f associated to @ and $ by (3.1). 

Let us consider a unit vector u in R’, and after a rotation we can assume 
that its direction is that of the x-axis. Thanks to the condition (5.4) one can 
find a linear combination of the measures C a,ba, and C b,6,, such that the 
support of this new measure contains the point (c(, 0) as the only point in 
the support with maximal abscissa. Using exactly the same linear com- 
bination one finds a function in the ideal ,Y’P) of the form 

(5.6) 

where all the ak < 0. Hence there are three positive constants c, C, T such 
that if 

lizI bc lill and Im[,d -T 
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the set of zeros of the function (5.6) is contained in a logarithmic strip of 
the form 

lImilIGClog(l+Ii,I). 

Using a compactness argument (whith respect to the unit sphere of direc- 
tions II) we see that there is a constant C, such that the variety VP’ is con- 
tained in a set of the form 

IlImill <Cot1 +log(l+ Itill)). (5.7) 

We can then appeal to Corollary 2.3 and conclude that VP’ is discrete. 
That shows that the pair (fi, P) is s.s.d. in the case cp = II/ E 0. 

In order to finish the proof let us denote i, the polygon with vertices 
-A , ,..., -A, and Ho the indicator function of the set 0 (i.e., Ha(x) = 
max{?r.y:yEij}forxE[W’).Whatwehaveshownby(5.6)isthatthereare 
two positive constants K and k such that 

II~~ill3~~~g~~+~~g~~+Ilill~~ 

* l/i(i)1 + Il;(i)l >keHo’lmc’, (5.8) 

always under the condition cp E 9 = 0. Let us return to the general case. 
Since the two functions cp, Ic/ E C;(Q) we have, outside a compact subset 
of C2, 

1 @([)I + I $([)I 6 $kP~““” 

One can conclude that, for a convenient choice of (a,, C,), all the com- 
ponents of the set S(@, $; E,, C,) are contained in a set of the form (5.7). 
Using now the fact that we have proved that the pair of exponential- 
polynomials appearing in fi, i are s.s.d., that cp, $ are CF, and all the com- 
ponents of S(fi, t; c2, C,) satisfy (5.7) for any c2 < si, C2 3 C,, we see 
without any difficulty that the pair fi, v^ generates an ideal s.s.d. in 
A&‘). I 

Remark 5.2. If we replace CJ + cp and t + $ in (5.5) by distributions of 
compact support contained in 0, we see, thanks to (5.8), that V is discrete. 
One can then ask whether the spectral synthesis still holds for the system 
p*f=v*f=O. 

We give here a third example where the geometry of the support of the 
distributions associated to the exponential-polynomials plays a role. 

THEOREM 5.3. Let p,,..., pL, be distributions with finite support in [w2 
whose Fourier transforms define a discrete variety of C2. We assume that the 
supports A, and A, of the two distributions p,, ,ur satisfy the condition 
(2.22). Thus the ideal generated by (fil,..., @,,,) is s.s.d. in AJC’). 
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Proof Thanks to Proposition 2.5 we see that every sequence WtPn) of 
irreducible branches of dimension 1 of the V (Pk’ has a subsequence which is 
stationary when the pk + (1,l). Thanks to the reasoning already used in 
the proof of Theorem 5.1 we see that this is incompatible with V being 
discrete. a 

The typical example of application of the previous theorem is when p1 is 
the characteristic function of a convex polygon and pL2 is obtained from p, 
by a convenient rotation. 

Remark 5.3. We can also show-and we will in Section 7-that if pI, p2 
are two distributions with finite support in R2 and their supports satisfy 
(2.22), then the spectral synthesis always holds (even if the spectrum is not 
discrete) for the system 

PI*f=Pr*f=O, j-e cy R'). 

6 

From what we said in Section 4 it is clear that, at least for the moment, 
we can only give partial answers, when n 3 3, to the problems raised there. 
While the methods developed in Section 3 apply to a system of exponen- 
tial-polynomials with real frequencies, we will restrict ourselves in this sec- 
tion to the case of rational frequencies. 

Let us return to the triplet (cos [, , cos iz, i2 - 15,) considered in 
(A,(C3))‘. We have seen that the ideal they generate cannot be s.s.d. On 
the other hand, from the results of Section 5 (or by an easy direct 
verification) one obtains that the system of convolution equations they 
define does not admit any non-zero solution and hence the spectral syn- 
thesis still holds since the spectrum V is empty in this case. We could then 
add the following to the list of problems in Section 4. 

PROBLEM 4. If p, ,..., pm are distributions with finite support in R”, does 
the system 

p, *f= ... =/.&*f=O 

have the spectral synthesis property? 

When n = 2 a positive answer to Problem 4 was given by Gurevich in 
[29] when the supports of the ,u, lie in Q2 reducing the case of spectrum 
non-discrete to that of empty spectrum by a method that was used also in 
[S, 341. On the other hand, it is also known that there are convolution 
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systems in Iw2 for which the spectral synthesis does not hold [27], but the 
known examples do not correspond to distributions of finite support. 

The proof of Theorem 3.1 gives, at least theoretically, another sufficient 
condition to ascertain that an ideal F generated by exponential- 
polynomials with integral frequencies is s.s.d. when dim Y < II. Let us try to 
describe this mechanism: we begin by decomposing the variety Y= Y, in 
irreducible components Yb”, Yg’,..., and we denote Z,!,“, Z,$“‘,..., the 
singular locus of Yb’ ‘, Ybz’..... Given one of the components Yg’, say, Yb”, 
consider the polynomials g, ,..., g, generating the prime ideal corresponding 
to Y{,lI and regard the matrix 

?G, ~I-11 c’i,, k = I. ../ h = I. .,I 

where Gk([) =gk([, eii). Since the minors of rank n of this matrix are of the 
form A([, e’i), h a polynomial, one must verify, so that the method works, 
that at least one of these polynomials /I is not identically zero on Yh’ I. One 
adds the equation {h = 0 1 to those of Y{,’ ) and obtains an algebraic variety 
kV’j,l) of smaller dimension. One makes the same verification for the other 
components Y,!,“,.... Consider now the algebraic variety 

whose dimension is strictly smaller than that of Y,. Repeat the procedure 
starting with Y,. If we never find any trouble with the above steps we get 
to an algebraic variety of dim < 0. and that implies that the original ideal is 
s.s.d. 

We have hence a method, completely algebraic, to ensure that a system 
of exponential-polynomials with integral frequencies defines an s.s.d. ideal. 
It is only a sufficient condition and usually very hard to verify, and for such 
a reason we will provide later other sufficient conditions. 

We give here an extremely simple example to which we apply the above 
decision method. We consider in C3 

F,(i) = i3e’;’ - 1 

FJi) = i, - i2 

F,(i) = eiCi - 2e’;‘, 

Y,, is then the irreducible smooth variety of dimension 3 given by 

Y~=(~3x,-l=~,-~2=x,-2x3=o). 

(6.1) 
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The only thing to compute here is the Jacobian 

We can take as polynomial h the polynomial -2t3X, + ix,, since the fac- 
tor eiil in (6.2), being invertible in A,(C3), does not play any role. The 
variety Y, is also irreducible and smooth and dim Y, = 2, and it is defined 
by 

YI= 
i 

il-i2=i,-i=X,+~=X,+i=O 
I 

Repeating this procedure we obtain that the variety Y2 is empty, hence the 
ideal generated by (F,, F,, F3) is s.s.d. We note that in this very simple 
example we have just considered, the study of the varieties VCp’ is 
immediate; one sees that the problem can be reduced to one in dimension 
two and applying Proposition 2.2 one obtains that the possible irreducible 
branches of dimension > 1 of VP’ must be contained in the hyperplane 
{i,=O), h’ h w ic is impossible by the first equation in (6.1). 

We try here to give other types of conditions which allow a direct 
application of Theorem 3.1. Let us recall that we suppose that we are given 
m exponential-polynomials F, ,..., F,,, with integral frequencies defining a 
variety V which is discrete or, possibly, empty. We want to find conditions 
on the algebraic variety Y which will allow us to pinpoint, if they exist, the 
irreducible branches of strictly positive dimension of the analytic varieties 
VP) for p E (C*)” exceptional. In what follows all the algebraic varieties are 
subvarieties of C”‘, the variables are denoted [ ,,..., i,, X ,,..., X,,, and 52 is 
the open subset of C”: 

!a= ((~,x):x,-~x,#o}. (6.3) 

DEFINITION 6.1. A coherent change of coordinates on Q is a bijection T 
of D into Q such that there is a matrix A = Ij ak, /I E GL(n, Z + ) such that 

V([,X)EQ, (<‘,X’)= T([, X)ct[=A[‘andVl~ (l,..., n}, 

x,= fi (X;pJ. 
k=l 

It is clear that a coherent change of coordinates is a proper mapping of 52 
into itself, and if W is an analytic subvariety of pure dimension p of a 
domain UC a, then T(W) is an analytic subvariety of dimension p in 
T(U). This is a consequence of Remmert’s theorem [26]. 
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We will use the following two preliminary lemmas. 

LEMMA 6.1. Let q be a polynomial in C[[, ,..., [,,I, then there is a matrix 
A in GL(n, Z + ) such that 

k-l 

v’i E C”, q(N) = 4: + 1 u,(L,..., i,) ii9 (6.4) 
,=o 

where a E @*, U, E @[c2,..., [,,I, and k is the total degree of the polynomial q. 

Prooj The existence of a matrix A E GL(n, a=) such that (6.4) holds is 
very well known (see, e.g., [7, Chap. 6]), and the only thing to observe is 
that in the proof of that lemma we can impose the extra condition that the 
coefficients of A are in Z +. 1 

LEMMA 6.2. Let F be an exponential-polynomial of n variables with fre- 
quencies in Z”. There is an element u E Z”, a matrix A E GL(n, Z ’ ), a strictly 
positive integer N, a non-zero polynomial PO E @ [[, ,..., [,,I, and a family 
{G,}&, of exponential-polynomials of n variables with frequencies in 
{ 0} x Z”- ‘, such that 

v’i E C”, e’“.lF(A[) = PO({) e’Nil + f G,(i) ei(N-4~i~, (6.5 1 
q=l 

Proof After multiplication by a convenient exponential we can assume 
that the frequencies c(r,..., ~1~ of F are all elements in (N*)“. Let aE (FV*)fl 
such that 

VlE {l,..., L}, I# 1 *a.cr, >a.cr,. 

After an eventual rearrangement of the ~1~ such an element always exists. 
We choose a family { ai},= 2 .,,,, n of elements in (N *)” such that (a, a, ,..., a,) 
form a basis for R”, and we denote by A the matrix whose columns are the 
vectors a, a2 ,..., a,. Let {CI>I= I....,~ be the non-zero polynomials in 
c[iI,..., [,I such that 

F(A. i) = i C,(C) exp 
[( 
i a,.ac,+ i CX,‘aj[j 

/= I /=2 

Denote 

u=(O,-~,.a, ,..., --cI~.~,)E.Z~. 
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Hence 

L 

+ 1 C,(i)exp i cc,.ai,+ $J (a,-a~).a,i, 
I=? Li /=? )I 

If we set N= txi . a we have immediately the expression (6.5). 1 

Remark 6.1. If we denote by T the coherent change of variables 
corresponding to the matrix A appearing in Lemma 6.2 we see that there is 
an integer N> 0, a non-zero polynomial P, E C[[, ,..., {,,I, and a family 
(P,},“_, of elements in C[[ ,,..., [,, XZ ,..., X,, 1/X2 ,..., l/X,,] such that if g 
is the polynomial associated to F by (3.2) 

where f= (X2,..., X,). 
We are now ready to prove the following proposition. 

