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Let f(z) = z:=, f”(r) e”“; be an exponential polynomial, that is, the coeflicients 
f,,(z) are polynomials in one complex variable. We discuss the question of how close 
distinct roots of the equation y(z) = 0 can get to each other. (0 1988 Academic 

Press, Inc 

A number of questions in harmonic analysis, complex analysis and 
applied mathematics, require a precise knowledge of the lower bounds of a 
plurisubharmonic function F of the form 

F(z) = log (fl tf,(z)t ‘)y 

where fi, . . . . f, are exponential polynomials of n variables. One such exam- 
ple is the work of Symes on materials testing [ZS]. The authors have given 
other examples in [6,7, 10, 31 J. 

The kind of bounds we have in mind are the following. Let Y= 
{ZEC’? f,(z)= .” =f,(z)=O} and let p(z) be a weight function (see 
definition below), then we would like to show the existence of positive 
constants A, B, and N such that for all z E C!” 

F(z) > N log dist(z, V) - Ap(z) - B. (1) 

Sometimes, such an inequality is only needed for z E R” (as in the work of 
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Symes). When f,, . . . . f’ are polynomials, p(z) = log( 1 $ IzI ), this inequality 
is known as the (global)) Lojasiewicz inequality [21]. 

The reader will find that the methods used here to study the existence of 
such bounds are inspired by the work of A. 0. Gelfond, A. Baker, and 
others on transcendental numbers. This is not surprising as shown by the 
following simple example [22], which makes clear why diophantine 
approximation questions appear naturally when considering deconvolution 
problems: 

Let LYE R, p(z) = (Im zI + log( 1 + lzl), then the following three conditions 
are equivalent: 

(i) c( is a non-Liouville number (i.e., for some E > 0, N> 0, we have 
IYCY--s( a&(1+ Irl))N for every r,seZ*); 

(ii) there are constants A, B > 0 such that 

> A exp( - BP(Z)) for all zEC; 

(iii) there exist distributions S, T of compact support (which can be 
written down explicitly) such that for every 4~ C,“(R), such that 
Jr2 d(x) dx = 0, one has 

where $(x)=jY, &t)dt. 

We note that (ii) is in effect an inequality of the form (1) for the 
functions fi(z) = sin z, fi(z) = sin CIZ, since the I/= (0) in this example. 

In general very little is known about (1) and the aim of this paper is to 
prove it in a number of cases in one variable and relate it to our work [9] 
on ideals generated by exponential polynomials in n variables. 

1. EXPONENTIAL POLYNOMIALS IN ONE VARIABLE 

DEFINITION 1. A continuous non-negative plurisubharmonic function p 
in C” is called a weight if 

(a) log(l + 14) = W(z)) and 
(b) there exist positive constants k,, k2 such that for every pair z, 

c E C” with Iz - <I d 1 we have p(z) d k,p([) + k,. 

To such a weight one associates the algebra of those entire functions f in 
C” such that for some A, B > 0 

If( GA ev(444) vz E C”. 
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We are only interested in the following weights: 

(i) p(z) = IIm z/ f log( 1 + lzl), A, = space of Fourier transforms of 
distributions of compact support in R”; 

(ii) p(z) = /zI, A, = space of Fourier transforms of analytic 
functionals in C”; 

(iii) p(z)= IzJk, k~ [l, co). 

DEFINITION 2. An exponential polynomial of n variables with frequen- 
cies in a finite set /i E C” is an entire function of the form 

f(z) = C p;,(z) ec”.‘: 
i. E A 

where i.z=l,z, + . . . + &z,~ and the pi, are non-zero polynomials. If all 
the pj. are constant we say f is an exponential sum. 

It is clear that f~ A, for any of the weights mentioned above, with the 
understanding that n GR” if the weight p(z) = (Im z/ +log(l + Izl) is 
considered. 

Let X’ be a subfield of C and f an additive subgroup of C” satisfying 
if G X”. We denote by 9(r; X) respectively 9(c X)) the family of all 
exponential sums (respectively exponential polynomials) with frequencies 
n E r, and coefficients pr E X (respectively X[z]). 

These two families (with the function zero added) are subrings of A,, 
closed under differentiation. 

For the remainder of this section we will restrict ourselves to the case of 
functions of one variable. 

We recall some well-known properties of exponential polynomials of one 
variable. 

PROPOSITION 1. Let f be an exponential polynomial with frequencies 
in I’ and denote by h(z)=h(z;A) :=max{Im(~.z):I~~} and V= 
{LEC:f(Z)=O}. 

(i) There are two non-negative integers M,, N, and a constant c0 > 0 
such that 

,$ If”‘(z)1 bc,(l f lzl)PMoexp(h(z)). 
j=O 

(2) 

(ii) There are positive constants c,, M,, N, such that 

If(z)1 3 ci( 1 + I~l)-~l(dist(z, V))“’ exp(h(z)). (3) 
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(iii) For every E > 0, C > 0 there exist constants E, > 0, C, > 0 such 
that if z, 5 are two points in the same connected component of the set 

{zEC: If(z)\ < &,e-CIP(‘)} 

we haue jz--~j <~e-~~(‘). 

(iv) Jf A E R, then V is contained in a region of the jorm 

(Im zI d C log( 1 + 1~1). 

Furthermore, if f is an exponential sum we can eliminate the logarithm 
from this bound. 

The first-three statements can be found in [17]. The last one is a very 
particular case of the work of Polya on zeros of exponential polynomials 
[4]. A more precise knowledge of the asymptotic behavior of the zeros, 
due also to Polya and others, will be used later on. We remark that very 
uniform bounds on the number of zeros of an exponential polynomial are 
known [ZS, 301, for instance, let Q = max (E.1, m = & (deg p;. + 1 ), then if 
n(z, r) denotes number of zeros off in the closed disk d(z; r) of center z 
and radius r (counted with multiplicities), 

n(z; r) < 2(m - 1) + 4r 2. 
71 

It is easy to see we can change Sz to one-half the diameter of ,4, but in fact 
if V denotes the convex hull of /i, f the number of vertices of %‘, and y the 
perimeter of %, 

n(z;r)<iT(m-l)+E. 

DEFINITION 3. We say that entire functions fi, . . . . f,,, satisfy the 
Lojasiewicz inequalities for the weight p if for every E > 0, C > 0 there exist 
E’ > 0, C’ > 0 such that 

implies dist(z, V) < Ee ~- cP(Z’, (4) 

where V= {z:fi(z)= ... =f,,,(z)=O}. 

Note that this definition also makes sense in C”. Part (ii) of 
Proposition 1 is a very precise form of the Lojasiewicz inequalities for a 
single exponential polynomial (also valid in C”). 
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PROPOSITION 2. For a given pair I’, 9” the following three properties are 
equivalent: 

(a) Every family f,, . . . . f, E S(T, X) (respectively B(T, X)) satisfies 
the Lojasiewicz inequalities for the weightp. 

(b) For every f E %(c X) (respectively Y(r; X)) there exist positive 
constants 1, L such that if 

f(z,)=f(z2)=0? ZI zz,, then IzI - z2( > le~LP”t). 

(We will then say the zeros off are well-separated for the weight p.) 

(c) For every j”~ 9(c X) (respectively Y(r; X)) the variety V= 
(z E C: f(z) = 0} (with multiplicities) is an interpolation variety for the 
algebra A,. 

Proof: If we index the points in V as zk, and denote their multiplicities 
by mk, we have a map into a space of sequences 

p: A, + AP( V) := { (bk,): 3A > 0 (bkll < AeAp’zk), 0 <I < mk) 

given by 

V is said to be an interpolating variety if the map p is onto. The 
equivalence of (b) and (c) can be found in [6]. 

