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The symmetry in the martingale inequality
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Abstract

In this paper, we establish a martingale inequality and develop the symmetry argument to use this martingale
inequality. We apply this to the length of the longest increasing subsequences and the independence number
of sparse random graphs. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and main results

A common feature in many probabilistic arguments is to show that with high probability a random
variable is concentrated on its mean. The usual way to do this is via either the martingale inequality,
the isoperimetric inequality, or the log-Sobolev inequality. See Godbole and Hitczenko (1998), Janson
et al. (2000), McDiarmid (1997, 1989), Steele (1997), Talagrand (1995) and Vu (2001) for various
extensions and beautiful applications. In this paper, we establish a martingale inequality and develop
the symmetry argument to use this martingale inequality. We apply this to the length of the longest
increasing subsequences and the independence number of sparse random graphs.

To motivate the discussion below, let us begin with the well-known Azuma’s inequality. Given a
probability space (�;F; P) and a @ltration F0={∅; �} ⊂ F1 ⊂ · · · ⊂ Fn=F, an integrable random
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variable X ∈L1(�;F; P) can be written as

X − EX =
n∑

k=1

E(X |Fk)− E(X |Fk−1) :=
n∑

k=1

dk:

Here dk is a martingale diLerence. If there exist constants ck ¿ 0 such that |dk |6 ck a.s. for each
k6 n, then for every t¿ 0,

P(X ¿EX + t)6 exp
(
− t2

2
∑n

k=1 c
2
k

)
;

P(X 6EX − t)6 exp
(
− t2

2
∑n

k=1 c
2
k

)
:

The above result appears in Azuma (1967) and is often called Azuma’s inequality, although it was
actually earlier given by HoeLding (1963). In most applications, X is a function of n-independent
(possibly vector valued) random variables �1; �2; : : : ; �n and the @ltration is

Fk = �(�1; �2; : : : ; �k): (1.1)

In this case, we let {�′1; �′2; : : : ; �′n} be an independent copy of {�1; �2; : : : ; �n} and de@ne

Nk = X (�1; : : : ; �k−1; �k ; �′k+1; : : : ; �
′
n)− X (�1; : : : ; �k−1; �′k ; �

′
k+1; : : : ; �

′
n); (1.2)

dk = E(Nk |Fk): (1.3)

By de@nition, Nk is the change in the value of X resulting from a change only in one coordinate.
So, if |Nk |6 ck a.s., then |dk |6 ck a.s. and we can apply Azuma’s inequality to obtain a tail bound
for X . However, in many cases ck grows too rapidly that Azuma’s inequality does not provide any
reasonable tail bound. A detailed analysis on various problems in our paper shows that our Nk’s
are much smaller than ck most of the time and from this observation we can improve Azuma’s
inequality and obtain a reasonable tail bound for X . Our result is the following.

Theorem 1. Let X be an integrable random variable de:ned on a probability space (�;F; P)
which is in fact a function of n-independent random variables �1; �2; : : : ; �n. We de:ne Fk ; Nk ; dk
by (1.1)–(1.3). Assume that there exists a positive and :nite constant c such that for all k6 n

|Nk |6 c a:s: (1.4)

and there exist 0¡pk ¡ 1 such that for each k6 n

P(0¡ |Nk |6 c|Fk−1)6pk a:s: (1.5)

Then; for every t ¿ 0

P(X ¿EX + t)6 exp
(
− t2

2c2
∑n

k=1 pk + 2ct=3

)
; (1.6)

P(X 6EX − t)6 exp
(
− t2

2c2
∑n

k=1 pk + 2ct=3

)
: (1.7)
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Proof. We prove here (1.6) with c=1. From this one can easily get (1.6). The argument for (1.7) is
the same. Let Op=n−1 ∑n

k=1 pk and let g(x)=(ex−1− x)=x2 with g(0)= 1
2 . Since dk =E(Nk |Fk−1);

by Jensen’s inequality we have for any s¿ 0

E(esdk |Fk−1) = E(esE(Nk |Fk−1)|Fk−1)

