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Abstract

In this paper, we establish a martingale inequality and develop the symmetry argument to use this martingale
inequality. We apply this to the length of the longest increasing subsequences and the independence number
of sparse random graphs. (©) 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and main results

A common feature in many probabilistic arguments is to show that with high probability a random
variable is concentrated on its mean. The usual way to do this is via either the martingale inequality,
the isoperimetric inequality, or the log-Sobolev inequality. See Godbole and Hitczenko (1998), Janson
et al. (2000), McDiarmid (1997, 1989), Steele (1997), Talagrand (1995) and Vu (2001) for various
extensions and beautiful applications. In this paper, we establish a martingale inequality and develop
the symmetry argument to use this martingale inequality. We apply this to the length of the longest
increasing subsequences and the independence number of sparse random graphs.

To motivate the discussion below, let us begin with the well-known Azuma’s inequality. Given a
probability space (2, Z, P) and a filtration #,={0,Q} C #, C --- C #,=7, an integrable random
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variable X € L'(Q, #,P) can be written as

X —EX = ZE(X]%) — E(X|Fy_1):=) dy.
k=1 k=1

Here d) is a martingale difference. If there exist constants ¢; > 0 such that |dy| < ¢ a.s. for each
k < n, then for every ¢t > 0,

2
P(X > EX +1) < exp(— :
23 Clzc

t2

The above result appears in Azuma (1967) and is often called Azuma’s inequality, although it was
actually earlier given by Hoeffding (1963). In most applications, X is a function of n-independent

(possibly vector valued) random variables &1, &, ..., &, and the filtration is
‘97/(:0(617527"'55]()' (11)
In this case, we let {&],&,..., &} be an independent copy of {&,&s,...,&,} and define
Ak :X(ila ) ék—la ék’ 5;(4»]1 sy é:,) _X(éla' LR ék—ls é;(’ é;(+]’ ) 5:1)9 (12)
di = E(A|Z ). (1.3)

By definition, A; is the change in the value of X resulting from a change only in one coordinate.
So, if |Ag] < ¢ as., then |dy| < ¢ a.s. and we can apply Azuma’s inequality to obtain a tail bound
for X. However, in many cases ¢, grows too rapidly that Azuma’s inequality does not provide any
reasonable tail bound. A detailed analysis on various problems in our paper shows that our Aj’s
are much smaller than ¢; most of the time and from this observation we can improve Azuma’s
inequality and obtain a reasonable tail bound for X. Our result is the following.

Theorem 1. Let X be an integrable random variable defined on a probability space (2, ,P)
which is in fact a function of n-independent random variables &,,&,,...,¢E,. We define Fy, Ay, dy
by (1.1)—(1.3). Assume that there exists a positive and finite constant ¢ such that for all k < n

|Ak| < c as. (1.4)
and there exist 0 < p; < 1 such that for each k < n

PO < |A¢] < c|Fi—1) < pr as. (1.5)
Then, for every t >0

PX ZEX +1t) < exp( (1.6)

2c2 Zk . pk + 2ct/3>

P(X<EX—t)<exp< (1.7)

2¢2 0 Pr —|—20t/3>
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Proof. We prove here (1.6) with c=1. From this one can easily get (1.6). The argument for (1.7) is
the same. Let p=n""'3"7_, pr and let g(x)=(e* — 1 —x)/x* with g(0)= % Since dy =E(A¢|F k1),
by Jensen’s inequality we have for any s > 0

E(esdk |g;k_] ) _ E(esE(Ak|ﬁk_])|g7k_l )
< E(™|F-)

= E(1 + sA; + S*A2g(sA)| Fr1).
Since ¢ is increasing and since |A;| < 1 a.s., by (1.5) we have

E(Fi-1) < E(1+ sA + 5 Alg(sA0)| Fi-1)
<14 5°9()E(AF|Fx-1)
< 1+5°g(s) pr

< e IO g,
By Markov’s inequality, then we have for any s > 0
P(X > EX +1) < e YESW Y

—st P
< e e Xk i

n—1
< e VEe Zint hE (e’

'9771—1)

-1 2
e S Fe’ Yol di S 9()Pn

VAN

N

< Oy

_ e—st+(e —1 —s)np'