To prove that (b) implies (a) we recall that the definition of weight 
implies the following: 

Given F)> 0, A > 0 there exist ye,, A, > 0 such that 

?,e-AlP’=‘<(~/2)e-AP’i’ 

for every pair z, { such that [z-Q i 1. 

(5) 

Now consider the function f(z) = n;l fi(z) and the corresponding con- 
stants 1, L given by the hypothesis (b), and we can assume I< I. By the 
preceding observation we can choose C > 0, 0 <E < 1 satisfying (5) with 
r=l,A=L,rll=~,A,=C.ByPropositionl(iii),wecanchoose~,,C,>O 
such that for any j, 1 <j< m, and any pair of points z, c in the same 
connected component of Q, = {z: If;(z)1 <s, e-c’p(i)} we have 
Iz - [I < ae-cp(‘). Let E’, C’ be the constants associated by (5) to E,, C, and 
let z,, be a point such that 

f If,(zo)l < &‘e-C’p(‘o). 
.i - 1 
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Call qj the component of Qj containing zO. Let us define 

i-2; = {z: If;(z)1 <&‘e--(=q 

and %?; the connected component of $2’ that contains zO. By the choice of E’, 
C’ we have %,! G q. On the boundary of %‘i we have Ih( = constant, 
hence f, has a zero [, inside %j. This gives us zeros i, , . . . . [,,, off which 
satisfy, by the choices we made of the constants, 

By our hypothesis (b) this shows [, = ik. Therefore we have found a point 
i = ci~ V such that 

dist(z,, V) d Izo - (1 = cepcpp(‘o’. 

We prove that (a) implies (b) by induction. Let us call v(z”) the mul- 
tiplicity of a zero z0 off: The inductive hypothesis (Pk) is the following: 

(Pk) There exist positive constants I,, L, such that if [, # iz, 

f(il)=f(Tr)=o, andmax(v(i,),v(i,)}~kthen IiI-121blke-LAp’~i’. 

It is clear that (P,) is what we want to prove. On the other hand, 
Proposition 1 (i) implies (Pk) is valid for k = N,. Namely, in that case we 
have a lower bound for the first non-vanishing derivative of f at [, (if 
v([~)=N~). Consider now s=inf{/,:q>k+ l}, C=sup{L,:q2k+ l}, 
and the family f, = f I’), 0 <j d k. By the hypothesis (a) we have constants 
E’, C’ for which (4) is valid. Let i , , cZ be two distinct zeros off such that 
v(<,)=k. Then, if If'k'([l)l 3c’e~~‘“‘~” we conclude that l[Z-[,I 3 
rk e ~ Lip(il’ and hence by using the defining properties of a weight, we would 
have 

Ii2 - il I 2 b ev(L, min{ -di, ), -p(i2)} 1 

for convenient I,, Lk > 0. Otherwise we have 

i I&([,)1 < c’eCC’p(il) 
,=O 

and hence there is a zero [,, common to all f,, with I[, - c3 I < se-m“P(;i). 
Since v(i3) 2 k + 1, this would contradict the inductive hypothesis. 1 

Remark 1. In the case where r is an abelian group of rank 1, i.e., where 
there is a non-zero number w such that r= oZ, we have proved in 
[9, Proposition 7.7) that the zeros of any function in 3(r; C) are well- 
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separated. If rank I-2 2 one needs to impose conditions both on the field 
X as well as on r if one wants this property to hold. 

On the other hand, for single functions one can prove under additional 
conditions that the zeros are well separated. A typical example of this kind 
is the unpublished work [24] of C. Moreno, where exponential 
polynomials with three or four distinct frequencies were considered. 

Remark 2. If any of the equivalent properties of Proposition 2 hold for 
F(f; X) (or Y(r, X)) we have the following version of Hilbert’s 
Nullstellensatz: Let f,, . ..J. in F(r; X) (or 9?(f; X)) have no common 
zeros, then there are g,, . . . . g,,EAp such that 

f, g, + “’ +fingm= 1. 

(In the engineering literature this is often called the Bezout equation.) 

EXAMPLE I. Let ;I =C,F=, 10p(p(“), q(l)= 1, ‘p(n+ l)= lo’+‘(“), then 
f(z) = sin 11.3. sin z cannot satisfy (b) of Proposition 2 for any weight 
p(z) = IzJk. In this case rank r= 2, but the problem is that 1 is too well 
approximated by rational numbers. This could not happen if IL were an 
algebraic number. 

EXAMPLE 2. Let S(z) = sin(z - a) - sin &.z - CL) then one has 

f~ s”(T; C), r= Z 0 fi Z, for any choice of a. On the other hand, its 
zeros are located at points of the form 

2kn 
and 

2c(+(2k+l)n 
z=yz--$ 

z= 
l+$ ’ 

k E Z. 

As in the previous example one chooses o! so that 2a/7r is extremely well 
approximated by numbers in (22 + 1) 0 (22 + 1) 8. We note that in this 
case the coefficients off are either sin c1 or cos c1 and by Baker’s work on 
linear forms of logarithms of algebraic numbers [2] these coefficients are 
transcendental numbers (cf. Lemma 1 below). 

Whence we are led to consider the following open problem (cf. [ 14, 
p. 3221. See [ 1 ] for a cognate conjecture). 

Problem 1. Let X = Q, the set of algebraic numbers, and rank TB 2: 
Are the conditions of Proposition 2 valid for F(r; X) or 9(c X)? 
(Recall that we are assuming iTs%, hence ~GQ is automatic in this 
case. ) 

Optimally one would like to them to be true for p(z)= Iz( or 
p(z) = Jim z/ +log(l + lzl) when rcRnQ. But it would be already 
interesting if the zeros were well-separated for p(z) = Izl“, with k depending 
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on the given function& Note that all we are asking is that the number 1 be 
badly approximated by quotients of zeros off (cf. [lo], where the related 
problem of approximation by quotients of zeros of Bessel functions has an 
interesting application). 

Remark 3. For the case of real frequencies and p(z)= 
/Im zj + log(1 + lzl), the property that the zeros of an exponential 
polynomial be well-separated is usually stated as the apparently stronger 
condition: 

for some positive constants c, N. Due to Proposition 1 (iv), this condition 
is actually equivalent to our definition. 

If we know that the zeros of a certain exponential polynomial f with real 
frequencies are well-separated for p(z) = [Im z( + log( 1 + Iz( ) then we can 
draw several interesting conclusions about the C” solutions cp of the 
associated difference-differential equation p * cp = 0, where fi =J First, 
from [6] we know that 50 can be written as a series 

dx) = C p,(x) efzr, 

where the GI run over the zeros off and 4p, are polynomials of degree 
cm, = multiplicity of tx. The convergence is absolute and in the topology 
of C”(R) (i.e., uniformly over compact sets for cp and all derivatives of cp 
and formal derivatives of the series). Furtermore, we know the coefficients 
of cpl tend rapidly to zero as lryl + co. If we know that cp is bounded, then 
by Kahane’s remark [20, p. 2931 we have that all the cpz are constant and 
the only ones that could be different from zero will be those for which c( is 
real. The rapid decrease of the coefficients then implies the uniform con- 
vergence of the series in the whole line. Therefore cp will be almost periodic. 
The same is true without any assumption on the boundedness of cp, if all 
the zeros off are real and simple. (This was also remarked by Gramain 
[161). 

We are now going to tackle the case of rank r= 2 and we need an 
auxiliary result. 

