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Strong law and central limit theorem

Let (Xn) be a sequence of iid random variables and set

Sn =
n∑

k=1

Xk .

If Xn ∈ L2(R) with E[Xn] = m and Var(Xn) = σ2, we have

Sn

n
−→ m a.s.

Sn − nm√
n

L−→ N (0, σ2)

Idea. Require more on (Xn) to obtain sharp results on tails
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The Gaussian sample

Assume that Xn ∼ N (0, σ2) so that Sn ∼ N (0, σ2n). For all
c > 0,

P(Sn > nc) ∼ σ

c
√

2πn
exp
(
−c2n

2σ2

)
.

Therefore,

lim
n→∞

1
n

log P(Sn > nc) = − c2

2σ2 .

Question. Is this limit true in the non Gaussian case ?
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Let L be the log-Laplace of (Xn). The Fenchel-Legendre dual of
L is

I(c) = sup
t∈R

{ct − L(t)}.

Theorem (Cramer-Chernov)

The sequence (Sn/n) satisfies an LDP with rate function I
Upper bound: for any closed set F ⊂ R

lim sup
n→∞

1
n

log P
(Sn

n
∈ F

)
6 − inf

F
I,

Lower bound: for any open set G ⊂ R

lim inf
n→∞

1
n

log P
(Sn

n
∈ G

)
> − inf

G
I.
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On the Cramer-Chernov theorem

The rate function I is convex with I(m) = 0. Therefore, for all
c > m,

lim
n→∞

1
n

log P(Sn > nc) = −I(c).

Gaussian: If Xn ∼ N (0, σ2) with σ2 > 0,

I(c) =
c2

2σ2 .

Exponential: If Xn ∼ E(λ) with λ > 0,

I(c) =

 λc − 1− log(λc) if c > 0,

+∞ otherwise.
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On the Bahadur-Rao theorem

Theorem (Bahadur-Rao)

Assume that L is finite on all R and that the law of (Xn) is
absolutely continuous. Then, for all c > m,

P(Sn > nc) =
exp(−nI(c))

σctc
√

2πn

[
1 + o(1)

]
where tc is given by L′(tc) = c and σ2

c = L′′(tc).

Remark. The core of the proof is the Berry-Esséen theorem.
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Theorem (Bahadur-Rao)

(Sn/n) satisfies an SLDP associated with L. For all c > m, it
exists (dc,k ) such that for any p > 1 and n large enough

P(Sn > nc) =
exp(−nI(c))

σctc
√

2πn

[
1 +

p∑
k=1

dc,k

nk
+ O

(
1

np+1

)]
.

Remark. The coefficients (dc,k ) may be explicitly given as
functions of the derivatives lk = L(k)(tc). For example,

dc,1 =
1
σ2

c

(
l4

8σ2
c
−

5l23
24σ4

c
− l3

2tcσ2
c
− 1

t2
c

)
.
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Gaussian quadratic forms

Let (Xn) be a centered stationary real Gaussian process with
spectral density g ∈ L∞(T)

E[XnXk ] =
1

2π

∫
T

exp(i(n − k)x)g(x) dx .

We are interested in the behavior of

Wn =
1
n

X (n)tMnX (n)

where (Mn) is a sequence of Hermitian matrices of order n and

X (n) =

 X1
...

Xn

 .
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Toeplitz and Cochran

Let Tn(g) be the covariance matrix of X (n). By the Cochran
theorem,

Wn =
1
n

n∑
k=1

λn
k Z n

k

λn
1, . . . , λ

n
n are the eigenvalues of Tn(g)1/2MnTn(g)1/2,

Z n
1 , . . . , Z n

n are iid with χ2(1) distribution.