PROPOSITION 6.3. Let F, ,..., F,,, be m exponential-polynomials of n 
variables with frequencies in N”, and we assume that the pol~ynomials 
P 1 ,..., P, E @[[, X] associated via (3.2) are infact in @[[, ,..., ck, X, ,..., X,], 
1 6 k < n, and that the dimension (in C2”) of the algebraic variety Y defined 
by (3.3) is smaller or equal to n. Then, there is a non-zero polynomial P in 
@[iI >*..r ikl such that all the irreducible branches qf dimension bigger or 

equal to 1 (in C”) of the analytic variety V= {[EC:“: F,(i)= ... = 
F,,,(c) = 01, tf the-v exist, are included in the algebraic hylpersurface 

{(E c=“: P(il )..., [k) = 0). 

Remark 6.2. Given an n-tuplet p E (a=*)“, it will be immediate, from the 
proof of Proposition 6.3, to see that every irreducible branch of positive 
dimension of VP’ is also included in the same hypersurface 
{ P(cl ,..., ck) = 0) given in Proposition 6.3. 

The theorem of Ax, i.e., Proposition 2.4, allows us to say that for a given 
irreducible branch W of V there is a polynomial P,, affine with rational 
coefficients (except for the independent term), such that WC {Pw= O}. 
What is surprising about Proposition 6.3 is that the polynomial P is 
independent of the branch W. 
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Proof of the Proposition 6.3. Let us suppose W is an irreducible branch 
of positive dimension of V and denote by Z the subvariety of @“‘: 

z = (((, X) E cZn: < E w, x, = eii’ )..‘, x,, = &” ). 

Since W is irreducible, Z is contained in one of the irreducible components 
of the variety Y, hence we are not making any restriction if we suppose that 
PI,..., P, are the generators of a prime ideal 9 in C[c. X] associated to 
one of the irreducible components of Y, and it is clear that the hypotheses 
of Proposition 6.3 still hold for these new polynomials p1 ,..., pm. 

If a non-zero element of @[[, ,..., [,,I is in pp. then there is a non-zero 
polynomial in C [{, ,..., ck] which belongs to 9 and the conclusion of 
Proposition 6.3 is immediate in this case, and we will assume hence that 

C[( I,..., [,]n?= IO],. (6.6) 

The polynomial P, does not depend only on the variables i. Consider P, as 
a polynomial in @ [c, ,..., [J [X, ,..., X,]. Let (co, X0) E Z, and either one of 
the coefficients of P, vanishes at co or none of them vanishes at co. Let us 
suppose we are in the latter situation. 

The point (co, X0) belongs to the open set Q, and thanks to Lemma 6.2 
and Remark 6.1 there is a coherent change of coordinates T, such that, in a 
neighborhood of (co, A’,). the variety Y is defined in the new coordinates 
by the following equations: 

P,([‘)(X;)“” + 2 P,({‘, Xi,..., x’,)(X;)“-‘= G,(i’, X’) =0 
I= I 

G,(i’, x’) =o 

(6.7) 

G,(i’, x’) = 0, 

where O#P,E@[[‘], P,EC[[‘][X~ ,..., Xn, l/X’, ,..., l/r,] for I= l,..., N,, 
Gj~ CCC’] [X; ,..., r,, l/X’, ,..., l/r,] for j = 2 ,..., m. Moreover, if Q denotes 
the polynomial P, or any of the coefficients (in @[[‘I ) of the P, or G,, and 
if A 1 is the matrix associated to the change of variable T, , the function 

is a polynomial function depending only on the variables [ 1 ,..., ik. 
Let ([A, X0) = T,([,, X0), and we have, thanks to the hypothesis we have 

made above, 

P,(G) = PC0 ,‘LJ # 0. 

Denote P&(c) = P,(A ;I[). 
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By elimination theory [48], there is a family Rz,..., R, of elements in 
C[l’] [X; )...) XL, l/X; )...) l/X”] such that, in the variables ([‘, X’), the 
variety Y is defined in a neighborhood of ([b, &) by the equations 

G,([‘, x’) = 0 

R2([', x') =0 
(6.8) 

RJl', X')=O. 

The analytic subvariety of @2n-1 (the variables being ii,..., CL, XI?,..., Xn) 
defined in a neighborhood of ([b, J&,..., &,) by the equations 

R2([', X2,..., Xn) = . . . = RL(c', X2,..., Xn) = 0 

is, by the hypothesis, Remmert’s theorem and Remark 6.1, of dimension 
smaller or equal to n in c 2n-1 if n 3 2, something we have implicitly 
assumed. Hence, at least one of the functions R,, for instance, Rz, is not 
identically zero. Moreover, if Q denotes any one of the ‘polynomial coef- 
ficients (i.e., in Ccl’]) of R,, the function [ + Q(A,‘[) is still in 
a=[5 1 ,...T i/cl. 

If n = 2, we stop the procedure, and we will return to it at the end of the 
proof. If n > 3, we continue as follows. Again we have two cases, either at 
least one of the coefficients of R2 vanishes at lb or none of them vanishes at 
this point. Again we suppose we are in the latter situation. 

As before we can find a coherent change of coordinates T,, this time 
leaving untouched the variables c’, , Xi, and such that in a neighborhood of 
(lb, X0) the variety Y is defined, in the new coordinates (c”, x”), by the 
following equations: 

Q,.l([“)(X;)N1 + z Q,,l([“, A-;,..., X:)(X;)“-‘= H,(i”, X”) = 0 
I= I 

Qo.&“)(X:‘)N2 + 2 Q/,z(i”, xl;,..., Xc)“-’ = H*( y, ,,) = 0 
/= 1 (6.9) 

ff3(1”, r) =o 

HL(Y, ,,,) = 0, 

where QO,,, Qo,z~KZ[[“], Q,, E a=[[“, X;,..., Xi, l/X; ,..., l/X:] for I# 1, 
Q,,, E @Cl”, Xi’,..., Xi, l/Xl ,..., l/X:] for I# 1, and H,E@[[“, X; ,..., Xi, 
1/x;,..., l/Xi] for j = 3,..., L. Moreover, if Q denotes any of the polynomial 
coefficients (i.e., in a=[[“]) of the H, and if A, is the matrix associated to 
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T2, then the function [- Q(A,‘A;*[) is a polynomial in C[[r,..., ck]. 
Denote (ii, Xl)= T,([b, Xb), then, in the case we are considering, 

Qo,z(G’) = Qo,z(A,‘A ,‘M Z 0. 

We denote P;(i) = QoZ(A; ‘A;‘[) P;(i). 
Again by elimination theory we obtain a family S3,..., S, in 

C[<“, x; ,...) A/;, 1/x; )...) l/X;] such that the variety Y is defined in a 
neighborhood of (ii, X,;) by the system 

H,(<“, F) =o 

H,(<“, x”) = 0 

S,(<“, x”) = 0 (6.10) 
. . . . . . . . . 

S,(<“, .,,) = 0. 

The analytic variety in @?‘I ’ (variables i;‘,..., <:, Xjy,...,X:) defined near 
(ii ,..., X& ,..., X&) by the M- 3 last equations of (6.10) is again of dimen- 
sion less equal to rz; and, since we have assumed n 3 3, at least one of the 
S,, say, S,, is not identically zero. Moreover, if Q is any one of the coef- 
ficients (in C[[“]) of S, considered as an element of C[[“] [XT,..., X;, 
l/X; ,..., l/Xi], the function < + Q(Ay’A;‘[) is in C[[ ,,..., ik]. 

When n = 3 we stop here, if not we continue in the same way. Therefore, 
after having gone through this procedure n - 1 times, we construct a 
polynomial P'E @[[, ,..., ik], independent of (lo, X0), and a coherent 
change of coordinates T, with associated matrix A, such that : 

-either P'([,)=O 
-or the variety Y is defined in a neighborhood of (io, X0) in new coor- 

dinates (MS, Z) by equations of the form 

iv, 
&,(w)Z~~+ 1 E,,,,(w,Z, ,..., Z,)Z;“l -‘=O 

/= I 

&(w) Z”? + z iLZ(w, Z, ,..., Z,) Zr2 ‘= 0 

KAY Z,) zz 0, 
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where none of the polynomial coefficients (i.e., in a=[~]) of the i,,j vanishes 
at the point w,; moreover, if Q is one of those polynomial coefftcients, the 
function [ + Q(A ~ ‘[) is a polynomial function in the variables [, ,..., ik 
alone. 

In the case where Y is defined near (co, X,) by equations of the form 
(6.11) in the coordinates (w, Z), the classical method of elimination theory 
of computing successive Sylvester determinants shows us that there is, for 
every Jo (I,..., n), a family {P,,~~Z~ of elements in @[u’!,..., MI,] indepen- 
dent of the point (co, X,,) such that 

(4 V2 Pj.0 f 0, 
(b) V’E (l,..., n), V/E (0 ,..., MJ, p,.JA-‘(.))d[5 ,,... , i/;-j, 
(c) if (M’, Z) E Y is near (M‘~, Z,) then 

M 

c’ pLi,,(w) zy=o Yi. (6.12) 
/=O 

After dividing (6.12) by convenient powers of the Z, we can assume that 

Yi Pi,M, f 0. 

Let P” E C[[, ,..., [,I be defined by 

P”(i)= fi P,,M,(A ~%P,.O(A ‘il. 
/=I 

From (6.12) we conclude there are two constants C’, K’ such that for every 
point [ in W close to co, we have 

IP”(i,Y.~ ik)l fi 
/=I 

(6.13) 

where 

$i(i)=ew i ( 4,, Im i, 7 .4 ’ = lI~,,,ll. 
/= 1 > 

It follows from (6.13), since det A #O, that there are two constants C, K 
such that for every [E W near co we obtain 

lP”([l,..., ip)l exp ($ IIm Cjl) G C(1 + llill)“. (6.14) 

Now, every constant that has appeared, as well as all the polynomials we 
have introduced, are independent of co and the branch W. Hence, setting 
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P= P’P”, we see that every point of a branch of positive dimension is con- 
tained in the set 

We can finish the proof using Proposition 2.1. 1 

Remark 6.3. The main difficulty in the above proof is the lack of a 
theorem of the type of Noether’s normalization theorem [30,48], which 
we cannot prove since are limited to coherent changes of variables and not 
arbitrary linear changes of coordinates in the 2~2 variables as would be 
necessary for the proof of such a normalization theorem. It is precisely to 
get around this difficulty that we have given the above proof with prac- 
tically all details. 