LEMMA 1. Let o E Q\Q, A(x) =x - cz, B(x) =x-p, IX, fl E Q. Then: 

(a) The equations A(ecic) = B(e-‘“i)=O have at most the solution 
i=o. 
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(b) There are positive constants (depending on o, CI, 8) 6, A such that 
for [iI B 1 we have 

6 
IA(e-‘5)l + IW-‘“‘)I 3 (1 + li,)A. (6) 

ProoJ Part (a) is just the theorem of Gelfond [lS, Theorem 2, p. 1061, 
which shows CI~ is transcendental as soon as c1 is algebraic # 0, 1, and o is 
algebraic. 

Part (b) is a simple consequence of the work of Baker on linear forms on 
logarithms of algebraic numbers [2, Theorem 1, p. 51, which we recall: 

Let tl r, . . . . CC, E Q \ { 0} of degree at most d, Ai = max { height o[,, 4}, and 
log U 1 ) . ..) log CI, be the principal value of their logarithms. Let 1,) . . . . i, E Q 
have degree at most d, H = max(4, height A,, . . . . height A,,}, Sz = nl Aj, 
Q’ = n; ’ A,, C = ( 16nd)*@‘“. Then either 

1,logcr,+ ... +R,logcr,=O 

or 

IAl logcr,+ ... +A,logcc,I ~(HQ)~CQ1”gn’. (7) 

In order to apply this inequality to obtain (6) we observe first that the 
inequality (3) of Proposition 1 can be made more precise in this case. 
Namely, it is easy to show that for some readily computable constant c > 0 
we have 

le-” - 1) 3 cIz( elrm= if IRezl <n. 

This inequality leads to 

and 

le-G-pI >CelIm41 min lo[+ilog~+2jn(, 
i 

where the minima are taken over k,j E Z. We can assume that both minima 
are smaller than 1 and that Ill $ 1. Then for the k, j that attain the minima 
we have Ikl z Ij/wl x I[[. It follows that for some constant c’>O, 

IA(e-‘i)l + lB(e-‘“r)l ~&~iu,log~+2k~~-ilog/3--2~jl. 
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The term in the right-hand side can be estimated using Baker’s theorem. 
First we need to know that the expression 

w( log ct - 2k7ci) - (log a- 2nzj) # 0. 

If this expression were zero we would have a” = /I, which can only occur, 
by Gelfond’s theorem already quoted in part (a), when !X = B = 1. In that 
case the expression reduces to i(2k7tW - 27cj) # 0, unless k =j= 0 since 
o 4 Q. The condition /[I % 1 indicates that this case is not possible. 
Therefore we can use (7) with c(~ =CI, c~~=D, OZ~= - 1, A, =o, A,= - 1, 
2, = -2ko + 2j. The estimate of the height H is O(( lkl + /j/)D), 
D = degree w. That is, H = 0( l[l”). Using that all the other constants are 
independent of [ we obtain 

for some positive constants 6, d. 1 

Remark. Using [29] one gets a better dependence of the constants on 
the degrees of CI, /I, o. 

We are now ready to study the case of rank f = 2. The result below was 
originally proved by F. Gramain [ 161 under the assumption that all the 
zeros of the exponential polynomial fare simple and real. 

PROPOSITION 3. The zeros of functions in 9(r, Q) are well-separated for 
p(z) = IIm z( + log( 1 + lzl) (respectively p(z) = lzl) when rank r=2 and 
r E R (respectively r 9 R ). 

Proof. We can certainly assume f = Z 0 oZ, o an algebraic irrational 
number. GivenfE 9(f; Q), up to multiplication by an exponential term, it 
can be written in the form 

f(z) = p,(e-“, e-i’“z), 

where Poe Q[X, Y]. The successive derivatives f(j) can also be written in 
the form Pj(eei’, e piOZ), Pi a polynomial in two variables with algebraic 
coefficients. We are interested in considering only 0 <j Q N, where N is 
the largest multiplicity of a zero of f: (By Proposition 1 (i), N d N, < cc .) 
Factorize P, into powers of irreducible factors in Q[X, Y], P, = nk R,. 

Let [ be a zero off of multiplicity v, 151 2 1. We have an index k such 
that Rk(e-lr, eeiWs) = 0 and also PV(e-ii, e-‘“‘l) # 0. Hence R, is coprime 
with P, and the variety of common zeros in C2 of P, and Rk is finite. It 
follows from Hilbert’s Nullstellensatz [27] that there are two non-zero 

4091129/l-12 
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polynomials A E Q[X], BE Q[ Y] and polynomials S, , SZ, S3, S, E 
Q[X, Y] such that 

A(X) = S,(K Y) &Ax Y) + S,(X Y) PAX Y) 

W’) = SAX Y) &(K Y) + X&Y Y) P,(X Y). 

If P,(e-‘<, e-“l) were sufficiently large we would have the other zeros off 
away from [, hence we can assume 

IA( + /B(c’“~)~ < ~e-=~(~) (8) 

for some 0 < E < 1, C > 1. Since A, B are polynomials in one variable we 
can assume A(X)=X-a, B(Y)= Y-p, c(, /~EQ. Lemma 1 shows that (8) 
is impossible if E < 6, C > A. Due to the finitely many choices available of 
R,, P, and roots of corresponding A, B we can conclude that for every root 
[ off, if v is the multiplicity of this root then 

If( -& E’e-mi) 

for a convenient choice of E’, C’ > 0. This certainly implies the zeros of R 
are well-separated with respect to the weight p. 1 

In view of the possible applications to exponential polynomials in several 
variables that will be mentioned in the next section, one would really need 
the same one-variable result for the case %(c a) with rank r3 2. We 
have not succeeded yet in proving this in general even for rank r= 2, on 
the other hand, there are simple cases where it is easy to show that the 
separation of the zeros holds. The following proposition, based on the 
work of Polya, Dickson, and others [4], is just one example of simple 
geometric conditions that ensure the zeros are well-separated. 

Let us write f(z) = I;=, Pi(z) e -“I’, Aj E R, mj = degree Pi. Consider the 
Newton polygon defined as follows: plot the set S of points 
(A,, m, ), . . . . (A,, m,) and find the concave polygonal curve L whose vertices 
lie on S and such that no points of S lie above it. 

PROPOSITION 4. Let f and L be as above, Suppose the only points of S 
which lie on L are vertices of L. Then the zeros off are well-separated for the 
weight p(z) = IIm zI + log( 1 + 1~1). 

Prooj We follow the notation from [4, Chap. 121. Let 
PI ‘P2’ ... > pL, be the family of successive slopes of the sides of L. For 
each of them there is a number ‘/I> 0 such that the zeros of f are 
asymptotically close to one of the curves 

r,: leprz zpjl = yj. 
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If we had a pair of zeros, [, , c2 extremely close to each other (with /cl 1 $1) 
it follows that they have to be close to the same curve r,. That is, for 
I[, 1 9 1 we would be in the region 

Q,: IImz+p,loglz( -logy,1 < 1, I4 % 1, 

which has exactly two (simply) connected components, both of which 
avoid the imaginary axis, therefore we can define a branch of log z by 
choosing arg z E ( - 7r/2, 3x/2). One considers the auxiliary function&., 

fi(z) = c,, + ck e -i(& ~ A,,) i zp,(i.k - Ah) > 

where (Ah, mh) and (J,, mk) are the successive vertices defining the side of 
L of slope pi, pj = (mk - m,,)/(& - A,), E,, > &,, and ch, ck are the leading 
coefficients of P, and Pk. It can be shown [4, Chap. 121 that given 6 > 0 
there is a K>O such that if f(z) =O, IzI > K there is a j and a z’, 
Iz’ - z( < 6, fj(z’) = 0. An examination of the definition of fj shows that 
there are positive constants E,, 6, such that the zeros of fi are simple, 
separated by a distance 3 6 r, and for each zero z’ off, we have If;(z)\ 3 E, 
on Iz - z’l = + 6,. Hence, if [, , c2 are the zeros off we were considering, we 
can assume they satisfy I[, - cZ 1 < 6 I /3, Ill 1 > K, Ii1 I > K. Therefore, they 
correspond to a single zero z’ off; with I[, --‘I <6,/3, l[r-z’l <6,/3. 
Furthermore, 

An application of Rouche’s theorem shows now that the existence of two 
zeros off near a single zero off; is impossible. 1 

Remark 5. One can see that even if there are more than two points of S 
in some sides of L, the above proof still works if pj # 0 and the function f, 
formed using all the points of S on the jth side does not have multiple 
zeros. We note that by introducing the variable s = zeP’Z’Pl, the function f, 
becomes (after multiplication by an integral power of s) a polynomial in s, 
hence the verification that the zeros offj are simple is, in principle, easy to 
do. On the other hand, exponential sums correspond exactly to the 
troublesome case ,uj = 0. 