The normalized cumulant generating function of Wn is

Ln(t) =
1
n

log E
[

exp(ntWn)
]

= − 1
2n

n∑
k=1

log(1− 2tλn
k )

as soon as t ∈ ∆n =
{

t ∈ R / 2tλn
k < 1

}
.
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LDP assumption. There exists ϕ ∈ L∞(T) not identically zero
such that, if mϕ =essinf ϕ and Mϕ =esssup ϕ,

(H1) mϕ 6 λn
k 6 Mϕ

and, for all h ∈ C([mϕ, Mϕ]),

(H1) lim
n→∞

1
n

n∑
k=1

h(λn
k ) =

1
2π

∫
T

h(ϕ(x))dx .

Under (H1), the asymptotic cumulant generating function is

L(t) = − 1
4π

∫
T

log(1− 2tϕ(x))dx

where t ∈ ∆ = {t ∈ R / 2 max(mϕt , Mϕt) < 1}.

Bernard Bercu University of Toulouse, France
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Large deviation principle

The Fenchel-Legendre dual of L is

I(c) = sup
t∈R

{
ct +

1
4π

∫
T

log(1 − 2tϕ(x))dx
}

.

Theorem (Bercu-Gamboa-Lavielle)

If (H1) holds, the sequence (Wn) satisfies an LDP with rate
function I. In particular, for all c > µ

lim
n→∞

1
n

log P(Wn > c) = −I(c).

with µ =
1

2π

∫
T

ϕ(x)dx.

Bernard Bercu University of Toulouse, France
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Sharp large deviation results

SLDP assumption. There exists H such that, for all t ∈ ∆

(H2) Ln(t) = L(t) +
1
n

H(t) + o
(1

n

)
where the remainder is uniform in t .

Theorem (Bercu-Gamboa-Lavielle)

Assume that (H1) and (H2) hold. Then, for all c > µ

P(Wn > c) =
exp(−nI(c) + H(tc))

σctc
√

2πn

[
1 + o(1)

]
where tc is given by L′(tc) = c and σ2

c = L′′(tc).
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Sharp large deviation results

SLDP assumption. For p > 1, there exists H ∈ C2p+3(R) such
that, for all t ∈ ∆ and for any 0 6 k 6 2p + 3

(H2(p)) L(k)
n (t) = L(k)(t) +

1
n

H(k)(t) +O
( 1

np+2

)

where the remainder is uniform in t .

Remark. Assumption (H2(p)) is not really restrictive. It is
fulfilled in many statistical applications.

Bernard Bercu University of Toulouse, France
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Theorem (Bercu-Gamboa-Lavielle)

For p > 1, assume that (H1) and (H2(p)) hold. Then, (Wn)
satisfies an SLDP of order p associated with L and H. For all
c > µ, it exists (dc,k ) such that for n large enough

P(Wn > c)

=
exp(−nI(c) + H(tc))

σctc
√

2πn

[
1 +

p∑
k=1

dc,k

nk
+ O

(
1

np+1

)]
.

Remark. The coefficients (dc,k ) may be given as functions of
the derivatives lk = L(k)(tc) and hk = H(k)(tc). For example,

dc,1 =
1
σ2

c

(
−h2

2
−

h2
1

2
+

l4
8σ2

c
+

l3h1

2σ2
c
−

5l23
24σ4

c
+

h1

tc
− l3

2tcσ2
c
− 1

t2
c

)
.
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Sum of squares

Our first statistical application is on the sum of squares

Wn =
1
n

n∑
k=1

X 2
k .

We recall that g ∈ L∞(T) is the spectral density of the centered
stationary real Gaussian process (Xn).

Theorem (Bryc-Dembo)

The sequence (Wn) satisfies an LDP with rate function I which
is the Fenchel-Legendre dual of

L(t) = −
1

4π

∫
T

log(1 − 2tg(x))dx.

Bernard Bercu University of Toulouse, France
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Sum of squares

We shall often make use of the integral

∆(f ) =
1

4π2

∫ ∫
T

(
log f (x) − log f (y)

sin((x − y)/2)

)2

dxdy .

Theorem (Bercu-Gamboa-Lavielle)
Assume that g > 0 on T and g admits an analytic extension on
the annulus Ar = {z ∈ C / r < |z| < r−1} with 0 < r < 1. Then,
(Wn) satisfies an SLDP associated with L and H where

H(t) =
1
2
∆(1 − 2tg).