Remark 6.4. If the coefficients of the exponential-polynomials F, ,..., F, 
are in a subfield of @ or in a field of the type C(u), the polynomial P of 
Proposition 6.3 has coefficients in the same field. 

We can also prove the following proposition. 

PROPOSITION 6.4. Let P, ,..., P, E @ [<, A’], Y the corresponding algehruic 
varietl’. Denote hi> W, the subset of C” defined .!I)- 

[$ W,,*dim Yn( (;={,,I x@“)<O. (6.15) 

Ever?) irreducible branch of‘ positive dimension of’ the unaljltic subvariet?, V of 
@” defined b?) the equations 

p,( [, e”l,.,., e’;“) = . = p,,,( i, pi;) ,,,,, e’;“) = 0 

is contained in the closure m,, sf’ W,, in 02”. 

We need two further lemmas: 

(6.16) 

LEMMA 6.5. Under the hypotheses sf the preceding proposition, ever~~ 
irreducible component of Y not included in W,, x @” has dimension at most n. 

Proof of Lemma 6.5. Let Y, be a component of Y not included in 
Wax@“, (co, Xo)c Y, with co+ W,. By (6.15), if Z is an irreducible com- 
ponent of Y, n ( ii = lo) x C”) containing (co, X,) we have 

dim Z = 0. 

As pointed out before, by [30, Proposition 7.11, one has 

dimZ>dim Y,+dim({<=[,lx@“)-2n. 
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It follows that 

03dim Y,+n-2n=dim Y,-n. a 

LEMMA 6.6. Under the hypotheses of the preceding proposition, we have, 
for every jE {O,..., n}, for every algebraic subvariety V, of @” of dimension 
less or equal to j (in Cn) 

(co, X0) E Y n ( V, x C”) and to G$ W, j every irreducible com- 
ponent of Yn (V, x CE) containing (co, X0) has dimension less 
or equal to j (in 62”). (6.17) 

Proof of Lemma 6.6. The conclusion of the lemma is correct when j = 0, 
and this follows immediately from the hypotheses. It is also clear one can 
assume Y is irreducible in Czn and V, in @” (j is now fixed in the range 
1 < j< n), hence V, x @” is also irreducible in C”. We will assume the 
lemma valid for j - 1 and dim V, = j. 

Given (co, X,,) E Y n (V, x C”), let Z be an irreducible component of this 
variety containing the point (co, A’,). Since the conclusion is valid for j- 1 
we can assume co is a regular point of P’,. If no point of Z has a regular 
c-coordinate we would have Z E Yn (Vj x en), V/ = singular variety of V,, 
and since dim V,’ < dim Vi d j we could apply the inductive hypothesis. 

Since co is a regular point of V, we can construct a linear variety L in C”, 
dim L = n - j, [,, E L, and co is an isolated point of Vi n L. By the case j = 0 
of the lemma we have 

dim Yn(V,x@“nLx@“)=O (6.18) 

On the other hand, let Z’ be an irreducible component of Zn (L x Cn) con- 
taining (lo, X0), and by the now familar argument 

dimZ’adimZ+dim(LxC”)-2n=dimZ-j. 

But, by (6.18) 

dimZ’<dim((Yn Vjx@“)nLx@“)=O. 

Hence dim Z d j, which proves the lemma. 1 

Proof of Proposition 6.4. Let W be an irreducible branch of positive 
dimension of the subvariety V of C”. Suppose W is not included in wO. Let 

Z = (([, X) E C2”: [ E W, X1 = eiil ,..., X, = eiin}. 

Since Z is connected it is contained in an irreducible branch Y, of Y. We 
assume dim Y, =n-q, O<q<n, and this is justified by Lemma 6.5 since 
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Yi is not contained in W, x C”. Consider a point (co, X0) E Z, i,, $ IV,. By 
the Proposition 2.4 there is an r E a”\ (0) such that 

WC {ME@“: rlcl + ... + rnin= rlio.l + ... + r,iO.n). (6.19) 

We denote ~~=r,i,., + ... +T~[,,~. After a coherent change of coordinates 
we can assume that the hyperplane in (6.19) has the form 

The analytic variety Z is now contained in an irreducible component Y, 
of the algebraic variety Y, n {c, = yi}. By Lemma 6.6, dim Y, <n- 1. 
Replacing [r by y1 in the exponential-polynomials corresponding to the 
generators of Y,, we obtain exponential-polynomials of n - 1 variables 
whose variety of zeroes contains a copy of W. We can apply again 
Proposition 2.4 in C”- ‘, make a new coherent change of coordinates that 
does not touch [r or X1, and see that the copy of W is contained in the set 
iS = y2. Now, every component of Y n { [, = y, } n { c2 = y2} containing the 
point (I& X0) has dimension n - 2 by Lemma 6.6. Iterating this procedure 
one sees that W cannot have positive dimension. 1 

COROLLARY 6.7. Let P, ,..., P, E @ [{, X], with m > n. Assume there is a 
closed set W, E @” such that 

k = I....,n 

vx. (6.20) 

Then, every irreducible branch of positive dimension of the variety 
((EC? P,([, eii)= ... = P,([, eir)=O) is contained in W,. 

Proof: This follows from the fact that the hypothesis (6.20) implies 
(6.15). In fact, if co4 W,, for X0 fixed, a minor of rank n of the matrix 
jI(BP,/i?X,)([,, X,)lj is not zero, hence the variety 

(XE c=“: P,([,, X) = ... = P,(i,, X) = 0 > 

has dimension at most zero at X,,, which is precisely (6.15). 1 

Application. If the exceptional set W, of (6.20) is either a variety of 
dimension < 0 or a finite union of irreducible varieties of dimension 1 (or a 
union of both of those things), then the ideal generated by the exponential- 
polynomials P,([, e’l),..., P,,,([, eli) is s.s.d., under the additional 
assumption, in the second case, that the variety I/ be empty or discrete. 
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7 

In this section we will study in detail a particular kind of system of 
exponential-polynomials which will allow us to study Problem 2 posed in 
Section 4 in the case n = 1 and to improve upon the Ritt theorem proved in 
C6, 431. 

Let us begin with the following proposition. 

PROPOSITION 7.1. Let F he un e.uponentiul-pol~norllial qf n variables \cith 
the set of ,frequencie.s A z C”, which we write as 

F(i)= 1 A;.(i) e” ‘, (7.1) 
it.1 

where none of pol?womials A j. is identicall?, zero. 
Let VO he an irreducible algebraic suhvariet~~ of’ @” ,f’ dimension 1 such 

that F vanishes identically on V,,. Then onl)) tn’o situations can occur: 

(a) either all the polynomials A;. j. E A, vanish identically on V,,, 

(b) or there are jw. 2’ E A, I# i.‘, and ;’ E @ such that 

* “I C’()G j<Ec? (A--x ).[=yj. 

To prove this proposition we need several lemmas. 

LEMMA 7.2. Let .Y he u prime ideal in @[<, ,..., <,,I (n 3 2) such thut the 
zero locus of 9 is an algebraic variety qf dimension 1, denoted V(Y); we 
assume V(9) is not contained in an>’ h.)perplane in 83” ef the ,fiwm <, = ;I. 
Then. there is a constant C such that 

impl? 

i = (i, 3..., L,)E V(P) and Ii,1 > C 

Proof of Lemma 7.2. We will prove this lemma by induction on n. 
When n = 2 the lemma is trivial since V(9) is defined by a single equation 
P(il, c2) = 0, P irreducible and of degree 3 1 in the variable c2. We will 
assume that the result is correct for dimensions tz’ < II. Let P, ,..., P, be the 
generators of 9, then 

V(P)= {(EC P,(i)= ... =P,(i)=O). 

Due to the hypothesis that V(9) is not contained in a hyperplane [, = 7 
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we can use Lemma 6.1 on the variables cz,..., [, and find new coordinates 
([, , c; ,..., ii) such that, in the new coordinates, 

where cp, is a polynomial of degree < v in [; and R, is a polynomial in the 
single variable [, which cannot be identically zero on V(P). 

We also conclude without difficulty that /<,I is not bounded on V(P), 
otherwise c, will be a bounded holomorphic function on an algebraic 
variety and hence constant (see, e.g. [ 191). Choose a constant K such that 
lcll 3 K implies IR,([,)l 3 1 and consider a regular point ioe V(P) such 
that i[O,,l 3 K. By elimination theory, the projection W of P’(3) into C”+ ’ 
defines an irreducible algebraic variety of dimension one. This variety can- 
not be contained in any hyperplane <, = 7 otherwise P’(Y) would also be 
contained in such a hyperplane. By the induction hypothesis, there is a 
constant C’ such that 

Ii,1 > C’. (i,, i’;,..., i:,)E w* i I;;1 < C’(1 + Ii,1 )“‘. 
/=3 

Using now (7.2) and the fact that 

Ii,1 >K= IR,(i,)l 3 1 

one arrives to the desired conclusion. 1 

LEMMA 7.3. Let V he an algebraic variety of pure dimension equal to 1 in 
C”, n > 2. Assume that no irreducible component qf V is contained in a hyper- 
plane of the ,form <, = 1’. Let P, Q E @[[, ,..., <,,I such that the varieties 
Vn {P = 0 1 and Vn (Q = 0 1 are @’ dimension zero or empty. Then the 
analytic variety W defined b?l 

W= jc~ V: P(i)e’i’+Q([)=Oj 

is discrete. 

Proof of Lemma 7.3. Assume W contains an irreducible analytic variety 
of dimension one. It is then, by dimensionality considerations, an 
irreducible branch Z of V, hence algebraic. The algebraic varieties 
Zn{P=O} and Zn {Q=O} h ave non-positive dimensions, hence they 
are finite sets. Therefore there is a constant C such that 
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We can then find a positive constant K such that the function 

is holomorphic and bounded on Z, hence constant. This contradicts the 
hypothesis. 1 

Remark 7.1. Note that we could have assumed that for each irreducible 
component of V one of the two polynomials P or Q does not vanish iden- 
tically and obtained the same conclusion. 

Proof of Proposition 7.1. We will prove this proposition by induction 
on the number of frequencies in F. Let /1= { JU1 ,..., A,} and write Aj instead 
of A,,. The proposition is clear if N= 1, and it is aiso true when N= 2 by 
Lemma 7.3. Assume hence N > 2. We can also assume VO = V(9), where Y 
is a prime ideal in C[<] and none of the polynomials A 1 ,..., A, belongs 
to 9. 

Let CO E I’, be a regular point. If PI,..., P, are the generators of 9 we 
assume that 

det a(p,Y.., pn- 1) 
II w 1)..., in-,) (io) #O. II (7.3) 

An easy computation shows that 

J(i) = Jacobian of (PI,..., P,-, , F)(c) = f Bj(c) ei’l-i, 
/=I 

where Bje CCC]. It is clear that the exponential-polynomial G defined by 

G(i) = AAt- 40 - B,v(i) F(i) (7.4) 

vanishes identically on Vo, since F and also J vanish on V. in a 
neighborhood of co and Y. is irreducible. 