PROPOSITION 5. Let r= Zw, @ Zw, 0 Zw,, where the generators 
o,, w2, co3 are algebraic numbers satisfying the condition that the two 
vectors in R3, (Rem,, Re 02, Re 03) and (Im o,, Im 02, Im w,), are 
linearly independent over R (that is, ol, w2, w3 do not lie in a straight fine). 
For every f E 9(r; 0) the zeros are well-separated for the weight p(z) = IzI. 
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Proof: As in Proposition 3 we can assume f(z) = 
p,ce ~ iw,z, e ~ iwz, e ~ iw3: ) with P,, E Q[X, Y, Z]. We can assume without loss 
of generality that P, has no multiple factors. Let Pi be also defined by 
f’/‘@) = p,( -ioF, e-iw2z, e-iw,z 

le 1. 
Let [ be a zero off of multiplicity v, /[I $ 1. Let R be an irreducible 

factor of P, such that R(epi”li, eciwzr, ep i”‘3i)=0. We know that R is then 
relatively prime to P,, hence the subvariety of C3 defined by R = P, = 0 has 
dimension at most 1. Writing 

R(X, Y, Z)= f ZkR,(X, Y) 
k=O 

M=O 

p,(x, y, z) = 1 zkp,s,,(X, y) 

k=O 

we have that the resultant of R and P, as polynomials in Z is a non-zero 
polynomial d,(X, Y), which is in the ideal generated by them [27]. We can 
obtain in the same way a non-zero polynomial d,(X, Z) in the same ideal. 
As we have done in Proposition 3, we can assumef’“‘(Q is very small and 
we obtain 

where E, C > 0 will be chosen later. 
Writing d,(X, Y) as a polynomial in Y with coefficients in Q[X] we see 

there are constants T> 0, m > 0, C, > 0 such that the distance between 
e -‘ku2i to a root of the algebraic equation 

Ao(eCiul’, Y) = 0 

is bounded by C, eclii’Ido(e-i”lr, eprwzi )I” if IIm(o, [)I > T. One can do 
the same for e -iw3s and A,. 

Consider now the equation 

Ao(ep”li, Y) = 0 

when Im(o, [) 2 T, > T. If T, B 1, we can use the Puiseux development in 
fractional powers of X [ 181 of the roots of the algebraic equation 

Ao(X Y) = 0, IX1 6 1. 

The different roots are given by expression of the form 

Y= xkqao + O( 1x1 “P)], 
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where k, E Z, p E N, a, E Q \ { 0 >. Hence, given E’, C’ > 0, E, C can be chosen 
in (a) so that if Im(w, [)a T,, 

,,-~w~,-~~ii(‘4~) [a,+O(le-‘w’~l”p)]l <&‘e-=“i’, (10) 

since k,, a, are chosen among a finite number of values. Under the same 
hypothesis Im(w,[) >, T, we have 

le. 
tm): _ e rmli~kl/Yl[u, + Q( le -iwi\ l/Y)] / < E’e WI, (11) 

with the obvious meaning for the k,, q, a,. 
After dividing the equation d,(e-‘“li, Y) = 0, d ,(ePn”li, Z) = 0 by 

convenient powers of e-‘*l[ one can apply the same idea in the region 
Im(w, [) < - T, and obtain 

I,-rwi -,-iwC(k6/p) 
” 

lab + (j( le-Wil I/“‘)][ < E~e-C“lil, 

I,-rwd _ e-iwli(kilq’) Ca; + o(le-“‘il’l”‘)]l <E’e -C’lil. 

(12) 

(13) 

Let Q,=w,-o,k,/p, sZ,=w3 -w,k,/q, and the condition (10) can be 
rewritten as 

if2,5 = log a, + 2nzj + 0( Ie-“‘J’;( lip), (14) 

for some j E Z, if we choose E’ > 0, C’ > 0 such that 

Ele(-C’+ IW + IwIw/4)lil = O( Ie-fWil I/P). 

Similarly, we obtain from (11) 

isZ,[ = log a, + 2nil+ O(leC”olil”q), IEZ. (15) 

Eliminating [ from (14) and (15) we have for some 6 > 0 

[Sz, log a,-Q2,10ga, +i~(2$2~-2152,)\ =O(leCi”‘c(“). (16) 

We note that the expression on the left-hand side of (16) can only be 
zero for at most one pair of integers j, 1 since 0,) 02, o3 are linearly 
independent over the rationals. Since (jl z (I1 = l[l we have that for 
\[I > Co > 0 we can apply Baker’s theorem (7) and obtain that the left-hand 
side of ( 16) is bounded below by ( 1 + 1 c I ) ~ A for some A > 0. Therefore ( 16) 
implies that for some B > 0, 

Wo,i) G B bid2 + lil) if lilac, and Im(w, [) 2 T,. 

Using ( 12) and ( 13) we finally obtain, when 1 cl 2 Co, 

IWo, 01 G T, + B lw(2 + ICI ). 
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Repeating this argument with 02, w3 in place of o1 we end up with 

,f, tIm( d T, + B lo@ + Iill 

at every zero c off for which Ii/ 2 C, and (9) holds. The hypothesis of 
linear independence of the two vectors (Re ol, Re w2, Re 03) and 
(Im wr, Im w2, Im w3) implies that 

I[[ Gconst. i IIm(oJ)l. 
j=l 

This shows that if C, B 1 the inequality (9) cannot hold and the zeros off 
are well-separated as we wanted to show. 1 

COROLLARY 1. Let r= Z @o,Z@ w,Z, Im w2 #O, then the zeros of 
any function in S(T; Q) are well-separated for p(z) = 1~1. 

The same ideas used in Proposition 5 allow us to deal with one case of 
polynomial coefficients and rank two. 

PROPOSITION 6. Let r= Z 0 wZ, Im w # 0. Then the zeros of any 
function $(r; C) are well-separated for p(z) = 1~1. 

Sketch of the Proof In the same way as in Proposition 5 we can limit 
ourselves to consider two non-zero polynomials of two variables P, Q and 
assume 

ML e -‘i)l + lQ([, ,-‘d)l <Ee--Clil 

at a point i, with 151 % 1. The use of Puiseux developments will give us 
expansions of the form, for some I,, I, E Q, a,, a, E C\{O), 

e-ii z a,[‘l+ . . . . ep”Ui,a2[‘2+ . . . . 