6E(esNk |Fk−1)

= E(1 + sNk + s2N2
kg(sNk)|Fk−1):

Since g is increasing and since |Nk |6 1 a.s.; by (1.5) we have

E(esdk |Fk−1)6E(1 + sNk + s2N2
kg(sNk)|Fk−1)

6 1 + s2g(s)E(N2
k |Fk−1)

6 1 + s2g(s)pk

6 es
2g(s)pk a:s:

By Markov’s inequality; then we have for any s¿ 0

P(X ¿EX + t)6 e−stEes(X−EX )

6 e−stEes
∑ n

k=1 dk

6 e−stEes
∑ n−1

k=1 dkE(esdn |Fn−1)

6 e−stEes
∑ n−1

k=1 dkes
2g(s)pn

6 · · ·
6 e−stes

2g(s)
∑ n

k=1 pk

= e−st+(es−1−s)n Op:

Letting �(x) = (1 + x) log(1 + x) − x we note that �(x)¿ x2=(2(1 + x=3)). With the choice of
s= log(1 + t=n Op) we have then

P(X ¿EX + t)6 exp(−n Op�(t=n Op))

6 exp
(
− t2

2
∑n

k=1 pk + 2t=3

)
:

In this paper we show a way, we call a symmetry argument, to use this inequality to obtain a
reasonably good tail bound for X . More precisely, we show how to estimate the term

∑n
k=1 pk in

Theorem 1. In some cases this is easy. See Luczak and McDiarmid (2001) for an example. However,
in some other cases this is not an easy job at all. Actually, in his very beautiful survey McDiarmid
(1997) introduced Talagrand’s isoperimetric inequality by showing that the isoperimetric inequality
gives a reasonable tail bound for the longest increasing subsequence whereas the martingale inequality



86 S. Lee, Z. Su / Statistics & Probability Letters 56 (2002) 83–91

does not. We were suspicious about this and this was one of our motivations of this research. What
we @nd in this paper is that by the symmetry argument we can control the term

∑n
k=1 pk eLectively

and surprisingly by the above martingale inequality we can provide a comparable tail bound for
the longest increasing subsequence. In Section 2, we tell this story. In Section 3, we again use the
martingale inequality and the symmetry, and provide a tail bound for the independence number.
Compared to the isoperimetric inequality and the log-Sobolev inequality, the martingale inequality
is rather elementary. Therefore, if one knows the symmetry argument in this paper, in many cases
one can use the elementary martingale inequality to obtain a reasonably good tail bound.

2. The longest increasing subsequence

Consider the symmetric group Sn of permutations � on the numbers 1; 2; : : : ; n, equipped with the
uniform probability measure. Given a permutation � = (�(1); �(2); : : : ; �(n)), an increasing subse-
quence i1; i2; : : : ; ik is a subsequence of 1; 2; : : : ; n such that

i1¡i2¡ · · ·¡ik; �(i1)¡�(i2)¡ · · ·¡�(in):

We write Ln(�) for the length of the longest increasing subsequences of �. It turns out that
Ln provides an entry to a rich and diverse circle of mathematical ideas. The recent surveys
Aldous and Diaconis (1999), Deift (2000) are useful references for the properties of Ln, various
associated results and some of the history. We will present below only what we need for the proof of
Theorem 2.

Let Ui = (Xi; Yi), i = 1; 2; : : : ; n, be a sequence of iid uniform sample on the unit square [0; 1]2.
Ui1 ; Ui2 ; : : : ; Uik is called a monotone increasing chain of height k if

Xij ¡Xij+1 ; Yij ¡Yij+1 for j = 1; 2; : : : ; k − 1:

Note that by de@nition we do not require ij ¡ ij+1 and hence Ui1 ; Ui2 ; : : : ; Uik is in general not a
subsequence of U1; U2; : : : ; Un. De@ne Ln(U ) to be the maximum height of the chains in the sample
U1; U2; : : : ; Un.
A key observation, due to Hammersley (1972), is that Ln(�) has the same distribution as Ln(U ).