A computation similar to that performed for the case n = 2 in [ 11, Proof 
of Theorem 21, which, for the sake of completeness, we will give below, 
shows that if one of the polynomial coefficients of G is identically zero on 
V,, then there is an indexjE {l,..., N- 1) and YE @* such that 

Van {[EC’: Aj(i)+yA,(r)e”~N~~“i=O} (7.5) 

is not a discrete variety. By Lemma 7.3 it follows that VO is included in a 
hyperplane of the form 

(AN-nj)AiEY', 
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and we will be finished. When none of the polynomial coefficients of G 
vanishes on V, we reach the same conclusion by the induction hypothesis 
since the number of frequencies in G is N - 1. This ends the proof of 
Proposition 7.1, modulo the above-mentioned computation. 

To show that we can reduce everything to (7.5) if one of the coefficients 
of G vanishes identically on V, we need to make explicit the computation 
of J and the coefficients AN B, - B, Aj in (7.4) say, j = 1. We have 

J(i) = 
ap, ap, -...- 
Xl x, 

. . . . . . . . . . . . . . . . 

hence 

A,B,-B,A,= 2 dk([) A,$-A, aAN 
-+ i(i,.,- 

k=l k aik 
%,v.k)AlAN 1 

Suppose this polynomial is identically zero on VO, and we will have then 
the identity, on I’,, 

i A, (6 $-A, 2) = [$, j(i,,-i,,,)Akla,A,. (7.6) 
k=l 

In a neighborhood of the point CO we can assume A, A, does not vanish 
and that, by (7.3), the algebraic variety VO is parametrized by 

i, = cpl(i”L i,- 1 = (Pn- l(L), 

and their derivatives are cph = dcpk/dc,, = A,/A,. Introduce the holomorphic 
function $(c,) defined in a neighborhood of [O,n by 
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$ does not vanish in that neighborhood. We note that the polynomial 
identity (7.6) on F’, is equivalent to the fact that $ satisfies the differential 
equation 

- 4.k) dc(i,) + (IN.,! - n,,,) 1 
This equation can be integrated immediately and yields 

where y E C*. Hence we have locally on V, the identity 

ff= -yeflj.v-j.ll.C, 

N 

hence V0 is contained in the variety 

which is what we wanted to prove. 1 

Remark 7.2. We note that given an exponential-polynomial F with real 
frequencies and P, ,..., P, a family of polynomials defining an algebraic 
variety of dimension smaller or equal to one, if the variety V= {F = 
p,= ... = P, = 0} is discrete then the ideal generated by F, P, ,..., P, is 
s.s.d. by the same reasoning as that of Theorem 5.3. The Proposition 7.1 
gives us a way of deciding whether V is discrete or not. 

We can equally prove, following the ideas from [ 11, Proofs of 
Theorem 2 and of Lemma 1.21, the following proposition, which can be 
considered an improvement on the Ritt theorem. 

PROPOSITION 7.4. Let F be an exponential-polynomial of n variables of 

the .form 

F(i) = 2 Ak([) e+“, 
k=I 

where the A,, k = l,..., N, are non-zero polynomials and the ik are distinct 
elements of C”. If P is an irreducible polynomial dividing F (i.e., F/P is an 
entire function) and not dividing all the pal-vnomials Ak, then there are two 
complex numbers y, y’ and two distinct indices k, k’ in ( l,..., N} such that 

P(i) = Y(/?k - I+). [ + y’. 
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Proof of Proposition 7.4. We will prove this proposition by induction 
on the number N of exponentials appearing in F. The result is trivial for 
N = 1, and let us assume it correct for N = 2. The inductive step, for N > 3, 
is to assume it valid when there are at most N - 1 exponentials. Hence we 
can assume that none of the A, vanishes identically on {P= 0;. 

Let us consider a regular point [, of the variety {P = 0). where we can 
assume (dP/8[,)(io) # 0. We have n - 1 independent vector fields tangential 
to (P=O) near co. namely, 

?P (! c7P (7 ----- 
?(, cl(, SC, X,,’ 

.j= l,..., I1 - 1. 

We apply them to the exponential-polynomial F and obtain n - 1 exponen- 
tial-polynomials J, ,..., J,, , also identically zero on (P = 0 1: 

J,(i 

We want )olynomials to see what happens if all the exponential-f 
ANJj- B,,,F have all their polynomial coefficients identically zero on the 
variety {P = 0 ). One will have then. for instance. 

A,B,,,-B,,,A, =O on IP=O]. (7.7) 

This identity means that on [P = 0) we have 

In a neighborhood of the point (‘, we can assume that A, A,,,, does not 
vanish on {P = 0) and that this algebraic variety is parametrized by 

i,, = cp(i I?.... it, 1 1. 

As in the proof of the previous proposition we introduce A,/A, as an 
auxiliary function on (P= 01 in a neighborhood of co, namely, 

$(i, 3..‘? i,, , J=$ (i I,.... ;,, I? cpti,,..., i,, I)). 
,c 
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The identity (7.8) reflects the fact that $ satisfies a system of linear partial 
differential equations of first order which can be integrated explicitly to 
yield 

for some non-zero constant c. Hence we have on {P = 0}, in a 
neighborhood of &,, the identity 

A,mcA e”h-h”~=O. n (7.9) 

Since the variety {P = 0} is irreducible (or using the same reasoning in a 
neighborhood of each regular point) we see that (7.9) holds throughout 
and P divides the exponential-polynomial A, - cA,,ei(‘N-“)‘i. By the 
assumption about the case N= 2 we see that P must be of the form 
y(A,- Al). { + y’ as we wanted. On the other hand, if one of the exponen- 
tial-polynomials ANJj - B,,,F does not have all its coefficients divisible by 
P, then we can apply the inductive hypothesis and also reach the desired 
conclusion about P. 

It remains to consider the case N= 2. It is clear then that after a linear 
change of coordinates we can assume F has the form 

F(z) = A,(z) e”’ + A,(z), (7.10) 

where A,, A, are relatively prime polynomials and not divisible by P. Let 
us assume P is not of the form yzl + 7’. Write P as 

P(z) = i u,(z,, z-13 )...) zn) 2; -j, 
/=O 

(7.11) 

with r > 1, and let us consider a point Z’ such that 

P(3) = 0, uo(z’i’, z;,..., z;, # 0. 

The algebraic variety {A, = A i = P = 0} has dimension less or equal to 
n - 2 and, again appealing to elimination theory, we can find a polynomial 
R(z, ) z3 )...) z,,), not identically zero, such that for all (z,, z~,..., z~) with 
uo(z 1 3 z3,..., z,) z 0, 

32, E @ such that 

P(z,, z2, z3 ,..., z,) = A,(z,, z2, z3 ,..., z,) = A,(z,, z2, z3 ,..., z,) = 0 

OR(Z,,Z3 ,...) z,)=O. (7.12) 
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Hence, we can choose the point Z’ so that 

uo(4 ) zy ,...) z;, # 0, R(zT, z; )...) z;, # 0, and P( 20) = 0. (7.13) 

Consider the Sylvester resultant S in C [z, ,..., z,,, r] of the two polynomials 

AO(Zl,..., zn ) T+ A,(=, )..., =*) and P(z, ,..., z,) (7.14) 

considered as polynomials in I~. Since for Z, = ~7, z3 = I?:,..., zn = Z: the 
three polynomials in z2, P($, z2, Z: ,..., z:). A,($‘, z2, 2: ,..., ;z), 
A,(zY, z2, z;,... z,“), have no common zeroes the resultant S cannot be iden- 
tically zero. We write it in the form 

SC- “, 9 ~3r-Y =n, T)= i S,(z,, z3 ,..., z,,) Tk, 
k=O 

where S,(Z,, z3 ,..., z,) & 0. 
We note that if ~~(-7~) z3,..., z~) # 0 then we can always find zz such that 

P(z, 1 z2 ,..., z,,) = 0 by solving (7.11). Hence we can change slightly the 
point z” and suppose that (7.13) holds together with the condition 
W:, z!,..., zf) # 0. By the same reasoning for each =I near ~7 we can find 
z2 near 2: so that 

P(z, ) z2, zp )..., 2;) = 0 

Since P divides F, we also have 

and 

which implies that the resultant S of the system (7.14) satisfies 

k=O 

Since the function appearing in (7.15) is entire holomorphic in the variable 
z,, and it vanishes for 2, near $‘, it will vanish identically. Hence it follows 
that S,(Z,, z:,..., z II) = 0, which is false when z, = $. This contradiction 
shows that P must be of the form y=r + y’. 1 

Ritt proved in [43] that, for n = 1, the quotient of exponential-sums can- 
not be an entire function unless this quotient is already an exponential- 
sum. The example (sin [)/ [ shows the difficulty in extending this result to 
exponential-polynomials. The best result known to date is the following 
[6]: if F, G are two exponential-polynomials of n variables (without any 
restriction on their frequencies), such that their quotient F/G is an entire 
function, then this quotient has the form H/P, where H is an exponential- 
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polynomial and P a polynomial that does not divide any of the coefficients 
of H; moreover, one can show that if G is an exponential-sum, then P is 
equal to 1. One can in fact show that the example (sin O/c is really typical, 
since by Proposition 7.4, every irreducible factor of the polynomial P is 
affrne and its direction determined by the frequencies in H, therefore by 
those of F and G. We state this result in the form of a corollary. 

COROLLARY 7.5. If F, G are exponential-polynomials (with frequencies in 
C”) such that F/G is an entire function, then there is an e.uponential- 
polynomial H and a polynomial P, ,jactorizable in affine ,fartors, such that 

F(i) H(i) V’iE@” -=- 
G(i) P(i)’ 

We are going to show that the techniques we have developed allow us to 
answer the question raised in Remark 5.3, meanwhile we need the following 
result. 

hfMA 7.6. Let F be a non-zero exponential-polynomial oj‘ two variables 
with real.freyuencies; let P be an affine polynomial of‘ the form CY[, + Pi2 + y, 
\vith (a, fl) E R’\(O). Lj’ P divides F e.Yactly q times, then the pair (P, F/Py) 
defines an ideal s.s.d. in AP( C’). 

Prooj: Let us recall that thanks to a theorem due to Ehrenpreis and 
Martineau [7, 201, we know that for any FE A,, P polynomial if Py 
divides F then F/P4 lies automatically in A,. 

After a linear change of coordinates of the form j + Al + y’, A E SO(Z), 
y’ E @, we can assume P is a constant multiple of i, . We see that if G(c) = 
F(i) [;Y, we have 

G(i) = (30, iz) + i, WC,, i,L HE A,(@“). 

The ideal generated by G and <, coincides with the ideal generated by 
G(0, iz) and [,. On the other hand, 

d“ 
(20, id=d:;/ F(i) I;,=o, 

hence G(0, cZ) is a non-zero exponential-polynomial of a single variable, 
hence it generates an ideal which is s.s.d. in A,,(C). 

It is easy to see that if both f,([,) and fi(iz) generate principal ideals 
which are s.s.d. in A,,(C), then the pair (f,(<, ), fr(c2)) generates an ideal in 
A,(C*) which is also s.s.d.; this follows from the construction of “boxes” as 
already done in the proof of Theorem 3.1. 1 
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We can now prove the following (compare with Theorem 5.3): 

PROPOSITION 7.7. Let pl, pz be two distribution with finite support in iR” 
whose supports A,, Az satisjjl the condition (2.22). Then the system ?f 
equations 

has the spectral synthesis property. 