Hence for some integers k,j we will have 

-i[(l--l,$$zlogal+2kni 

-iw<(I-L,F)-loga,+Zkni 

and we conclude (by comparing real parts) that IIm [I, [Im w{l are 
bounded. Hence, I[] is bounded and the proof ends the same way as 
Proposition 5 did. 1 
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The following proposition is the only case of an exponential sum of 
rank 3 with real frequencies that we know how to deal with. The method of 
proof is borrowed from the original theorem of Gelfond that shows that 
the transcendence degree Q(e-“, epiwi, e-iW21) 2 2 [ 151. We follow the 
work of Brownawell, which gave a transcendence measure for this case 
[ 111. The modifications we made were necessary to keep track of a dif- 
ferent set of constants than the ones that are usually important in number 
theory. Nevertheless, we have only been able to prove that zeros are well- 
separated for the weight p(z)= 1z14+& and not p(z) = IIm z( + log( 1 + (~1) 
(or, what is the same, log( 1 + 121) as we explained in Remark 3) as one 
would like. 

PROPOSITION 7. Let w be a cubic irrational, r= Z @oZ @02Z, and if 
f E 9(r; Q) then for every E > 0 the zeros off are well-separated for the 
weight p(z) = Iz\~+~. 

Prooj The case where o $ R is a direct consequence of Corollary 1 
above (with the better weight p(z) = 1~1). Hence we assume UI E R and 
therefore the zeros of f are located in a strip of the form IIm zI < A, by 
Proposition 1. We can also assume that o is an algebraic integer since this 
can be achieved by a simple change in scale. 

As we have done before we can assume f(z) = P,(e-“, e-‘O’, epiw2’), 
P, E Q[X, Y, Z]. There is a non-zero polynomial R, E Z [X, Y, Z] n 
P&[X, Y, Z], and it is enough to show that the function F(z)= 
R,(~ ~ iz, e - iox, e -kc?; ) has well-separated zeros. Let [ be a zero of F of 
multiplicity v. If R,, is associated to F’“’ by the same procedure as above, 
then its coefficients are algebraic integers, hence there is an integer m and 
polynomials C,, ,, = C, E Z [X, Y, Z], 1 6 k 6 m, such that 

Rr$C,RymL+ . ..C.,,=O (cf. [27]). (17) 

Let S, be an irreducible factor of R, in Z[X, Y, Z] such that 
S,( e ~ jr, e - jwT, e -im*i) = 0. Since F”‘(c) #O, S, cannot divide every coef- 
ficient Ck of (17). Let j be the largest index such that Ci is not divisible by 
S,. We then have 

(R,,(e-ii, ,-ioi, e-iw21))m-j+ . . + cj(e -ii, e-i~~i, e-iw’() =o, 

and therefore to find a lower bound for IF( it is enough to find one for 
I Cj( e - ‘c, e ~ iwc, e ~ iw2c) 1. 

Since the total number of positive pairs of relative prime polynomials 
appearing above is finite, we drop the indices and consider two distinct 
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irreducible polynomials R, SE Z[X, Y, Z]. We need to find a lower bound, 
when Jim [I <Ao, of the form 

for some k 2 1, E, > 0, C, > 0. (Later on we will set k = 4 + E, E > 0 fixed.) 
As we have done in the proof of Proposition 5, we can assume R does 

not depend on the variable Z and S does not depend on the variable Y. 
There is the possibility, which we want to eliminate, that there is a non- 
zero polynomial Q E Z[X] in the ideal generated by R and S. 

Either R and S are both in Z[X], in which case 1 is in the ideal they 
generate, and there is no problem in obtaining the lower bound (in fact, in 
terms of the weight p(z) = IIm z( + log( 1 + lzl)), or taking the resultant of 
Q and R or of Q and S we obtain also a non-zero polynomial in Z[ Y] or 
Z[Z] in the ideal, in which case we can apply Proposition 3 and obtain a 
lower bound in terms of the weight p(z) = Jim zI + log( 1 + 1~1). 

This argument shows more, namely, given any non-zero polynomial 
Q E Z[X] (not necessarily in the ideal generated by R and S) we always 
have the estimate 

IQ(e-ii)l + lR(e-‘i, ,-i&)1 + IS(~-,<, e-;,~2()l > Ee-C”mi’ 

(1 + lil)” 
(18) 

for some positive constants E, C, N which depend on Q, R, S. In particular, 
we can apply this estimate to Q(X)= A(X) B(X), where A, B are the 
leading terms of R, S when expressed as polynomials in Y and Z, respec- 
tively. It follows that for [[I 3 1, given any K, > 0 there is a constant K2 > 0 
(independent of k 3 1) such that if 

IR(e-‘i, e-iwc)I + IS(e-ii, e-ko~~)~ <e-k21ilA, (19) 

then there are solutions 5,) t2 of the equations 

R(e-‘[, c,)=O, S(eC’[, if?) = 0 (20) 

such that 

le-d--, I + le-&-~21 <e-K~lilk. (21) 

Since the aim of the proof it is to show that the inequality (19) is 
impossible anywhere when [[I 2 1 and (Im cl d A, for k, K, conveniently 
chosen, we can always assume without loss of generality that c is a point 
such that e-jr is transcendental. (Therefore 0 < 15, ( <A,, 0 < It2 ( <A, .) 
For O<&$l, k,>O, k,>l to be chosen, define k=(6+c)ko, 
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K, = K,(k, , E) to be chosen below in (36) and assume that ( 19), and hence 
(21), hold at a point c with e-i5 transcendental. Define two constants 

No = Ilk, IrlT~ N, = [Ni log N,]. (22) 

For Ninteger, N,dNdN,, we set as in [15, 111 

L = [fV(log N)“‘+], (23) 

L 

1 
‘= 12d2 

- N3’2( log N) ~~ 3’4 
I 

) (24) 

H= [N3’*(log N)“4], (25) 

where d = max(deg, R, deg, S). It is clear that there is an absolute 
constant c0 such that 

NL+PlogN<c,H. (26) 

The idea of Gelfond has been to introduce an auxiliary exponential sum 
F,,, with frequencies in r and which is very small, together with all its 
derivatives of order < P, at all points in the finite portion of a lattice, 
namely ((1, + 1,~ + /,a*), Ij~ Z, [Ii/ <L. To simplify the writing denote 
l:=(1,,12,13)~Z3, ~1~=max~1,~,o:=(1,w,w2),andI~o=1,+12w+1,~*. 
The function F, has the form 

FN(Z)=~qnep’(“‘W)‘, nEZ3, Inl < N, (27) 
n 

where cp. E Z[epii]. We want to consider the expression Qp,, one obtains 
by differentiating F, p times, p < P, substituting z = (I. o) {, and after 
rewriting the exponents in terms of [, o[, 0~1, replacing e-i”Ji by 5, and 
e -i’J21 by g,. It is in the third step that we use that w is a cubic. Namely, 
given n E Z3, InI < N, IE Z3, 111 < L there is a unique triple m E Z3 such that 

(n.o)(l.o)=m.o, (28) 

and one can easily see Irnl Q c, NL for some integral constant c, (which 
depends only on 0). Similarly, for 0 dp < P, we can take c1 sufficiently 
large so that 

Therefore, 

(n.o)P=r.o, log Irl <c, Plog N. (29) 

(30) 
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The exponents mj that appear could well be negative, but by multiplying 
Qp,, by (epirtl C2PNL this can be corrected. Now we use the fact that, by 
(20), A(e-‘[) [r, B(e-‘() t2 are algebraic integers over Z[epiS], where, as 
we recall, A(X), B(X) are the leading coefficients of R(X, Y) and S(X, Y), 
respectively. After multiplying by (,4(ePii) B(ePi*))*‘lNL and rewriting we 
get 

=; cp,(r -0) C Hj,,j2. (A(e-‘[) rl)” (B(eCii) t2)j2 (31) 
il J2 

with O<jr <degrR, O<j,<deg, S, 17 ,,,,* ~17,~,,, (em”), njl,j, (X)EZ[X] 
and 

deg ni,,j, (Xl < ~2 NL log height IIj, ,,2 (X) < c2 NL. (32) 

One can rewrite the right-hand side of (31) as combinations of 
o’“(A5,)“(B52)‘2, where 0 6 j, 6 2. We would like to chose qn so that the 
coefficients of each of these powers vanish identically. To do this for all p, 
0 dp < P, I, 111 CL, one has to apply the Dirichlet box principle, that is, 
count the number E of equations and U of unknowns. We have 

E= 3d2P(2L + 1)3, U= (2N+ 1)3. 