In fact, based on this equivalent formulation Hammersley (1972) @rst proved that there is a constant
c2 such that

Ln(�)√
n

→ c2 in probability and in mean:

The constant c2 is now known to be 2. See Aldous and Diaconis (1999) for details.
Our main result regarding the longest increasing subsequence is as follows.

Theorem 2. Given any �¿ 0; for all su@ciently large n and any t ¿ 0

P(|Ln(�)− ELn(�)|¿ t)6 2 exp
(
− t2

(16 + �)
√
n+ 2t=3

)
: (2.1)
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Remark. Talagrand (1995) @rst obtained as an application of his isoperimetric inequality that for
all t ¿ 0;

P(Ln¿Mn + t)6 2 exp
(
− t2

4(Mn + t)

)
; P(Ln6Mn − t)6 2 exp

(
− t2

4Mn

)
: (2.2)

where Mn denotes the median of Ln. Recently; Boucheron et al. (2000) used the log-Sobolev in-
equality to improve the Talagrand constants as follows:

P(Ln¿ELn + t)6 exp
(
− t2

2ELn + 2t=3

)
; P(Ln6ELn − t)6 exp

(
− t2

2ELn

)
: (2.3)

Comparing (2.1) with (2.2) and (2.3); and noting Mn=
√
n → 2 as n → ∞; our elementary martingale

argument provides the same order of bounds for Ln.

We also remark that Baik et al. (1999) proved that Var Ln ≈ n1=3 and (Ln − 2
√
n)=n1=6 converges

in distribution.

Proof. By Hammersley’s equivalent formulation it suRces to show that the theorem holds for Ln(U )
instead of Ln(�). Let {U ′

1; U
′
2; : : : ; U

′
n} be an independent copy of {U1; U2; : : : ; Un}. It is easy to see

that; letting

Nk = Ln(U1; : : : ; Uk−1; Uk ; U ′
k+1; : : : ; U

′
n)− Ln(U1; : : : ; Uk−1; U ′

k ; U
′
k+1; : : : ; U

′
n);

Nk takes values only +1; 0; and −1. Moreover; since E(Nk |Fk−1)= 0 where Fk−1 = �(U1; U2; : : : ;
Uk−1); we have

P(Nk =+1|Fk−1) = P(Nk =−1|Fk−1):

Denote by Aj the event that any of the highest chains of (U1; : : : ; Un) contains Uj. Since we are
only concerned with the relative position of Uj in the n sample points instead of the order; by
symmetry each Aj occurs with equal probability. Similarly; given U1; U2; : : : ; Uk−1; each Aj under the
point con@guration U1; : : : ; Uk−1; Uk ; U ′

k+1; : : : ; U
′
n occurs with equal probability for j= k; k +1; : : : ; n.

Therefore; since Nk =+1 implies that Ak happens; we have

P(Nk =+1|Fk−1)6P(Ak |Fk−1)

=
1

n− k + 1

n∑
j=k

P(Aj|Fk−1)

=
1

n− k + 1
E


 n∑

j=k

1(Aj)|Fk−1


 :

Note that
∑n

j=k 1(Aj) is just the number of points of (Uk; U ′
k+1; : : : ; U

′
n); which are common to any

highest chains of (U1; : : : ; Uk−1; Uk ; U ′
k+1; : : : ; U

′
n) and hence if we collect the points Uj or U ′

j with
1(Aj) = 1; this itself forms a chain. Therefore; by the de@nition of chain we have

E


 n∑

j=k

1(Aj)|Fk−1


6ELn−k+1(Uk; Uk+1; : : : ; Un) a:s:
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Letting pk = 2ELn−k+1(Uk; Uk+1; : : : ; Un)=(n− k + 1); we have