ProoJ: Proving the spectral synthesis property is equivalent, via the 
HahnBanach theorem, to showing that every HE A,(@“) which locally 
admits, near every point [E C’, a decomposition of the form 

H=u,k, +u&, (7.16) 

where ul, u2 are functions holomorphic near <, is in the closure of the ideal 
generated by fi, , ,& in AJ C’ ). 

Let A,, A, be the greatest common divisors of the polynomial coefficients 
of 6, and &,, respectively. We can assume, by the EhrenpreissMartineau 
theorem already mentioned above, that A, and AZ are relatively prime. If 
not, let A be their greatest common divisor, then one finds that H/A is an 
element of A,(@‘) which belongs to the local ideal generated by the 
exponential-polynomials @,/A, and $,/A, and we are in the relatively 
prime situation. 

Set F, = b,/A, and F7 = $2/A2. and note that they are still exponential- 
polynomials. Let >d, = (L, ,..., L,) be the finite family of distinct aftine 
polynomials which divides both A, and F: (aftine polynomials which differ 
by a constant non-zero factor are considered the same). Similarly, 
-a/2 = {M, ,..., M,} is defined with respect to A, and F,. 

We can write for convenient positive integers r,, s,, p,, 0, 

A,=A; n Li”, L;l 
,=I /=I 

h h 

A,=A; n M:“, F,=F; n M;‘, 
,=I /=I 

and denote t, = min(rj, sj)., z, =min{p,, 0,). 
A new application of the Ehrenpreis-Martineau theorem reduces us to 

studying the pair of elements in AJC’) given by 
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which defines a discrete variety. We would finish the proof of the 
proposition if we show they define an ideal s.s.d. in A,(C2), since, as 
pointed out in Section 1, this ideal will be closed and coincides with its 
local ideal. In fact, this will show that the ideal generated by fii, fi2 is also 
closed and coincides with its local ideal. 

The proof of Theorem 1 [ll, pp. 138-1391 shows that to show the pair 
(7.17) is s.s.d. it is enough to show that all the pairs obtained by taking a 
factor from the first product and a factor from the second also generate 
s.s.d. ideals. 

The pair (A;, fi,) is s.s.d. since Remark 7.2 applies to this case. The pair 
(F’, , F2) generates an ideal that contains F,, F, hence it is s.s.d. by 
Theorem 5.3. We are left to consider the pairs of the type (F’,, L,) when 
tj < sj and (F’, M,) when rj < p,, since all the remaining cases are similar. 
By Proposition 7.1, the definition of &, and (2.22) we conclude that L, 
does not divide F, ; this exponential-polynomial is in the ideal generated by 
F’, and L,, and it follows hence, as pointed out in Remark 7.2,’ that this 
ideal is s.s.d. Let us consider finally the pair F’, , M,; they generate an ideal 
containing M, and F,/M”, hence we can apply Lemma 7.6 and conclude 
that it is s.s.d. 1 

We give now the solution to Problem 2 of Section 4 when n = 1. 

PROPOSITION 7.8. Let FL,..., F,,, he m exponential-polynomials of one 
variable with rational frequencies and without any common zeroes, there exist 
m functions G, ,..., G,, in A,(@) such that 

F,G,+ ... +F,G,=l. 

Proof. By the remarks from Section 1 it is enough to show 

3k>O, 2 IF,(z)1 >/kepkp”‘, ZEC. (7.18) 

We will assume, as always, that the frequencies are all integral and non- 
negative so we can associate to F ,,..., F,,,, polynomials P ,,..., P, of two 
variables, Pj(z, e”) = F,(z). Consider, in C’, the system 

c2 - e’;l, Pl(i, 2 12L P,(i,, i?). 

The algebraic variety defined by the polynomials P,,..., P, has dimension 
0, hence there are constants C, kO, K0 > 0 such that 
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On the other hand, for ll<ll ,< C the functions i2 -@I, P,,..., P, have no 
common zeroes, hence there is a global estimate 

from which (7.18) follows immediately. 1 

PROPOSITION 7.9. Let F be a non-zero exponential-polynomial of one 
variable with rational frequencies, then its zeroes satisfba (4.4). 

Proof: We can assume as above that F has entire non-negative frequen- 
cies, and hence for some polynomial f~ @[[, , i2] we have f(z, e”) = F(z). 
We can also assume S has no multiple factors in its decomposition in 
irreducible factors in Cc [I< I, [,I. 

Iffi, f; are two distinct irreducible factors of ,f then there are constants 
C, k, K such that 

which implies 

for some positive constants 6, D. Hence 

II”1 > c, f,(z, e”) = 0 a I,f,(z, e’-‘)l 3 he -Dp(” 

which says that outside a compact set the zeroes of .f, stay away from the 
zeroes of f2. Therefore it is enough to prove the proposition when ,f is an 
irreducible polynomial. 

Consider the polynomial g E CCC,, [?I: 

Jf .” ;If 
s(i) =-+ 143 g-. 

Ji, 
(7.19) 

2 

We have 

g(z, err) = F’(z). 

We want to show that the variety { ,f= g = 0) is discrete (hence finite). If 
not, f would divide g, and by degree considerations there is /z E C such that 

g = I$ (7.20) 
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If 3. # 0, we have 
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which implies, since ,f is a polynomial, 

.f‘(i,, O)=O. 

In this case, since j is irreducible, .f‘ is the polynomial iz and F has no 
zeroes. Suppose now that i = 0. We can write 

.j‘(i)=B(i,)iy+ “’ with B f 0. 

By (7.19) and (7.20), with i-=0, we have 

B’([,)+irrl B([,)=O. (7.21) 

Since B is a polynomial this implies that m = 0, and hence (7.21) says B is 
constant. Therefore ,f‘ is also constant in this case. Hence we can suppose ,f 
and g have only a finite number of common zeroes, therefore we have C, k, 
K > 0 such that 

which in turn implies 

This last inequality implies also that the distinct zeroes stay away from 
each other (and the only multiple zeroes occur in /z( <c). 1 

8 

We propose to study here systems of exponential-polynomials in C3 with 
frequencies in N3, always under the assumption that they define a variety I/ 
discrete or empty. We know, by the example of Section 4, that in general 
they do not generate an ideal s.s.d. in A,(C3). We will also try to show why 
this example (cos c,, cos c2, c2 - A[,) is essentially the only type of example 
where the property of being s.s.d. fails. This study will allow us to introdua 
a new method, based on the concept of geometric duality, which look: 
promising for use in a more general context (in particular, studying 
analogous systems in more dimensions). 
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We have seen that in the above example the difficulty lies in the fact that 
the three functions do not depend on the variable ii, and this leads to the 
following definition. 

DEFINITION 8.1. Let Y he ut1 irreducible algebraic l:arietJ, of‘ dimension 3 
in C6 (where the coordinates ure ~1~~~~~~s denoted (i, , i2, &, ,I’,, X2, X,) and 
Y is not contained in ix, X,X, = 0) ), H*P s0~’ Y is incomplete if’ thew is a 
coherent change of coordinures such rhar in Ihe Ned’ coordinures Y cm be 
defined by, u s?sstettl of equations tt#tere the rwiuhles l 1. -Yi do twt uppeur 

esplicirl~~. 

This definition means that if Y is incomplete there is an irreducible curve 
Y’ in a 4-dimensional space (i.e., the space given by ij = X, = 0 in the new 
coordinates) such that Y is fibered by linear varieties of dimension 2 
over Y’. 

A way to decide whether 1’ is incomplete is using a family 9 of pairs of 
differential operations, .F invariant under coherent changes of coordinates, 
namely, the Q-vector space generated by the three pairs (?/Sii, X@j;iX,), 
j= 1, 2, 3. If Y is incomplete then there is an element of J leaving invariant 
the ideal I(Y) of Y. For every element of 9 leaving invariant Z( Y) we can 
check whether its kernel contains a system of generators of Y, and all we 
need to compute is the dimension of the algebraic variety defined by the 
elements in this kernel; if it is 3 then Y is an incomplete variety. 

We can state the following theorem: 

THEOREM 8.1. Ler F, ,..., F,,, he e.uponenriul-poll~tzottlials qf three 
variables bt,ith Ufrequetxies on N3 defining u l;ariefjs V oj’ dimension 60. 
Assume thut the vuriery Y associufed to them ciu (3.3 ) has dimension af most 
3 and no irredwihle conlponet~t of Y is incomplete. Then there is a constunf 
6 > 0 s1rch rhur 

vp E (c*)3. // 1 - p )( < (5 3 dim C”“’ < 0, 

and hence the ideal generated b>, F, ,..., F,,, is s.s.d. 

(8.1) 

Remark 8.1. No condition is imposed on the irreducible components of 
Y of dimension less than or equal to 2 if Y itself has dimension <2, then 
the conclusion of the theorem holds. 

Proof of Theorem 8.1. By Proposition 3.2 to prove that the system is 
s.s.d. one can assume Y is irreducible, but in fact one can assume the same 
thing to prove (8.1). Namely, if W is an irreducible branch of dimension 
3 1 of V’“’ for some exceptional p, then the variety 2 = {(i, X) E C’: i E W, 
X, = pieii/, j= 1, 2, 3 ] is contained in one of the irreducible components of 
Y 
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We will therefore assume that the p1 ,..., P,,, defined by (3.2) generate a 
prime ideal 9 in @Cc, X]. Assume first that no aftine polynomial of the 
form r. i-y, r E Q3\(0), y E C, belongs to 9. 

Consider an exceptional value p and a branch W of @‘I, dim Wa 1. We 
will show that W is a line and furthermore there is only a finite number of 
possible lines to choose from. This will prove (8.1) as done in Theorem 5.3. 

By Proposition 2.4 there exists I E Q3 \ (0), y E C such that 

WE (r.(-y=O). (8.2) 

We make a coherent change of coordinates in C6 so that the equation of 
the plane containing W becomes [; = y’. The algebraic subvariety of C6, 
Y n (ii = y’>, has dimension at most 2 by the hypothesis made on the ideal 
9. Let q1 = O,..., qm =0 be the equations of Y in the new coordinates 
([‘, X’). There is an element p’ E (C*)’ related to p as X’ is to X such that, 
in the new coordinates. 