By the definitions (23) and (24) of L and P we get 

when N, 9 1, i.e., after we choose k, $1. By a lemma due to Siegel 
[15, Lemma II, p. 1351 there is a solution {cp,} G Z[eeii], not all iden- 
tically zero, with 

deg cp. d c3 NL, log height cp. < c;(NL + P log N) < c3 H, (33) 

and one can even assume the rpn to be relatively prime in Z[eeii]. 
Therefore we have, for IE Z3, 111 CL, 0 <p < P, 

I(A(eCfi) B(eCii))2c’NL (eC’r~,~2)‘.‘L F$$)((f.co) [)I 

= I(A2B2ep’~(,(,)‘lNL CW((1.o) iI-- @p,III 

~(2N+1)3max(cp,~e”~P’“~Ne~3NL()~,-e~iwiJ+)~2-e-“vi~), (34) 
” 

where we have used the mean value theorem to obtain the last inequality, 
and the fact that Jim [I GA,, hence It, 1, It21, leeiil, lePiwil, IeP”CsC) are 
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uniformly bounded by a positive constant A,, was used to determine c3. 
For the same reason these five quantities are bounded below by A,‘. By 
( 18) we have also a lower bound 

IA B(e-‘c)l 2 /cl PA2, A,>O. (35) 

From (34), (35), (33), and (21), we obtain the following upper bound for 
Fp((f.0) LJ: 

log I%“(U.o) 0 G c,ff+ c,(loglil) NL - K, Iilk 

~c,I~I~~~ (loglil)3’2-K,lilk< -N;(logNJ2. (36) 

The second line was obtained using the definitions (22)-(25), k = (6 + E) k,, 
and K, was then chosen in terms of k,, E so that the last inequality holds. 

We now want to use (36) to obtain a similar inequality at more points. 
For that purpose one uses Hermite’s interpolation formula [15]. For 
IzI d c,Ll~!l, c, = 5101, we have, as long as k, B 1 so that c, < 2L”, 

(37) 

where 6 = 4 /[I min lI.o-I’ .wI > cg l[l LP3 (This inequality is a con- 
sequence of Schmidt’s theorem [ 133.) 

The first term in the formula (37) can be estimated by 

jj,r3& 8(H + NL ’ +‘I([) - (c/2) PL3 log N < e c.gN3 log N 

as long as we choose 

(38) 

2 
k,>- 

3-E’ 

The constant cg depends on E and, for N % 1 (i.e., k, ti 1 ), it can be made 
z a, that is, there is no hope of it being large. The condition (39) is the one 
that leads to the final result k = 4 + E in the statement of the proposition. It 
is easy to see that the second term of (37) can be estimated by 

&ION) log N ~ N;(log N, )* < e - (1 -6) N:(h3N,)* (40) 
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for any 6, 0<6< 1, as long as N% 1. Hence the first term in (37) 
dominates and we get 

max log IFN(z)l < -c,N3 log N, (41) 
I=1 = c7Llil 

where by abuse of language we have incorporated the estimate from (40) 
into the same constant as (38). Further along we will use (41) and the 
Cauchy inequalities to estimate F, (p) at points of the form (I. o) i, 111 < L, 
but with O<p< ci, P, that is, the same points that led to (41) but with 
more derivatives involved. The value cir > 1 is fixed by the next step of the 
proof. 

We want now to show that there is a point of the form (I. o) [, 111 < L, 
and an integer p, 0 <p < c,, P, such that loglF@)((f .o) [) 3 -c,,N3 log N 
for some c,* > 0. The non-existence of such a point will contradict the fact 
that the cp. have been chosen to be relatively prime in Z[e-“1. This 
reasoning depends on the following three lemmas. 

LEMMA 2. [26, Theorem 31. Let E(z) = Err,’ uye-iaVz be an exponential 
sum with real frequencies. Let { fi,} b e a collection of s distinct real numbers 
and t a positive integer. Set 

A = max la,, 1, E=max{IE’“(B,)I:O~j<t,O~a<s), 
\’ 

a=max {Ic(,,I, l}, P=max{IBA 11, V 

a,=min{Icr,,-a,[, l:p#v}, bo=min{IB,-P,I, l:p#oj 

Assume that 

st B 2m + 130$. (42) 

Then 

A< se 
7x8 

(3a,/?)” - ’ (43) 

LEMMA 3. [15, Lemma VI, p. 147, and Lemma II, p. 135). Let 
O# TeZ[X], YEC such that IT(r)1 <e-‘d(h+d), where 123, dadeg T, 
h 2 log height T, Then there is a factor T, of T in Z[X] such that T, 
is a power of an irreducible polynomial, log height T, <d + h, and 
IT,(y)J <,-(;.-I)d(h+d) 
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LEMMA 4. [15, Lemma V, p. 1453. Let the heights off, geZ[X] be Ifl, 
1 gl and their degrees m, n, respectively. Iffor some y E C we have 

then f, g have a common irreducible ,factor. 

In order to apply Lemma 2 to F, and the values Fg’((1.o) [), III <L, 
Odp<c,,P, we need to choose c,, so that the condition (42) is satisfied. 
This can be done since both sides of (42) are O(N’) in our case. The 
conclusion of the lemma now gives 

max Ip”(e- X)1 < ew31%N max{IFlyP)((f.@)[)I: 111 <L,Odp<c,,P). 
n 

Assume log IFc)((f.o) [)I < -c,* N3 log N in this range of indices. By 
choosing c,~ extremely big we get 

max Iq,(e ~-‘<)I < e (‘14N3hN (44) ” 

for any choice of c,~ we want. Pick any cp” different from zero. By (33) we 
have 

(deg cp,)(deg cp,, + log height cp,) = O(N3(log N)‘.‘“). 

Then Lemma 3 says that there is a polynomial T, which is a power of an 
irreducible polynomial T, E Z[X] which satisfies at e -ii an estimate similar 
to (44). Applying Lemma 4 to T, and any other cp. one sees T2 is a 
common factor of all the cp,,. This is impossible, hence it follows that for a 
convenient constant cIZ there is a point & E Z3, I& I < L, and an index pO, 
O<p,<c,,P, such that 

log lF!$“((f,,.~) [)I 2 -c,,N3 log N. (45 1 

Using the Cauchy estimates and (41) we obtain that there is c,~ > 0 such 
that 

log [F~)((&.o) 01 d -c,,N3 log N. (46) 

We have not yet shown that (19) leads to a contradiction. This will be 
done using (45) and (46) for every value of N, N, < N < N,. (It is clear that 
l,, and p,, depend on N.) From this moment on there is no further difference 
between our arguments and those in [ 15, 111. We continue giving the 
details of the proof for the sake of completeness. 
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The first thing to do is find an algebraic integer qN over Z[epis] such 
that 

-c,,N3logN<log IyIN( d -c,,N3logN. (47) 

This is done by reversing the argument that led to (34), that is, replacing in 
Z?$)((l,.o)[) the powers of emi”‘(, e-‘“‘r by <,,t2 and multiplying by 
convenient powers of A(e-“) B(e-‘[), eeii4, t2. This I]~ can be written 

fjN = C wj”(A~l)” (S(t2)J2 ITj (epic), (48 1 

where the sum extends over j = (j0,j,,j2), 0 <j, < 2, 0 <jl < deg, R, 
0 <j, < deg, S and 

“j (x) E zCxl, deg nj < c 18 NL, log height Z7j d c,*H. (49) 

We want to be able to apply once more Lemmas 3 and 4. These lemmas 
involve polynomials in Z[X], and to obtain them we use the fact that (48) 
shows that the degree n of ~~ is at most 3d2, whereas before 
d = max(deg Y R, deg, S). Hence qN satisfies a manic irreducible equation 

q;+u,q;-‘+ ..’ +a,==o, (50) 

where aiEZ[eeii]. From (48) and (49) one can estimate the height and 
degree in Z[e-‘l] of all the coefficients involved in writing all the con- 
jugates of yap, and hence one can estimate them for all symmetric powers of 
qN and its conjugates. It follows [ 111 that 

deg ai< c,~ NL, log height aj 6 c,,H (51) 

as polynomials in Z[X]. 
At this point we can use the following result of Brownawell and 

Waldschmidt, which, as Professor Brownawell pointed out to us, is based 
on an idea of G. Chudnovsky. 