Bernard Bercu University of Toulouse, France
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Neyman-Pearson

Let g0, g1 ∈ L1(T) be two spectral densities. We wish to test

H0 : 〈〈g = g0 〉〉 against H1 : 〈〈g = g1 〉〉.

For this simple hypothesis, the most powerful test is based on

Wn =
1
n

X (n)t
[
T−1

n (g0)− T−1
n (g1)

]
X (n).

LRT assumption.

(H3) log g0 ∈ L1(T) and
g0

g1
∈ L∞(T)

Bernard Bercu University of Toulouse, France
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Theorem (Bercu-Gamboa-Lavielle)

If (H3) holds, then under H0, (Wn) satisfies an LDP with
rate function I which is the Fenchel-Legendre dual of

L(t) = −
1

4π

∫
T

log
((1 − 2t)g1(x) + 2tg0(x)

g1(x)

)
dx.

Assume that g0, g1 > 0 on T and g0, g1 admit an analytic
extensions on the annulus Ar = {z ∈ C / r < |z| < r−1}
with 0 < r < 1. Then, under H0, (Wn) satisfies an SLDP
associated with L and H where

H(t) =
1
2

(
∆(g1) − ∆((1 − 2t)g1 + 2tg0)

)
.
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One can explicitly calculate L and H. For example, consider the
autoregressive process of order p. For all x ∈ T

g(x) =
σ2

|A(eix)|2

where A is a polynomial given by

A(eix) =

p∏
j=1

(1− ajeix)

with |aj | < 1. Then, we have
1

2π

∫
T

log g(x)dx = log σ2 and

∆(g) = −
p∑

j=1

p∑
k=1

log(1− ajak ).

Bernard Bercu University of Toulouse, France
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Neyman-Pearson
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Stable autoregressive process

Consider the stable autoregressive process

Xn+1 = θXn + εn+1, |θ| < 1

where (εn) is iid N (0, σ2), σ2 >0. If X0 is independent of (εn)
with N (0, σ2/(1− θ2)) distribution, (Xn) is a centered stationary
Gaussian process. For all x ∈ T

g(x) =
σ2

1 + θ2 − 2θ cos x
.

Bernard Bercu University of Toulouse, France
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Let θ̂n be the least squares estimator of the parameter θ

θ̂n =

n∑
k=1

Xk Xk−1

n∑
k=1

X 2
k−1

.

We have θ̂n −→ θ a.s. and
√

n(θ̂n − θ)
L−→ N (0, 1− θ2). One

can also estimate θ by the Yule-Walker estimator

θ̃n =

n∑
k=1

Xk Xk−1

n∑
k=0

X 2
k

.

Bernard Bercu University of Toulouse, France
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a =
θ −

√
θ2 + 8
4

and b =
θ +

√
θ2 + 8
4

.

Theorem (Bercu-Gamboa-Rouault)

(θ̂n) satisfies an LDP with rate function

J(x) =


1
2

log
(

1 + θ2 − 2θx
1− x2

)
if x ∈ [a, b],

log |θ − 2x | otherwise.

(θ̃n) satisfies an LDP with rate function

I(x) =


1
2

log
(

1 + θ2 − 2θx
1− x2

)
if x ∈]− 1, 1[,

+∞ otherwise.
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Least squares and Yule-Walker
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Yule-Walker

Theorem (Bercu-Gamboa-Lavielle)

The sequence (θ̃n) satisfies an SLDP. For all c ∈ R with c > θ
and |c| < 1, it exists a sequence (dc,k ) such that for any p > 1
and n large enough

P(θ̃n > c)=
exp(−nI(c) + H(c))

σctc
√

2πn

[
1+

p∑
k=1

dc,k

nk
+O

(
1

np+1

)]

tc =
c(1 + θ2)− θ(1− c2)