WC (GjP’(&, [;) := qj(y’, [;, [j, p;eiY’, p;&, p;&)=O, Vj}. (8.3) 

The algebraic subvariety of C4 

{4j(Y’, G, i;, $leiy’, x;, x;)=O, j= l,..., m) (8.4) 

has dimension ~2, hence a new application of Proposition 2.4 gives us 
(sz, s3) E O’\(O), y” E C such that 

WC {s& + sgi; = y”} n {& = y’}. (8.5) 

We see that W is indeed a line. 
We need now to show that the number of possible directions of W i$ 

finite. Since the variety V is discrete it is impossible that all the polynomia! 
coefficients of all the exponential-polynomials F, ,..., F,,, vanish identically 
on W (recall that the polynomial coefficients of the Fjp) differ from those o 
F, only by non-zero multiplicative constants). By Proposition 7.1 

WE ((A-A’).[=a}, 

where A and 1’ are two distinct frequencies of one of the Fj and CI E C. WI 
can now redo the above proof starting at (8.2) with r replaced by A - 4 
and y by ~1. We arrive at the situation (8.3) where we see that the frequen 
ties of the exponential-polynomials G$p)(&, 5;) depend only on those c 
F F,,,. I ,*.., 

By Proposition 7.1 only two things could take place, either W is con 
tained in a plane of the form (pLz - .&) [; + (pj - ,u;) [; = B, where (p2, p! 
and (pL;, &) are two distinct frequencies of one of the G~J’), and this fixe 
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completely the direction of W among a finite number of directions, or every 
polynomial coefficient of all the Gjp) vanishes at W, and this implies that 
the variety defined by (8.4) has dimension 3 in C4, which is impossible. 

Now fix the direction of W (it is after all one among finitely many 
possible ones), and we want to see that the parameters ~1, /I that appeared 
above are also in a finite set. We make a new coherent change of coor- 
dinates so that in the new coordinates (c’, A”), W is given by the equations 

w: [; = cd, i; = fl’. 

Let q,,..,, qm be the equations of Y in the new coordinates. There is a 
p’ E (@*)3 related to p as A” is to X such that 

qj([‘, p’eii’) = 0 in W for j = l,..., m. (8.6) 

Let us write the equations from (8.6) in the form 

q/-=x ([;)” (p;eii;)‘Ai.k,,([;, ii, p;eir;, p;eii;)=O. 
k.l 

The identities (8.6) are equivalent to 

Vj, k, I A, k [ = 0 . . if {;=ci’, [i=p’, (8.7) 

Consider the algebraic variety 2 in C4 defined by 

Z= {Aj,k,/(C;, ii, X’I, X;)=O Vj Vk Vl} 

This variety has necessarily dimension 6 1 since dim Yb 3. If dim Z= 1, 
the Y coincides with an algebraic variety fibered over Z and it is an incom- 
plete variety. This case has been excluded by hypothesis, hence dim Z = 0, 
hence Z is a finite subset of C4 and this says that a’, p’ take values in a 
finite set. Let us remark that we have also provided in this case a descrip- 
tion of the exceptional set, namely, as a finite union of subsets of (C*)’ of 
the form {p” = c,, p”’ = c,], where v,, v2 E N3\(0) are Q-linearly indepen- 
dent and c1 , c2 are two complex numbers distinct from 0 and 1. Since 
(1, 1, 1) does not belong to the algebraic set we have just described this 
proves (8.1) in this case (i.e., without appealing to the limit argument of 
Theorem 5.3). 

It remains to consider the case where the ideal g contains an affine 
polynomial of the form r. c - y with r E Q3\(0), y E C. In this case, for every 
such r E Q3\(0) there is a single y, unless the ideal P contains the function 
1 (in which case there are no exceptional values p). If there are in 9 two 
afhne polynomials rl . C - y, , rz. c2 - yz with rl , r2 Q-linearly independent, 
then every possible branch W of dimension 3 1 of V’p’ would always be the 
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same line and we see directly, since V is discrete, that (8.1) is satisfied. In 
any case, let us suppose that Y. [ - y G 9 and make a coherent change of 
coordinates so that in the new coordinates we can take as generators of the 
ideal B 

i; -Y’, SjG, i;, x;, x;, x;), j = l,..., M. (8.8) 

Consider the exponential-polynomials 

q/(1;, ii, p;e+‘, pje’;i pieii’;), j= I,..., M. (8.9) 

They form a family of exponential-polynomials of two variables with 
integral frequencies and defining a discrete variety in C’, by Theorem 5.1, 
they generate an ideal s.s.d. in A,(C=‘), hence the same holds for the ideal 
generated in A,(C3) starting from the polynomials in (8.8). Therefore our 
original ideal is s.s.d. But this reasoning does not prove the more relined 
statement (8.1); this is what we are going to do now, supposing, to simplify 
the notation, that in the original coordinates Y was generated by the 
polynomials (8.8). 

Let p be an exceptional value in (@*)3 and W an irreducible branch of 
I’@‘, dim W> 1. Consider the algebraic variety Z’“” in C4: 

{q,(ir, i3, p,@, X2, X,)=O,j= 1, . . . . M). (8.10) 

The dimension of this variety is at most 3, on the other hand there is at 
least one value of p, (pi = 1) such that this dimension is at most 2 since V 
is discrete. 

Using elimination theory one sees that the condition dim Z’p’J = 3 is a 
non-trivial algebraic condition on pi , hence this condition can be satisfied 
by at most a finite number of values of p, , all different from 1, and there is 
hence 6’ > 0 such that 

/I 1 - p\I < 6’ 3 dim Z(“1) < 2. 

(If we write everything in terms of the original p, we see that the set of 
exceptional values is contained in the union of a finite number of algebraic 
varieties in (C3)* which do not pass through (1, 1, 1) and have for 
equations py = c, v E N3\(0).) 

Assume now that dim Ztp’) d 2, then Proposition 2.4 applies and it 
follows that W is a line. It is impossible that all the polynomial coefficients 
of all the exponential-polynomials qj(c2, i3, pIeill, pzeir2, p3eir3) are iden- 
tically zero on W, for if they were dim Z ‘p’) = 3. We find ourselves in the 
same situation as before since it is clear now, by Proposition 7.1, that the 
number of possible directions of W is finite. In the same way we arrive at 
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the fact that W belongs to a finite family of lines. This ends the proof of 
Theorem 8.1. 1 

We still have to consider the case where the algebraic variety Y, which 
we assume to be irreducible, has dimension bigger than 3. Since we assume 
V is discrete it follows in this case that dim Y = 4. The variety Z of singular 
points of Y then has dimension less than or equal to 3, and let us consider 
a system of generators g, ,..., g, of the ideal Z(Z) and the corresponding 
exponential-polynomials G, ,..., G,. It is clear that the analytic variety 
(G, = . . . &,=O} is contained in V, hence it is discrete; on the other 
hand, if the Cl,..., G, generate an ideal Y s.s.d. in A,(C3) this property of 9 
is independent of the choice of generators of Z(Z). 

THEOREM 8.2. Let F, ,..., F,,, he exponential-pol,vnomials of three 
variables with frequencies in N 3, and assume that the variety V is discrete (or 
empty) and that the algebraic variety Y is irreducible and dim Y = 4. If the 
ideal Y is s.s.d., then the ideal y generated by F, ,..., F, is also s.s.d. 

Remark 8.2. It is clear that if y- is s.s.d. then .Y is also s.s.d. 

Proof of Theorem 8.2. The idea of the proof is to add to the exponen- 
tial-polynomials F, ,..., F,,, Y Y v c 

a new one, u~4=z~,41+u24r+u,~3, with u 
generic, show that one can arrive at estimates of the type mentioned in 
Remark 3.3, and, finally, using a method of geometric duality eliminate the 
parameters u. 

Consider in @(u)[c, X] the ideal & generated by p, ,..., pm, u. [, where 
p, ,..., pm are the polynomials associated with the F, ,.,., F, by (3.2). We 
decompose, in @(u)[c, A’], the ideal f in primary components g,,..., fr 
zdenote (q ., , , ,..., q,,J a family of generators in C(u)[c, X] of the radical 

,. Off an algebraic variety in u, the algebraic subvarieties of C6 defined 
by 

Yj”‘= {(i, X)EC?:q,,,(u)([, X)= ... =q,.Ju)([, X)=0) (8.11) 

are well defined and of dimension ,<3, the numbers qi.,(u) being chosen as 
function values of q,,, belonging to the allowable arguments [48]. Denote 
Aj,l)..., Aj,,, all the 3 x 3 minors of the matrix of partial derivatives of the 
polynomials qj,k([, X) with respect to the variables [, X; at least one of 
these minors does not belong to the ideal a. Hence, outside an algebraic 
variety in U, the algebraic varieties defined by 

{(CT x, E c6: 4,.I(“)(i, x) = ” = qj,n,tU)(ir -U 

= A,.,(u)(i, J7 = . . = Aj.,,(u)K, W = 0) 
(8.12) 

are well defined and of dimension less than or equal to 2. The varieties we 
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have introduced in (8.11) play the role of the varieties Yb”,... considered at 
the beginning of Section 6 (on the other hand, here the defining equations 
depend on parameters), while those introduced in (8.12) play the role of 
Z”‘. 0 ,... 

Let us consider now the exponential-polynomials Q,,k(~)([), j = l,..., r, 

k = l,..., nj, defined for generic values of u by 

Q,.du)(i) = q;.,Au)(L e”). (8.13) 

All the minors of rank 3 of the matrix liaQj,,/s[iI\,,, can be written in the 
form hj,t(u)(i, e’% where h,,,(u)(i, X) E C(u)[L X 

We can at this moment classify the ideals 3 2, into two classes: 

(a) those for which the polynomials Iri,,~fi for all t; 

(b) those for which at least one of the polynomials It,,, does not 
belong to a. 

In the class (b), for u generic, the algebraic subvariety of C6, 

{q,.,Ju)K J7 = 0 Vk j,.,(u)(L Xl = 0 Vt), 

has dimension ~2. 

(8.14) 

In order to study the exponential-polynomials depending on parameters 
associated with the polynomials in C(u)[[, X] appearing in (8.12) or in 
(8.14) (class (b)), we need the following lemma. 

LEMMA 8.3. Let S,(c) ,..., S,,,,(i) he exponential-polynomials with frequen- 
cies in N3 and coefficients in @(u)[[]. Assume that the ideal generated in 
@(u)[[, X] by the pol.Vnomials S,([, X),..., S,([, X) contains a power ofu. [ 
and that the algebraic subvariety of [C(U)]~ that these polynomials define 
has dimension < 2. Then ,for u generic 

VP E ta=*j3, (8.15) 

dim(iE(C3:S1(U)(I.peii)= ... =S,(u)([,pefC)=O)<O. 

Proof of Lemma 8.3. Let us consider a value u such that the algebraic 
variety defined by the S,(u)([, X) has dimension ~2 and that u,, u2, u3 are 
Q-linearly independent. 

Let p E (C*)3 and W be a possible irreducible branch of dimension > 1 of 
the variety 

CF)= {(: S,(u)((, peii)= ... =S,(u)([, pe”)) =O. 

By Proposition 2.4 we know there are IE CJ3\(0) and UEC such that 
W c {a. [ - c1= 0). Let us make a coherent change of coordinates so that 
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this hyperplane becomes [; = LX’. Consider the exponential-polynomials 
obtained by replacing [; by CI’ and e’:; by e”’ in the equations defining Cp) 
in the new coordinates. Since the associated algebraic variety remains of 
dimension less than or equal to 2 in C” we can apply once more 
Proposition 2.4, and there is then a line with rational direction numbers in 
the plane of the variables ii, [\ which contains the projection of W into 
this plane. Returning to the original coordinates we have two elements 
A, p E Q3\(0), Q-linearly independent, and two complex numbers a, p such 
that 

But on the other hand, due to the hypothesis of the lemma, we have also 

WE (u.<=O) 

The Q-linear independence of U, , u2, uj implies that this branch W must be 
of dimension 0, which shows there cannot be any exceptional values p. 1 

We are hence exactly under the conditions needed to apply Proposition 
3.3 to the ideals fi of class (b) or to the ideals associated to the 
equations in (8.12). 