P(Nk =+1|Fk−1)6
1

n− k + 1
E


 n∑

j=k

1(Aj)|Fk−1




6
1

n− k + 1
ELn−k+1(Uk; Uk+1; : : : ; Un)

=
pk
2
:

Now we apply Theorem 1 to obtain

P(|Ln(U )− ELn(U )|¿ t)6 2 exp
(
− t2

4
∑n

k=1 ELk(U )=k + 2t=3

)
:

Since ELn(U )=
√
n → 2 as n → ∞, n−1=2 ∑n

k=1 ELk(U )=k → 4 and hence the theorem follows.

Next let us turn to the case of d-dimensional chains. Let Ui = (X 1
i ; X

2
i ; : : : ; X

d
i ), i = 1; 2; : : : ; n, be

a sequence of iid uniform sample on the unit cube [0; 1]d. Ui1 ; Ui2 ; : : : ; Uik is a monotone increasing
chain of height k if

X 1
ij ¡X 1

ij+1
; X 2

ij ¡X 2
ij+1
; : : : ; X d

ij ¡X d
ij+1

for j = 1; 2; : : : ; k − 1

De@ne Ln;d(U ) to be the maximum height of the chains in the sample U1; U2; : : : ; Un. By an ele-
mentary calculation BollobSas and Winkler (1988) proved that there is a constant cd such that

Ln;d(U )
n1=d

→ cd in probability and in mean

The exact values cd for d¿ 2 are not known. However, there is a conjecture on cd; cd=
∑d−1

k=0 1=k!.
See Steele (1995) for details. With ingenuity and endeavor, BollobSas and Brightwell (1992) inves-
tigated the speed of convergence of ELn;d(U )=n1=d to cd and the concentration of Ln;d(U ) about its
expectation by using the martingale inequality. Here is a better concentration bound. We skip its
proof which is the same as that of Theorem 2.

Theorem 3. Given any �¿ 0; for all su@ciently large n and any t ¿ 0

P(|Ln;d(U )− ELn;d(U )|¿ t)6 2 exp
(
− t2

4(dcd + �)n1=d + 2t=3

)
:

3. The independence number

Given a complete graph Kn and 0¡p¡ 1, we de@ne a random graph G(n; p) by selecting each
edge in Kn with probability p independently. More speci@cally, @rst we name the vertices in Kn by
k, 16 k6 n. Let Uij, 16 i¡ j6m, m = ( n2), be the independent uniform weight assigned to the
edge between i and j. Then, we keep the edges with U6p and remove the edges with U ¿p.
A subset A of vertices in Kn is independent in G(n; p) if no two vertices from A are adjacent in
G(n; p). The independence number $(G(n; p)) is the size of the largest independent set. We write
$n(p) for $(G(n; p)) below.
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For a @xed p, $n(p) is remarkably concentrated; there exists k = k(n; p) such that $n(p) = k or
k + 1 with high probability. See Shamir and Spencer (1987) for details. In this case, our method
does not produce any new result.

For p=s=n with s¿ 0 @xed, BollobSas and Thomason (1985) made very careful analysis of $n(s=n).
Let

f(s) = sup
{
&¿ 0: lim

n→∞P
(
$n

( s
n

)
¿&n

)
= 1

}
:

In the range 0¡s6 1, there is an explicit formula for f(s). Although the formula is far from being
pretty, it does enable one to compute particular values of f(s). In the range s¿ 1, there is a rather
weak low bound for f(s); f(s)¿ (s log s−s+1)=(s−1)2. These results directly imply that in sparse
random graphs the size of the largest independent sets is proportional to n, the size of the graph.
So, it is natural to believe that the limit of the rate E$n(s=n)=n exists. However, no rigorous proof is
available. Frieze (1990) proved that by a large deviation inequality of Talagrand-type, for any @xed
�¿ 0 and for suRciently large n¿ n0(�) and s¿ so(�)∣∣∣$n

( s
n

)
− ((s)n

∣∣∣6 �n
s

(3.1)

with high probability, and moreover∣∣∣E$n
( s
n

)
− ((s)n

∣∣∣6 �n
s
; (3.2)

where

((s) =
2
s
(log s− log log s− log 2 + 1):

However, his method cannot provide an explicit concentration inequality for the independence num-
ber. Here we apply Theorem 1 to obtain the following.