Letting ¢(x) = (1 + x)log(1 + x) — x we note that ¢(x) = x?>/(2(1 + x/3)). With the choice of
s =log(1 + t/np) we have then

P(X > EX +t) < exp(—npd(t/np))

2
< exp| — - .
p( 23 Pk+2t/3>

In this paper we show a way, we call a symmetry argument, to use this inequality to obtain a
reasonably good tail bound for X. More precisely, we show how to estimate the term )/ _, py in
Theorem 1. In some cases this is easy. See Luczak and McDiarmid (2001) for an example. However,
in some other cases this is not an easy job at all. Actually, in his very beautiful survey McDiarmid
(1997) introduced Talagrand’s isoperimetric inequality by showing that the isoperimetric inequality
gives a reasonable tail bound for the longest increasing subsequence whereas the martingale inequality
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does not. We were suspicious about this and this was one of our motivations of this research. What
we find in this paper is that by the symmetry argument we can control the term > ;_, pi effectively
and surprisingly by the above martingale inequality we can provide a comparable tail bound for
the longest increasing subsequence. In Section 2, we tell this story. In Section 3, we again use the
martingale inequality and the symmetry, and provide a tail bound for the independence number.
Compared to the isoperimetric inequality and the log-Sobolev inequality, the martingale inequality
is rather elementary. Therefore, if one knows the symmetry argument in this paper, in many cases
one can use the elementary martingale inequality to obtain a reasonably good tail bound.

2. The longest increasing subsequence

Consider the symmetric group S, of permutations 7 on the numbers 1,2,...,n, equipped with the
uniform probability measure. Given a permutation n = (7(1),7(2),...,7(n)), an increasing subse-
quence iy,16,...,i is a subsequence of 1,2,...,n such that

h<h<---<i, n(i))<mnli)<---<mn(iy).

We write L,(n) for the length of the longest increasing subsequences of =m. It turns out that
L, provides an entry to a rich and diverse circle of mathematical ideas. The recent surveys
Aldous and Diaconis (1999), Deift (2000) are useful references for the properties of L,, various
associated results and some of the history. We will present below only what we need for the proof of
Theorem 2.
Let U;=(X;,Y;), i=1,2,...,n, be a sequence of iid uniform sample on the unit square [0, 172
U, U,,..., U, is called a monotone increasing chain of height & if
X, <X

lj+19

Y, <Y

Lj+1

for j=1,2,...,k— 1.

Note that by definition we do not require i; <i;;; and hence U;,U,,...,U, is in general not a
subsequence of Uy, Us, ..., U,. Define L,(U) to be the maximum height of the chains in the sample
U,U,,...,U,.

A key observation, due to Hammersley (1972), is that L,(w) has the same distribution as L,(U).
In fact, based on this equivalent formulation Hammersley (1972) first proved that there is a constant
¢y such that

Ly(n)
\/ﬁ

The constant ¢, is now known to be 2. See Aldous and Diaconis (1999) for details.
Our main result regarding the longest increasing subsequence is as follows.

— ¢; in probability and in mean.

Theorem 2. Given any ¢ > 0, for all sufficiently large n and any t > 0

2
P(|L,(n) — EL,(n)| > t) < 2exp<—(16 n S)Z\/ﬁ n 2t/3) . (2.1)
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Remark. Talagrand (1995) first obtained as an application of his isoperimetric inequality that for
all t > 0,

2 2
P(L, > M, <2 -, P(L, <M, — 2 - 2.2
( +1) eXp( 4(M,,+t)> ( 1) < eXP( 4M> (2.2)

where M, denotes the median of L,. Recently, Boucheron et al. (2000) used the log-Sobolev in-
equality to improve the Talagrand constants as follows:

t2 t2

Comparing (2.1) with (2.2) and (2.3), and noting M, /y/n — 2 as n — oo, our elementary martingale
argument provides the same order of bounds for L,.

We also remark that Baik et al. (1999) proved that VarL, ~ n'/* and (L, — 2+/n)/n"/® converges
in distribution.