To study the exponential-polynomials corresponding to the generators of 
an ideal fi in the class (a) we need several lemmas. 

LEMMA 8.4. Let p, ,..., p,,, E @ [ <, X] generate a prime ideal of dimension 
4 in C6, and assume that the variety> V associated to the corresponding 
exponential-polynomials F, ,..., F,, is discrete. There exists a finite family 9 
of non-zero elements of Q’ such that for u generic, p E (@ * )‘, and W an 
irreducible branch of positive dimension of Vp’n .(u . [ = 0}, there are 
E.,E~, y = y(p, i.,, U)E C .such that W is contained in the h~~perplane 
3., . i - y = 0, where y sati$es the conditiorzs 

1 yXAk.r.“(U) = 0 

1 (c”y/f”T B,,,,,(u) = 0. 
(8.16) 

The coefficients Ak.io, Bk,,, belong to tM?o finite families of polynomials 
(depending on the index 1, E 9 ). 

Remark 8.3. We see that the lemma implies the existence of polynomial 
Q and of a finite family X of holomorphic functions such that if Q(U) # 0 
and ul, u2, u3 are Q-linearly independent, then the exceptional p 
corresponding to such a u satisfy an equation of the type 

pL” = h(u) 

for some %, E F and some h E X. 
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Remark 8.4. When u,, u2, u3 are fixed and Q-linearly independent, the 
variety defined by p, = . . = pm = u.[ =0 does not have incomplete 
irreducible components. It is then natural to find a description of the excep- 
tional set as we have done in the proof of Theorem 8.1. 

Proof of Lemma 8.4. When u has been chosen generically, the dimen- 
sion of the algebraic variety Y n {U . [) = 0 is < 3. Let W be a branch of 
Vcp’n (u. [ = 0}, dim W3 1. By Proposition 2.4 there are A E Q3\(0), y E @ 
so that W is the line of equations 

w+.~-y=~.~d.)) (8.17) 

(recall that u,, u2, u3 are Q-linearly independent). Since W is a line we can 
use Proposition 7.1 and conclude, thanks to the discreteness of V, that I 
can be replaced by an element &E 8, .?F a finite subset of Q3\(0). 

We can assume, for instance, that 

and parametrize the line W using the variable c3: 

Let us make explicit the fact that F”‘) vanish identically on W: 

1 Ak,i(~113+~2, /3,13+&, C3) pke’Y”k2u’pk’u2)‘d’ 
keN-’ 

x eGhh + a2k2 + 4) E 0 (8.18) 

In order to group the terms in (8.18) following the frequencies of the dif- 
ferent exponentials in c3, one must find those k E N 3 such that 

a,k,+a,k,+k,=O. 

This condition is equivalent to 

Ul ho.1 k, 

u2 II 0.2 k, = 0. 

u3 0.3 1 k, 

(8.19) 
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The Q-linear independence of the U, shows that (8.19) is satisfied if and 
only if 

k = ri,, rEQ. (8.20) 

The expression (8.20) defines an equivalence relation on the family of 
indices k appearing in (8.18). This leads to a finite number of equations 
(obtained after grouping together the terms in the same equivalence class): 

1 B,.r.“.s,r(U, y)(p”“+“)‘=o. (8.21) 

The index s in (8.21) corresponds to the equivalence class, and the sum 
takes place along a finite collection of rationals r. The B,,,,,,,EC(U)[Y]. 
After chasing the denominators of the r and of the Bj,i,,,y,, we find 
polynomials Bj,lO,S E C[u][:, T]. Since pi%@ # 0 we can assume these 
polynomials are not divisible by T. Fix &EY, if there is a polynomial 
BE@(u)[z, T] which divides Bj,LO,J for all j and S, this polynomial cannot 
be a polynomial multiple of T, and this implies that for a generic value of 
u, B(u)(o, e”) has a zero yo, hence the line W= (&,~[-yO=u.[=O) is 
included in Vn {u. [ = 0: and a fortiori in V, which is impossible. Hence 
we can use elimination theory and find, for the given i,,,EF, two finite 
families of polynomials A,.i.,,, Bk.,,,) E C[u] such that the equations 

B,,j,,,,,(u )C=t T] = 0 Vj V’s 

imply, for generic U, 

F Ak,io(u) =’ = C B,,,,(u) Tk = 0. 
k 

This ends the proof of Lemma 8.4. 1 

LEMMA 8.5. Let X be one of the ideals fi introduced above having the 
following properties: 

(i) 2” has dimension 3 in C( u)[ <, X] (this corresponds to the fact 
that for generic values of u the variety defined by (8.11) has dimension 3 in 
C6); 

(ii) 27’ contains an irreducible polynomial in @(u)[[,] of the form 
n, = A,[;+ ..‘ + A,; 

(iii) X contains an irreducible polynomial in C(u)[X,] of the form 

n,=B,X;Y+ ... +B,. 

Then we have n = 1 and there is a E @* such that A, = aA,. 
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Proof of Lemma 8.5. The ideal X contains the polynomial u’ c since 
this polynomial belongs to 2, hence X contains also the polynomial 

Since X is a prime ideal, it contains also an irreducible factor in 
C(u)[[,, c3] of the above one, i.e., of the form 

The ideal generated by rtr, q, rc3 is prime and also has dimension 3, 
hence it coincides with X. Since u. [ E X, we can find polynomials x1, xZ, 
x3 E @(u)[c, X] such that 

~~i=x,~l+x,~,+x,%; (8.22) 

the parameter u being generic we can choose X,, c2, cj such that rcz(X,) = 
rc3(c2, c3) = 0. Theatity (8.22) is then an identity between polynomials in 
iI (coefficients in C(u)) and hence the degree n of rcr is exactly 1. 

Using this new information we obtain 

Recall that the original polynomials p1 ,..., p, have coefficients in @ and 
define an irreducible variety of dimension 4 in I?. Using elimination we 
obtain a non-zero polynomial f~ C[c, X,, X,] in the ideal generated by 
Pl ,.**, pm, hence f E X also. There are $I, 11/l, ti3 E @(u)[c, A’] such that 

f=Cf,.,(i)~xj=711~1+~t2~2+713~3 

This identity implies that the polynomials f,,l are in the ideal generated by 
rcr, rc3 in @(u)[{]. Fix one of these polynomials fs,, and set 

We will have 

fs.t(il, 12,53)--o as a function of 12. (8.23) 

This identity tells us that the coefficient 5 of highest degree in c2 in (8.23) 
and the coeffkient r] of lowest degree must be identically zero (for u 
generic). Now, 5 = ((cl, U&Q), where t([r, T) is a non-zero polynomial 
with constant coefficients. Similarly for q = q([r, u1/u3). Compute the 
Sylvester resultant of 5, r] with respect to the first variable. There are two 
possibilities: 
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-either this resultant is trivial, meaning that at least one of the two 
polynomials 5, q does not depend on the second variable (in this case [, is 
one of the zeros of this polynomial and hence it is in @, which is the desired 
conclusion), 

-or both polynomials depend on the second variable and hence the 
Sylvester resultant gives a non-trivial relation between ui, u2, u3 which 
must be identically zero for u generic, and this is clearly impossible. 1 

Let us go back to the proof of Theorem 8.2. 
If fi is an ideal of the class (a) and dimension 2 in @(u)[[, X], then we 

are in the situation of Lemma 8.3 and hence Proposition 3.3 can be applied 
to the system of exponential-polynomials with parameters corresponding to 
the generators of fi. 

To show that the same conclusion applies in the case fi is of class (a) 
and dimension 3 we will show that after a coherent change of coordinates 
the hypothesis of Lemma 8.5 holds. Assume this claim for the moment, the 
ideal contains the polynomial U. c, a polynomial of the form [, + a, and a 
polynomial with coefficients in C(U) of the form B,X;Y + . . + B, which 
are then its generators. 

Let us consider the element of C(u) 

r=BNe-iN”+ ..’ +B,. 

This element cannot be zero, otherwise for u generic, the subvariety of C’ 
defined by the exponential-polynomials associated to fi would have as 
equations 

(,+a=0 

u.[=O. 

We have here a line contained in Vn {u. c = 01, hence in V, contradicting 
the fact that V is discrete, 

The ideal, in ,4,(C3), generated by the exponential- olynomials 
Qj,k(~)([) which corresponds to the original generators of P 8 contains 
then the element r(u), hence we have the estimation 

for a convenient choice of positive constants 6, D, k, where R E C[u]. 
Therefore it remains to show that in the case we are considering the 

hypothesis of Lemma 8.5 holds. The parameter u being generic, consider a 
regular point (co, X0) of the variety (8.11), assume (co, X,)EQ, and set 

pk = x0, e - iCO.k, k= 1, 2, 3. 
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Consider the intersection of the algebraic variety YjU) with the analytic 
variety {X, = pkerik, k = 1 ,2, 3) in a neighborhood of the point (co, X,). By 
the definition of p this intersection is not empty. We want to see that the 
analytic subvariety of C3 defined by (Qj$‘(u)([) = 0 Vk) has a branch of 
dimension 2 1 passing through the point co. Since the point (co, X0) is a 
regular point of the 3-dimensional algebraic variety YjU), the analytic 
variety can be locally defined by exactly three equations, say, 

Q;,:'(u)([)= ... = Q;;'(u)(<)=O. 

If this variety were discrete at the point co, the Jacobian det [IdQi,<‘/a[ilik,i 
cannot belong, in the ring of germs of holomorphic functions at co, to the 
ideal generated by the Q$’ (this follows from the residue theorem, see, e.g., 
[9,21]). But, this Jacobian can be written in the form h([, pe’;) where the 
polynomial h(i, X) belongs to the a; hence the variety V” n [u. [ = 0) 
is not discrete and the point (co, X,,) is a point in an exceptional variety 
corresponding to the exceptional value p = X,e ‘;‘I. If we apply now 
Lemma 8.4 we see there is i., E :9 such that 

C tE.C, i,l)’ Ak.&,(“) = O (8.24a) 

c CP$,” B,,;.,(u) = 0. (8.24b) 

Let us consider the polynomial in C(u)[[] 

(8.25) 

For u generic, this polynomial vanishes on the variety YiU), it belongs hence 
to the ideal fi; this ideal being prime, one of its irreducible factors 
already belongs to A, and we can assume this factor is given by (8.24a). 
On the other hand, one can assume without any problem that all the 
entries of I, are integral. By Lemma 8.4, the second equation (8.24b) is also 
satisfied at every point of Yj.“) n 0. After a coherent change of coordinates 
we are in conditions to apply Lemma 8.5, which it what we wanted to 
show. 

