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Abstract

The consistency problems of the least-squares estimator �n for parameter � in nonlinear regression model
are resolved perfectly. Assuming that the tth absolute moments of the model errors are 'nite, for t¿ 2 and
the errors satisfy general dependent conditions, we obtain the same probability inequality as that in Ivanov
(Theory Probab. Appl. 21 (1976) 557) which has independent identically distributed errors; for 1¡t¡ 2, we
'rst obtain weak consistency and weak consistency rate of �n.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

For the consistency problem of the least-squares (LS) estimator �n for unknown parameter � in
nonlinear regression model, because it has widen statistic applied background, it has been studied by
many statisticians since the 1970s. Ivanov (1976) obtained a probability inequality of deviation for �n

from the true parameter � when the model errors {�n} is independent identically distributed (i.i.d.),
E|�n|t ¡∞ for some integer t¿ 2. Prakasa Rao (1984) generalized the result to the case when
{�n} is ’-mixing or strong mixing sequences, but the assumptions for the moment and the mixing
coe=cients of {�n} are somewhat strict. Recently, Hu (2002) obtained the strong consistency and
strong consistency rate of �n when the errors satisfy general dependent conditions and supnE|�n|t ¡∞
for some t ¿ 2. So far as I have known, there are following unsolved problems: (1) Whether �n are
the consistent estimators when E(�2n) =∞? (2) Whether the result of Ivanov (1976) still holds true
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when {�n} is dependent and supnE|�n|2 ¡∞? We give a de'nite answer to the problems by using
theory of stochastic process and the model structure.

Consider the nonlinear regression model

Xn = gn(�) + �n; n¿ 1; (1.1)

where {gn(�)} is a known sequence of continuous functions possibly nonlinear in �∈�, a closed
interval on the real line, {�n} is a zero mean random error. Let

Qn(�) =
1
n

n∑
i=1

w2
i (Xi − gi(�))2; (1.2)

where {wi} is a known sequence of positive numbers. An estimator �n is said to be a LS estimator
of � if it satis'es

Qn(�n) = inf
�∈�

Qn(�): (1.3)

Note that gn(�) are continuous functions de'ned on compact set �, Lemma 3.3 of Schmetterer
(1974) shows that there exists a Borel measurable map �n(x) : Rn → �, such that Qn(�n(x)) =
inf �∈�Qn(�). In the following we consider this measurable version as the LS estimator �n. Let �0
be the true parameter and suppose �0 ∈ Interior of �. Ivanov (1976) obtained the following result
when the errors �n are i.i.d. and wi ≡ 1 (cf. MacNeill and Umphrey, 1987, p. 144):

Theorem A. Suppose that �n are i.i.d. random variables with E|�1|t ¡∞ for some integer t¿ 2.
Further suppose that there exist 0¡k16 k2 ¡∞ such that

nk1(�1 − �2)26
n∑

i=1

(gi(�1)− gi(�2))26 nk2(�1 − �2)2; (1.4)

for all �1; �2 ∈� and for all n¿ 1. Then there exists a constant c¿ 0 independent of n and �
such that

P(n1=2|�n − �0|¿�)6 c�−t ; (1.5)

for every �¿ 0 and for all n¿ 1.

Prakasa Rao (1984) generalized the result to the case when �n are mixing sequences not necessarily
identically distributed.

Theorem B. Suppose {�n} is a ’-mixing sequence satisfying the following condition:

(A1) E�n = 0; supnE(�
4
n)¡∞,

(A2)
∑∞

i=1(i + 1)(’(i))1=4 ¡∞,
(A3) there exist constants k1 ¿ 0; k2 ¡∞ such that k1(�1 − �2)26 1

n

∑n
i=1 w

2
i (gi(�1)− gi(�2))26

k2(�1 − �2)2,
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for all n¿ 1 and �1; �2 ∈�;

(A4) supn{wn}=O(1):

Then, there exists a constant c¿ 0 such that

P(n1=2|�n − �0|¿�)6 c�−4; (1.6)

for every �¿ 0 and for all n¿ 1.
Suppose that there exists �¿ 0 such that

(A1)′ E�n = 0; supnE|�n|4+2� ¡∞,

(A2)′
∑∞

i=1(i + 1)(�(i))�=(4+�) ¡∞.