Theorem 4. Let $n= $n(s=n). Then; for any :xed �¿ 0 and for all su@ciently large n¿ n1(�) and
s¿ s1(�)

P(|$n − E$n|¿ t)6 2 exp
(
− t2

4(�+ (1− �)(((�s) + 1=s))n+ 2t=3

)
:

Remark. For large s this provides a much better tail bound than the bound obtained by simply
applying Azuma’s inequality. Boucheron et al. (2000) also obtained similar bounds for $n by using
the log-Sobolev inequality.

Proof. We use the vertex-expose martingale argument. First; we name the vertices in Kn by k; 16
k6 n. Let Uij; 16 i¡ j6m; m = ( n2); be the uniform weight assigned to the edge between i
and j and let {U ′

ij} be an independent copy of {Uij}. For each 16 k6 n; let G′
k(n; s=n) be the

random graph generated by replacing the weight U adjacent to the vertex k by U ′; and write
$(1; : : : ; k − 1; k ′; k + 1; : : : ; n) for the corresponding independence number. Then; we let

Nk = $(1; : : : ; k − 1; k; k + 1; : : : ; n)− $(1; : : : ; k − 1; k ′; k + 1; : : : ; n):
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It is easy to see that Nk takes only +1; 0; and −1. Moreover; since E(Nk |Fk−1) = 0 where Fk =
�(Uij; 16 i¡ j6 k); we have

P(Nk =+1|Fk−1) = P(Nk =−1|Fk−1):

Denote by Ak the event that any of the largest independent sets of G(n; s=n) contains the vertex k. By
symmetry; given Uij; 16 i¡ j6 k − 1; each Aj; k6 j6 n; occurs equally likely. More precisely;
for k6 j6 n

P(Ak |Fk−1) = P(Aj|Fk−1):

Thus; we have

P(Nk =+1|Fk−1)6P(Ak |Fk−1)

=
1

n− k + 1

n∑
j=k

P(Aj|Fk−1)

=
1

n− k + 1
E


 n∑

j=k

1(Aj)|Fk−1


 :

Note that
∑n

j=k 1(Aj) is just the number of vertices which are common to any largest independent
sets of G(n; s=n) and hence if we collect the vertices j with 1(Aj)=1; this forms an independent set
of the random graph on {k; k + 1; : : : ; n} where each edge appears with probability s=n. Therefore;
by the de@nition of the independent set we have

E


 n∑

j=k

1(Aj)|Fk−1


6E$n−k+1

( s
n

)
a:s:

Now a direct application of Theorem 1 gives

P(|$n − E$n|¿ t)6 2 exp
(
− t2

4
∑n

k=1 E$k(s=n)=k + 2t=3

)
: (3.3)

Given �¿ 0, in view of (3.2), for k¿ n0(1), �s¿ s0(1) we have∣∣∣E$k
(�s
k

)
)− ((�s)k

∣∣∣6 k
s
:

Thus, since $k(s=n)6 k, it easily follows that for all suRciently large n and s
n∑

k=1

E$k( sn)
k

=
∑
k6�n

E$k(s=n)
k

+
∑
k¿�n

E$k(s=n)
k

6 �n+
∑
k¿�n

E$k(�s=k)
k

6 �n+ (1− �)
(
((�s) +

1
s

)
n:

Now the theorem follows from (3.3).
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