What we have just done was to follow the method described in Section 6 
which allows us to verify whether Theorem 3.1 is applicable, and we con- 
clude that the properties stated in Proposition 3.3 hold for the exponential- 
polynomials with parameters F, ,..., F,, u. [; this means, let us recall, that if 
P denotes the weight in C6, P( [, X) = log( 1 + I( [ 11 + Ij X1( ) + /IIm i 11, then 
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there is a non-zero polynomial R E @[u] and three positive con- 
stants p, B, K such that, for 0 < E < 1, C > 0, if we define 6 and 
D by 

6 =6(u) = p lR(ld)l 
(1 + II4 )” 

EA. D=KC+B, 

every connected component Y of the open subset of c6 

%(F, ,..., F,,,; 6, D) 

:= 
i 

([. x,:f Iq,l +t JX,e-‘Cl- l/ + 1U.Q <&-“P’;J’ 
1 I 

satisfies the property 

V(i, X)E% V([‘, X’)E%-: 

ll[-(‘ll + /IX-X’J/ <8epCP’i+‘~‘. (8.26) 

We proceed to eliminate the dependence on u from all the estimates. 
First we want to show that R in (8.26) can be chosen to be a homogeneous 
polynomial. Set, for A E @, 

R(h) = R,,(u) i” + ... + RI;(u) i”+’ 

Define 

R,(u) 
E’(“)=A(l + llull)L 

for some A, L sufticiently large so that jjJzc)l d 1 and 

1 
IR(4u) ~11 22Ant1 + ,,u,,JLn I&(u)l II + 1 . 

If we take now, for u fixed, 

lM~)l”+ 
s’=8 2A”(1 + ,,u,l)“+b7 “’ 

(8.27) 

then every connected component of Sj.(u)u (F, ,..., F,; d,, D) is contained in 
a component of 3L,,r,(F ,,..., F,,,; 6(i(u) u), D). On the other hand, because 
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IA(u)1 d 1, every connected component of S,(F, ,..., F,; 6,) D) is contained 
in a component of gnc,,,(F1 ,..., F,; a,, D). This shows that after modifying 
the constant K in (8.26) we can assume R is homogeneous. 

Our idea of the geometric duality is based on the following lemma. 

LEMMA 8.6. Let R be a non-zero homogeneous polynomial of n variables. 
There are a finite number of points a,,,.., aN qf the unit sphere of @“, 
generating distinct (complex) lines in CR, a constant n > 0, and a sequence of 
positive integers vI ,..., vN, such that for every l&, Il[,,ll = 1, 

max IR(u)l >q(d(i,, OI,))~I... (d(&,, CX~))? 
u-Co=0 
Ilull = 1 

(8.28) 

Here the distance d in the unit sphere is defined by 

d(c, [‘) = (1 - lc. r,/2)“2 

(it is really the distance between [ and the circle {[‘eiH: BE rW>), 

Proof of Lemma 8.6. We factorize R in @[u], there are a finite number 
of distinct linear factors u. a, ,..., u. (Ye, ((c(,/( = 1, and we can write 

where Q does not admit any linear factor. 
We now prove the lemma by induction on the number N of linear fac- 

tors. 
We consider first the case N = 0. The function on the unit sphere S2”- ’ 

~o+max{~R(u)l: u.Co=O, /lulj = 1) 

is lower semicontinuous, it is also strictly positive since given co, the 
polynomial r.4. co does not divide R(u). It follows that it has a positive 
lower bound in SZn-r. 

Suppose the lemma is correct when R has at most N - 1 distinct lineal 
factors. There is a constant rj > 0 and positive integers C2,..., V,,, such tha 
for every lo E S2”- ’ 

There is an element u. achieving the above maximum. By the mean-valu 
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theorem there is a constant 0~ d <i which depends only on the 
polynomial R such that 

Vu EC”, Ilu- %ll < fJ r”i 4i”, a,P 
,=2 

-Iu.i,~~~..~1U.a~I~~l~(u)l~~ fi d(io,a,)“i. 
/=? 

We distinguish two cases: 

(8.29) 

(i) 

In this case one can immediately estimate IR(uo)l, with tgl =2k,, 
vi= (k, + 1) Vi for j= 2 ,..., N. 

(ii) 

Consider ZI = ZQ, + t(c?, - (Z, . co) &). Take f = (a/3) nF=“=, d(<,, q)“!. One 
verifies that ZJ. [,, = 0 since u,, . co = 0 and 11[011 = 1. Moreover 

b.a,l= I%.~, +(I - I%M)l 

3 0-i d(&), a,)’ fi d(C,, 2,)“‘. ( ) 2 
Hence, thanks to (8.29), one finds 

/R(zI)/ 3 const fi d([“, a,)“, 
,= I 

with v, = 2k,, vi= (k, + 1) V, for j= 2 ,..., N. Using that (JvJ/ < 2 and R is 
homogeneous we arrive at (8.28). 1 

Given an element c( E S’+ ‘, let Ca denote the complex line through the 
origin and c( and dist([, @a) the Euclidean distance from a point [E C” to 
that line. If [ # 0 we have 

. 

Thanks to Lemma 8.6 we can construct in C3 a family of distinct lines 
Ccr, ,..., Cax,, a, ES’, associated with the homogeneous polynomial R from 
(8.26). Choose a point w0 E C’ which does not belong to any of these lines. 
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Reasoning in the same way as we have done above but adding this time to 
the exponential-polynomials F, ,..., F,,, the linear polynomial U. (i - oO), we 
obtain (8.26) with a homogeneous polynomial T(U) in place of R(u) and 
u. ([ - oO) in place of U. [. Again by Lemma 8.6 we find a family 
PI,..., PM E S5 associated with T. The two lines w0 + @pj and Ccr, either 
intersect at a single point or they are at a strictly positive distance in C3. 
Therefore there are two constants (T > 0, E > 0 such that 

dist(Ca,n {llrll >,E), w,+ Cflin (\j(il 2 Ei)>,o Vj,Qk. 

Hence, if we denote by vr ,..., vN the integers corresponding to R and 
pI ,..., p,+, those corresponding to T by Lemma 8.6, there are three constants 
cr, E, L > 0 such that 

rJ 
3 (1 + llill)“’ 

(8.30) 

We can now conclude the proof of Theorem 8.2. Given C > 0, 0 < F < 1, 
consider a connected component %? of the set S(F, ,..., F,,,; 6,) D,) for a pair 
(6,, Dl) which will be chosen later on. Since, by the hypothesis of Theorem 
8.2, the ideal Y is s.s.d. there are constants d2, D2 tied to E, C, and Y such 
that if 6, < $&, D, > D2, and %? does not satisfy (1.2) then there is a point 
co E ‘5 verifying the condition 

IIM >/ES 1 (E is the constant in (8.30)) 

1 IAdiot 

where A, are the 2 x 2 minors of the matrix llap,/a(i, X)11. 
Consider the point (co, @*)~a=~. As shown when going from (3.18) tc 

(3.19) we can see there are two constants q,, K, tied to b2, D, and the 
polynomials pi such that 

dist((c, X), (co, e’(O)) < q,e-“lP’io) 

Let us choose, for the moment, arbitrary q0 < is,, K,, > K,. Except fo 
possible improvements in the choice of a,, D1 (depending in qO, K,) on 
sees that one can find a point (cl, X’ ) of the algebraic variety Y such tha 

dist((c,, elio), ([‘, Xl)) <qoe ~KoP(~o,-‘Oo), 
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the same weight P as in Theorem 3.1. (This follows also from the theorem 
of Lojasiewicz [38] in the algebraic case.) One chooses ‘I?. K, (this choice 
depends only on v,, K, ) such that if 

dist((i’, X’), (<. X)) < ‘13e AZP”‘..“’ (8.31) 

then 

This is possible since q,, < $?I,, K,‘> K,. It follows that every point of Y 
satisfying (8.31) is a regutar point of Y. 

Since the variety Y has dimension 4 and the spectrum V is discrete, the 
functions p’ ,..., p,, 9,, cpz. (p3 (defined by (3.7)) do not have any common 
zero in the ball (8.31). 

Let U, LIES’. consider the two families of exponential-polynomials 
(P,,...~L, cpI, (P?, er u.0 and (P,-P,,,, cpl. cpz, vl+ a.li-e)L and 
apply (8.26) with E=~I~, C= K,. 

For the first family we have two possible cases: 

(i) either Cf /9,([‘, X’)I + 1~. (‘1 3 b jR(u)l tlce ‘KKJ+E’P’r’~.Y” for a 
convenient fl; 

(ii) or the strict opposite inequality takes place at (i’, X’), hence the 
connected component containing (<‘, X’ ) of the points in Y where the same 
inequality takes place is contained in the ball (8.3 1). In this case we have 
four holomorphic functions without common zeros on a manifold of 
dimension 4 and the application of the minimum principle to the solutions 
of the Monge-Ampere equation (see Section I) tells us that the minimum 
of the quantity C j(p,j’+ /u.<[’ is taken on the boundary of this com- 
ponent. We have then, except for a modification of the constant /?, that the 
same inequality as in (i) takes place at ([I, X’ ). 

The same reasoning applied to the second family shows that 

2: (IR(u)l + IT(o q1e IKA’~+EIPl;‘.Y’) (8.32) 

Now, we can estimate from below the quantity 

rs 
max 

(u.rlE.s5x.s~ ~1~~~~1+1~~~~~1~~~1+/,5,1,~~ 
I, ;I=0 

I’. (;I 1’4) , = 0 
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if \[[‘(I > E, which is precisely the case here. Therefore, 

i Iq#‘, X’)( 2 Y]3e-K3P(c’,*“, (8.33) 
j=l 

where the v~, K, have been obtained by replacing IR(u)l + IT(u)\ in (8.32) 
with a/( 1 + ll[‘II )L. 

On the other hand, cp,(i,, eiiO) = 0, hence choosing qO, K, conveniently 
we have also 

(8.34) 

This choice of q,, K, fixes the choice of the original 6,, D, , and the 
existence of the original point co leads to the contradiction between (8.33) 
and (8.34). This finishes the proof of Theorem 8.2. 1 

We can also obtain out of the proof of Theorem 8.2 the following special 
case of the Nullstellensatz: 

PROPOSITION 8.7. Let F,, F2 be two exponential-polynomials of three 
variables and rational frequencies, Suppose they have no common zeros in C3, 
then there are two elements G,, G2 E A,(C3) such that 

1 =F,GI+F,G,. 

Proof: In fact, thanks to (8.26) and the minimum principle this time 
applied in c3 to the triplets 

(F,, Fz, u.i) and (F,, F,, v.(i-w,)), 

U, v E S’, one obtains (after repeating verbatim the end of the proof of the 
above theorem) 

36>03D>O, lFl(i)l + IFz(i)l 2 de- Dp”‘. 1 

It seems to us that this duality method will be useful in studying the 
systems of partial differential equations with delays that appear in control 
theory and in mathematical models in biology, where the delays appear 
only on the time variable. From the point of view of exponential- 
polynomials, this is a very degenerate situation, completely opposite to the 
conditions we gave in Section 6 (see, for instance, Corollary 6.7) to show 
that a non-redundant system is in fact s.s.d. It would also be interesting tc 
study for this type of system the validity of the spectral synthesis or the 
asymptotic stability of the solutions [S]. We plan to return to these 
questions in the future. 
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