LEMMA 5. [ 123. Let y E C be a transcendental number and v] E C satisfy 
the manic equation (50) of degree $ n over Z[y], where the coefficients have 
degree 6 D, and height 6 eD2 as polynomials in Z[X]. Suppose further that 
there exists two real numbers A,, A, such that 

A1 >I,>6+2log(n+ 1)+2log((yJ + 1) (52) 

and 

-A,D,(D, +W<log lrfl< -&D,(D, +D,). (53) 
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Then there is an irreducible polynomial T E Z [X] and an integer s B 1 such 
that T”(X) divides a,(X) in Z [X] and 

-3nA,D,(D,+D,)<log IT(y)1 < -&D,(D, +D,)/6s. (54) 

The unique difficulty in applying this lemma is to see that the estimate 
(47) can be put in the form (52), (53). Recall that the constant c,~ is 
obtained ultimately from cg which could be very small, while I, is required 
to be not too small in (52) when y =e-‘(. In fact the bound required by 
(52) lies between two constants which depend only on the original 
exponential sumf: On the other hand, in our case D, = O(NL), D, = O(H), 
hence 

D,(D, + D,) = O(N3(log N)“‘) = o(N3 log N), 

so that in effect we have (52) and (53) satisfied. Furthermore, 
s=sN= deg a,, = O(NL). We call T, the polynomial obtained using 
Lemma 5; it satisfies 

-c2,N3 log N<log IT,,,(ePii)l < -cz, 
N3 log N 

SN 

deg T, d c22 NLIs, 

log height T, 6 c22 H/sN. 

(55) 

(56) 

The last two inequalities follow from [ 15, Lemma IV, p. 141. By Lemma 4 
all the polynomials T, coincide, N, 6 N d N, . This leads very quickly to a 
contradiction. Namely, the right-hand side of (55) implies 

log 17”,Nll(ePiC)l =sN, log IT,,(e-‘i)l d -c2, Nflog N,. (57) 

On the other hand, T, = T,, , hence 

log IPl(e~‘~)j =sN, log (T,,,(e~‘~)j NI 

> -C&N, N:, log No 

2 - c,,N, L,, N; log No. 

Using the definitions of No, N, we have 

N; log N , = N&z Nol4, 

while 

(58) 

N, L,, N; log No= (N; log N,)(N; log N,)“‘(log No)li4 N;(log No) 

= N;(log N0)1”4, 
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which shows that (57) and (58) cannot hold simultaneously if N, $1 (this 
is achieved by having chosen k, 9 1 to start with). This is the contradiction 
we were looking for. 1 

2. EXPONENTIAL POLYNOMIALS IN SEVERAL VARIABLES 

The aim of this section is to relate the questions considered in Section 1 
to our ongoing work on ideals generated by exponential polynomials in the 
spaces AJC”), p(z) = /Im 21 + log( 1 + izl) [9]. 

It is clear that Definition 3 makes sense for entire functions of several 
complex variables. The Lojasiewicz inequality for the weight 
p(z) = Jim z/ + log{1 + 1~1) (respectively p(z) = 121) for a family of Fourier 
transforms of distributions pi, . . . . pM of compact support in R” (resp. 
analytic functionals) plays an important role in the study of the solutions ye 
of the system of convolution equations 

p,*(p= ... = p**q = 0. 

Let us recall first what is known for a single exponential polynomial. The 
inequality (3) in Proposition 1 is still valid [ 17 J, i.e., iff is an exponential 
polynomial, A is set of frequencies in C”, h(z) = max{Im(l z): 2 E A}, and 
V= (z~C”:f(z)=O) then 

If(z)1 2 c,(l + 1~1))“’ (dist(z, V))“’ e”(‘) 

for some constants c, > 0, M, > 0, N, 2 0. In fact one can prove more, and 
by following the method of proof from [7, Theorem 7.31 one sees that 
there is an algebraic variety WE C” such that if a 6 W there are positive 
constants c2, M2, N, such that for any complex line L through a, say 
z=a+v[, [EC, VECY, /VI = 1, we have 

If(a + vi)1 > c2( 1 + [[I)-“’ (dist([, Vn ~5))~’ e”‘““. 

The constants are independent of v; cf. [S]. 
One of the main questions that arises in C” for finitely generated ideals is 

to find out whether they are slowly decreasing [7]. Let us recall that this 
means in case the variety V= (ZE Cn:f,(z) = .-. =fn,(z) =0} is discrete, 
fi, . . ..f&A.. 

DEFINITION 4. f,, .,.,fm are slowly decreasing for the weight p if there 
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exist positive constants E, C, K,, K, such that if zi , z2 are two points in the 
same connected component of the open set 

S(E, C)= 
i 
ZEC f Ifi(z)l <&e-Q(=) 

J=I I 

we have 

P(z,)GK,P(zJ+K,. (59) 

Note that the fact that (59) holds implies that the components of S(E, C) 
are bounded and hence the variety V must necessarily be discrete. 

For exponential polynomials fr, . . ..f. we have shown the following 
equivalence: 

PROPOSITION 8 [9, Theorem 3.1 and Remark 3.21. The family f,, . . ..f.,, of 
exponential polynomials is slowly decreasing if and only if for every Q, > 0, 
C, > 0 there are positive constants E, , C, such that if z, , z2 are in the same 
component of S(E], C,) we have Iz, - z2 I < &OeCCoP’zl’. 

That is, the property of being slowly decreasing corresponds exactly to 
part (iii) of Proposition 1. 

It is easy to see when rank r6n (n = number of variables) that the 
Lojasiewicz inequality for the class B(T; C) is a consequence of the 
classical Lojasiewicz inequality for polynomials [21]. Namely, after a 
linear change of coordinates we can assume the generators of r are the 
canonical basis e, , . . . . e, of C”, and any family f,, . . . . f, E F(C C) is (up to 
multiplication by an exponential factor) a family of polynomials in 
e -i:, 2 . . . . e -i+. This is exactly the way one proves f,, . . . . f, are slowly 
decreasing when V is discrete [7]. In the case of n = 1, as we pointed out in 
Remark 1, the Lojasiewicz inequality holds for ?Y(Z; C) [9]. In [9] we 
considered, among other questions, the property of being slowly decreasing 
in 3(Zn; X)), X a subfield of C. Namely, we discussed: 

Problem 2. Let f,, ..,, f,,, E %(Z”; X). Does the fact that the variety V of 
common zeros is discrete imply fi , . . . . f, slowly decreasing for the weight 
p(z) = IIm zI + log( 1 + lzl)? 

For n = 2 we proved this result for X = C [9] (cf. also [S]). We have 
also shown it is false without restrictions on X as soon as n b 3. It might 
hold for X = Q but we have been unable to prove this yet. 