1− c2 , σ2
c =

1− c2

(1 + θ2 − 2θc)2 ,

H(c) = −1
2

log
(

(1− cθ)4

(1− θ)2(1 + θ2 − 2θc)(1− c2)2

)
.
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Explosive autoregressive process

Consider the explosive autoregressive process

Xn+1 = θXn + εn+1, |θ| > 1

where (εn) is iid N (0, σ2), σ2 >0. The Yule-Walker estimator
satisfies θ̃n −→ 1/θ a.s. together with

|θ|n
(
θ̃n −

1
θ

) L−→ (θ2 − 1)

θ2 C

where C stands for the Cauchy distribution.
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Explosive autoregressive process

Theorem (Bercu)

The sequence (θ̃n) satisfies an LDP with rate function

I(x) =



1
2

log
(

1 + θ2 − 2θx
1− x2

)
if x ∈]− 1, 1[, x 6= 1/θ,

0 if x = 1/θ,

+∞ otherwise.
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Theorem (Bercu)

The sequence (θ̃n) satisfies an SLDP. For all c ∈ R with
c > 1/θ and |c| < 1, it exists a sequence (dc,k ) such that for
any p > 1 and n large enough

P(θ̃n > c)=
exp(−nI(c) + H(c))

σctc
√

2πn

[
1+

p∑
k=1

dc,k

nk
+O

(
1

np+1

)]

tc =
(θc − 1)(θ − c)

1− c2 , σ2
c =

1− c2

(1 + θ2 − 2θc)2 ,

H(c) = −1
2

log
(

(θc − 1)2

(1 + θ2 − 2θc)(1− c2)

)
.
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Consider the stable Ornstein-Uhlenbeck process

dXt = θXtdt + dWt , θ < 0

where (Wt) is a standard Brownian motion. We establish
similar SLDP for the energy

ST =

∫ T

0
X 2

t dt ,

the maximum likelihood estimator of θ

θ̂T =

∫ T
0 Xt dXt∫ T
0 X 2

t dt
=

X 2
T − T

2
∫ T

0 X 2
t dt

,

and the log-likelihood ratio given, for θ0, θ1 < 0, by

WT = (θ0 − θ1)

∫ T

0
Xt dXt −

1
2
(θ2

0 − θ2
1)

∫ T

0
X 2

t dt .
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Stable Ornstein-Uhlenbeck process
Theorem (Bryc-Dembo)

The sequence (ST /T ) satisfies an LDP with rate function

J(x) =


(2θc + 1)2

8c
if c > 0,

+∞ otherwise.

Theorem (Florens-Pham)

The sequence (θ̂T ) satisfies an LDP with rate function

I(x) =

 −(c − θ)2

4c
if c < θ/3,

2c − θ otherwise.
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Stable Ornstein-Uhlenbeck process

Theorem (Bercu-Rouault)

The sequence (θ̂T ) satisfies an SLDP. For all θ < c < θ/3, it
exists a sequence (dc,k ) such that, for any p > 1 and T large
enough

P(θ̂T > c)=
exp(−TI(c) + H(c))

σctc
√

2πT

[
1+

p∑
k=1

dc,k

T k
+O

(
1

T p+1

)]

tc =
c2 − θ2

2c
, H(c) = −1

2
log
(

(c + θ)(3c − θ)

4c2

)
,

σ2
c = −1/2c. Similar expansion holds for c > θ/3 with c 6= 0.
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Stable Ornstein-Uhlenbeck process
Theorem (Bercu-Rouault)

For c = 0, it exists a sequence (bk ) such that, for any
p > 1 and T large enough

P(θ̂T > 0)=
exp(θT )

√
πT

√
−θ

[
1+

p∑
k=1

bk

T k
+O

(
1

T p+1

)]
.

For c = θ/3, it exists a sequence (dk ) such that, for any
p > 1 and T large enough

P(θ̂T > c)=
exp(−TI(c))

4πT 1/4τθ

1+

2p∑
k=1

dk

(
√

T )k
+O

(
1

T p
√

T

)
where τθ = (−θ/3)1/4/Γ(1/4).
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