Proof. By Hammersley’s equivalent formulation it suffices to show that the theorem holds for L,(U)
instead of L,(n). Let {U{,U,,...,U/} be an independent copy of {U;, U,,...,U,}. It is easy to see
that, letting

A =L,(Upy..., U1, U, Up gy oo Uy — Ly(Un, o U, UL UL, U,

Ay takes values only +1,0, and —1. Moreover, since E(Ag|ZF;—1)=0 where F;_; = a(U;, Uy,..
Ur_1), we have

o

P(Ap = +1|F 1) = P(Ay = —1|F ).

Denote by 4; the event that any of the highest chains of (Uj,...,U,) contains U;. Since we are
only concerned with the relative position of U; in the n sample points instead of the order, by
symmetry each 4; occurs with equal probability. Similarly, given U;, Ua, ..., Us_1, each 4; under the
point configuration U, ..., Us—1, Uy, U/,,..., U, occurs with equal probability for j=kk+1,...,n
Therefore, since A; = +1 implies that 4; happens, we have

P(Ap =+1|Fk—1) < P(A| F - 1)

- k+1ZP(A 1Fi1)

= k+1 Zl(A)!fM

Note that > 7, 1(4;) is just the number of points of (U, Uy,s..., U,), which are common to any
highest chains of (U, ..., Us—1, Ui, U/,,,..., U,) and hence if we collect the points U; or U]’ with
1(4;) = 1, this itself forms a chain. Therefore, by the definition of chain we have

Zl(Aj)’g;k—l < ELy 11(Uk, Upyr, ..., Uy) as.
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Letting py =2EL,—;1(Up, Uity ..., Uy)/(n — k + 1), we have

PA=HF) < s —F Zl(A )| F i

1
n—k+1
Pk
ER
Now we apply Theorem 1 to obtain

2
P(ILy(U) — ELy(U)| > 1) < 2exp <_4Z” ELkiU)/k + 2t/3> '
k=1

Since EL,(U)/\/n — 2 as n — oo, n= 23"} _| ELi(U)/k — 4 and hence the theorem follows. [

ELn—k+l(Uk7 Uk+1; LR Un)

Next let us turn to the case of d-dimensional chains. Let U; = (Xil,X,-z,...,Xid), i=1,2,...,n, be

a sequence of iid uniform sample on the unit cube [0, l]d. U, U,,..., U, is a monotone increasing
chain of height & if

Xo <X) X2 <XZ . X! <X

ij1° [jp12°° iyl forjzl,z,...,k—l
Define L, ,(U) to be the maximum height of the chains in the sample Uj, U,,...,U,. By an ele-
mentary calculation Bollobas and Winkler (1988) proved that there is a constant ¢, such that

nlid

— ¢4 in probability and in mean

The exact values ¢; for d > 2 are not known. However, there is a conjecture on c4; ¢y = Z;(} 1/k!.
See Steele (1995) for details. With ingenuity and endeavor, Bollobas and Brightwell (1992) inves-
tigated the speed of convergence of EL, 4(U)/n" to ¢4 and the concentration of L, 4(U) about its
expectation by using the martingale inequality. Here is a better concentration bound. We skip its
proof which is the same as that of Theorem 2.

Theorem 3. Given any ¢ > 0, for all sufficiently large n and any t > 0

t2
P(Lna(U) = EL, o(U)| > 1) < 2exp( — .
((Lna(U) = ELpa(U)| = 1) exp( 4(dcd+8)n1/d+2t/3>

3. The independence number

Given a complete graph K, and 0 < p < 1, we define a random graph G(n, p) by selecting each
edge in K, with probability p independently. More specifically, first we name the vertices in K, by
k, 1 <k <n. Let Uj, 1 <i<j<m, m=(}), be the independent uniform weight assigned to the
edge between i and j. Then, we keep the edges with U < p and remove the edges with U > p.
A subset .o/ of vertices in K, is independent in G(n, p) if no two vertices from .o/ are adjacent in
G(n, p). The independence number a(G(n, p)) is the size of the largest independent set. We write

o,(p) for a(G(n, p)) below.
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For a fixed p, o,(p) is remarkably concentrated; there exists k£ = k(n, p) such that o,(p) =k or
k + 1 with high probability. See Shamir and Spencer (1987) for details. In this case, our method
does not produce any new result.