The link between Problem 2 and Problem 1 is the following. First, if the 
answer to Problem 2 were affirmative for a fixed field X and any dimen- 
sion n then it would follow that Hilbert’s Nullstellensatz is valid in 
3(Zn; X), i.e., given fi , . . . . f, E Y(Z”; X) with no common zeros there are 

4OY;IZY:l-13 
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functions g,, . . . . g,EAJC”) such that f, g, + ... +fmgm = 1. In fact, it is 
clear that Y(Z”; X) can be considered a subset of ‘S(Z”; X), for v 3 n 
(namely the functions are independent of the last (v - n) coordinates). The 
condition V= 0 remains valid in C” (if Vf 0 then it would not remain 
discrete when considered in C”, v > n). Therefore we can assume v 3 m. 

Consider in C” the function 

4z) = 1% ( 2 Ifi(z)12). 
/=I 

It is a continuous plurisubharmonic function which satisfies the homoge- 
neous complex Monge-Ampere equation. (It is here where we use v 2 m.) 
By [3], u satisfies a minimum modulus principle. The condition that 
f,, . . . . f,,, are slowly decreasing in C” implies that on the boundary of the 
components of the set S(E, C), u 3 -C, p(z,) - C, for some C, > 0, CZ > 0 
and Z, a point in the component. It follows that this holds also throughout 
the interior of the component and hence everywhere we have 
U(Z) 2 -D, p(z) -D, for some D,, D, > 0. Hormander’s work [ 191 then 
shows that the g,, . . . . g, exist. 

Now, let F,, . . . . F, be exponential polynomials of one variable with fre- 
quencies in a subgroup r of C of rank n, r = o, Z @ . . . @ w,Z. Consider 
the Y polynomials of n + 1 variables which give 

F,(z) = Pi(z, .c~‘“~~, . . . . e-““‘) 

(as before we have premultiplied F, by an exponential factor). Let f,, 
j=l , . . . . v + n, be defined in C”+ ’ by the equations 

f;(z 1 > . . . . z,, + , ) = Pi( z , , e -~ lz2, . . . . e ~ I+), l<jQr 

fr+l(~)=z2-~IzI 

fr+&)=zn+1 -W,ZI. 

It is clear that F,, . . . . F, have no common zeros in C if and only if 
fi, . . ..f. + n have no common zeros in C” + ‘. Hence a solution of the Bezout 
equation in A,(C”+ ‘) for fi, . . ..f”+., leads to a solution of the same 
equation in A,(C) for F,, .,., F, (it could happen that some wi# R, then one 
has to consider p(z) = IzI in C, even if one had the result for 
p(z) = IIm zI + log( 1 + lzl) in C”+‘). A s we pointed out in Remark 2, the 
solvability of the Bezout equation is tied to the equivalent properties of 
Proposition 2. This reasoning also shows why one needs to restrict the field 
X to Q in Problem 2. 
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On the other hand, Theorems 8.1 and 8.2 from [9] show that to answer 
Problem 2 in the affirmative for Y(Z2; Q) one only needs to prove that the 
Nullstellensatz is valid in G!J(Z’; 0). We will presently see that this question 
is closely related to the Lojasiewicz inequality for 3(Z @ oZ; Q), w E a. 

Let f,, . . ..f. E %(Z2; Qh with V= {z~C~:fr(z)= ... =f,(z)=O} =a. 
We have as before polynomials Pj~ Q[X, Y, Z, W] such that 
h(z) = P,(z,, z2, epi”, z piz2); they are relatively prime, and we can assume 
P,(X, Y, 0, IV) $0, P,(X, Y, Z, O)$O. We can further assume that the ideal 
generated by P, , . . . . P, is prime [9]. Let r be the algebraic subvariety of 
C4 defined by them. Let S be the variety of singular points of v and 
Q ,, . . . . QI the generators of the ideal of S (including P,, . . . . P,, in the list). 
We have shown in [9, Theorem 8.21 that it is enough to show that the 
Nullstellensatz is valid for the family of exponential polynomials 
gjeC!J(Z2;Q) defined by gj(z)=Q,(~,,z2,e~i”,e~i’2). Now, since 
dim 8~ 2 we have dim S< 1. If dim S = 0 one finds that the ideal 
generated by the Qj contains non-zero polynomials A E Q[A’], BE Q[ Y]. 
Hence one immediately has, for some E, C > 0, 1; 1 g,(z)1 3 ee ~ GJ(” outside 
a compact set, and since the g,, . . . . g, have no common zeros it is clear the 
Nullstellensatz is valid in this case. 

Therefore the only case left to consider is that of a family 
g,, . . . . g, E %Z2; Q), Jf = { z E C’:g,(z) = ... = g,(z) = 0) = a, and 
dim S= 1, where S= {zEC~: Q, = ... =Qr=O}. The same kind of reason- 
ing we applied before in Section 1 using elimination theory shows that the 
only case that causes any difficulty is that where the ideal generated 
by Q, 7 . . . . Qr contains a nonzero polynomial R in Q [X, Y] (cf. 
[9, Proposition 6.31). Hence the Nullstellensatz we need is a particular case 
of the Lojasiewicz inequality for the restrictions of the exponential 
polynomials g, , . . . . g, to the subvariety of C2 given by R(z,, z2) = 0. We 
have already proved in [9] that the restriction of a single exponential 
polynomial to an algebraic variety of dimension one is either identically 
zero or it satisfies the condition (iii) of Proposition 1 on the variety. It 
follows from the proof of Proposition 2, if one replaces everywhere 

d 
by 

i3R a aR a 
z -----> aZ2 aZ, aZ, aZ, 

that to obtain the Lojasciewicz inequality all one has to prove is that the 
zeros of the restriction to {R = 0} of a single exponential polynomial in 
Y(Z2; Q) are well separated. 

We know how to prove this property in a number of cases. Namely, we 
can restrict ourselves, as in Section 1, to consider the situation 

IP(z,, z2, e-“‘)I + lQ(z,, z2, e-“2)l small (60) 
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and 
R(zt, z,)=O. (61) 

From (60) we obtain IIm zi 1 + [Im z2/ ,< Clog(2 + 1~1). Consider the dif- 
ferent asymptotic developments of the roots of (6.1). For those of the form 

Z2=az:(l+o(l)), kEQ\(l), as Izll-+~, 

we have IRe z,) = O(IIm z, ) + (Im z,1,, hence Iz, 1, and therefore Iz21, 
remain bounded. The same reasoning holds for 

z,=wz,(l+o(l)), w$R. 

The only case we have not yet been able to handle is where one of the 
branches of R = 0 has an asymptotic developement of the form 

z,=oz,(l+0(1)), WEQnR, (62) 

which is almost the same situation as in Problem 1 for %(Z@wZ; Q). We 
note that this problem of resistrictions to algebraic varieties might be sub- 
stantially harder due to the o(l) in (62). 

We hope that the above explanations have convinced the reader that 
Problems 1 and 2 are strongly tied to each other. Their complete solution 
seems to be very difficult at this moment. 

Every case where one has been able to prove that a system of exponen- 
tial polynomials in C” is slowly decreasing has given interesting 
applications to the harmonic analysis of the solutions of the corresponding 
system of difference-differential equations. For instance, Meril and Struppa 
[23] have shown recently that the Hartogs continuation property for 
holomorphic functions (or more generally for solutions of overdetermined 
systems of partial differential equations) holds also for solutions of certain 
types of overdetermined systems of convolution equations. We will publish 
shortly examples of such systems as well as a study of systems of partial dif- 
ferential equations with time lag. The techniques involved in this work are 
a combination of those in the present paper as well as those in [9]. 
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