For p=s/n with s > 0 fixed, Bollobas and Thomason (1985) made very careful analysis of «,(s/n).
Let

f(s)=-sup {ﬁ > 0: n&rgoP (ocn (%) >ﬁn> = 1}.

In the range 0 < s < 1, there is an explicit formula for f(s). Although the formula is far from being
pretty, it does enable one to compute particular values of f(s). In the range s > 1, there is a rather
weak low bound for f(s); f(s) = (slogs—s+1)/(s—1)>. These results directly imply that in sparse
random graphs the size of the largest independent sets is proportional to n, the size of the graph.
So, it is natural to believe that the limit of the rate Ew,(s/n)/n exists. However, no rigorous proof is
available. Frieze (1990) proved that by a large deviation inequality of Talagrand-type, for any fixed
¢ > 0 and for sufficiently large n = ng(¢) and s = s,(¢)

0 (2) = p(sm

with high probability, and moreover

<& (3.1)
A

‘Eocn (%) _ y(s)n‘ < %” 3.2)

where
2
(s)= g(logs —loglogs —log2 + 1).

However, his method cannot provide an explicit concentration inequality for the independence num-
ber. Here we apply Theorem 1 to obtain the following.

Theorem 4. Let o, =o,(s/n). Then, for any fixed ¢ > 0 and for all sufficiently large n = ni(¢) and
s = s1(¢)

[2
P(joy = Eo| > 1) < 2exp <_4(s + (1= &)(p(es) + 1/s))n + 2’/3> '

Remark. For large s this provides a much better tail bound than the bound obtained by simply
applying Azuma’s inequality. Boucheron et al. (2000) also obtained similar bounds for o, by using
the log-Sobolev inequality.

Proof. We use the vertex-expose martingale argument. First, we name the vertices in K, by £, 1 <
k<n. Let Uj, 1 <i<j<m, m=(}), be the uniform weight assigned to the edge between i
and j and let {U];} be an independent copy of {Uj}. For each 1 <k <n, let G;(n,s/n) be the
random graph generated by replacing the weight U adjacent to the vertex k by U’, and write

o(l,....,k — 1,k .,k +1,...,n) for the corresponding independence number. Then, we let

Ap=ofl,....k—Lkk+1,....n)—a(l,....k— Lk k+1,...,n).
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It is easy to see that A; takes only +1,0, and —1. Moreover, since E(A;|F;—1) =0 where F; =
a(Uy,1 <i<j<k), we have

P(Ay = +1F_1) = P(Ap = —1|F ).

Denote by A, the event that any of the largest independent sets of G(n,s/n) contains the vertex k. By
symmetry, given Uj;, 1 <i<j <k —1, each 4;, k < j <n, occurs equally likely. More precisely,
fork<j<n

P(Ax|F k1) = P(A;| F4—1).
Thus, we have

P(Ay =+1|F 1) < P(A| F - 1)

= n_k+IZP(A | Fio1)

n

1

= F 1(A4)| 7 —
n—k+1 jzk(1)|kl

Note that Z;?:k 1(4;) is just the number of vertices which are common to any largest independent
sets of G(n,s/n) and hence if we collect the vertices j with 1(4;) =1, this forms an independent set
of the random graph on {k,k + 1,...,n} where each edge appears with probability s/n. Therefore,
by the definition of the independent set we have

El(Aj)]ﬁk_l < Eotyjyq <£> a.s.
n
j=k

Now a direct application of Theorem 1 gives

2
P(|o, — Eoiy| = 1) < 2exp<—4ZZ lEock(s/n)/k+2t/3> . (3.3)

Given ¢ > 0, in view of (3.2), for k& = no(1), &s = so(1) we have
‘Eock <%S)) — y(as)k’ < -
Thus, since ax(s/n) < k, it easily follows that for all sufficiently large » and s

E": Eoc;;c(fq) _ Z Eakis/n) N Z Eockl({s/n)

k=1 k<en k>en

<t 3 EBEH)

k>en

<en+(1—¢) <y(ss)+;> n

Now the theorem follows from (3.3). O
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