Prakasa Rao (1984) pointed that (1.6) still holds if {�n} is a strong mixing sequence under the
conditions (A1)′; (A2)′, (A3) and (A4).

Considering the applications of the model (1.1), we generalized Theorem A to the case when
{�n} is dependent. Assuming that the tth absolute moments of �n are 'nite. For t¿ 2 and the �n
satisfy general dependent conditions, we obtain the same probability inequality as that in Ivanov
(1976) which has i.i.d. errors, and this improves the result of Prakasa Rao (1984). When E(�2n)=∞,
whether there are similar results or not, we have not seen it in the references. For 1¡t¡ 2, we
'rst obtain the result which is similar to (1.5) and give the weak consistency and weak consistency
rate of �n.

In this paper, we assume that C1; C2; : : : ; C; k1; k2; : : : ; C1(t); C2(t); : : : ; C(t) are some positive con-
stants (not necessarily always the same) independent of n; �; �.

Lemma 1.1. (cf. Strook and Varadhan, 1979, p. 49). Let (E;F; P) be a probability space and
� : [0;∞)×E → Rd a B[0;∞ ×F measurable function such that �(·; q) is continuous for all q∈E.
If for each T ¿ 0 there exist numbers �= �T ¿ 0; r = rT ¿ 0 and C = CT ¡∞ such that

E|�(t)− �(s)|r6C|t − s|1+�; ∀ 06 s; t6T; (1.7)

then for any  =  T ∈ (2; 2 + �T ) and !¿ 0,

P
(

sup
06s¡t6T

|�(t)− �(s)|
|t − s|" ¿

8 
 − 2

(4!)1=r
)
6

CA
!

; (1.8)

where

" = "T =
 T−2

rT
; A= AT =

∫ T

0

∫ T

0
|t − s|1+�− ds dt:

Lemma 1.2. Let ($;F; P) be a probability space, [T1; T2] be a closed interval on the real line,
V (�) = V (!; �)(�∈ [T1; T2]; !∈$) be a random process such that V (!; �) is continuous for all
!∈$. If there exist numbers �¿ 0; r ¿ 0 and C = C(T1; T2)¡∞ such that,

E|V (�1)− V (�2)|r6C|�1 − �2|1+�; ∀ �1; �2 ∈ [T1; T2]; (1.9)
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then for any �¿ 0; a¿ 0; �0; �0 + �∈ [T1; T2];  ∈ (2; 2 + �),

P

(
sup

�06�1 ;�26�0+�
|V (�1)− V (�2)|¿ a

)

6
8C

(�−  + 2)(�−  + 3)

(
8 

 − 2

)r ��+1

ar : (1.10)

Proof. Consider V (�); �∈ [�0; �0 + �] ⊂ [T1; T2]. we de'ne Ṽ (�) = V (� + �0); 06 �6 �, then Ṽ (�)
is still a continuous function of � for all !∈$, and (1.9) implies that

E|Ṽ (�1)− Ṽ (�2)|r6C|�1 − �2|1+�; ∀ 06 �1; �26 �: (1.11)

Since

sup
06�1 ;�26�

|Ṽ (�1)− Ṽ (�2)| = sup
06�1¡�26�

( |Ṽ (�1)− Ṽ (�2)|
|�1 − �2|" |�1 − �2|"

)

6 sup
06�1¡�26�

|Ṽ (�1)− Ṽ (�2)|
|�1 − �2|" �";

if we take T = �; rT = r; �T = �;  ∈ (2; 2 + �); "= ( − 2)=r; != 1
4(a( − 2)=(8 �"))r in Lemma 1.1,

then

P

(
sup

�06�1 ;�26�0+�
|V (�1)− V (�2)|¿ a

)
= P

(
sup

�06�1 ;�26�0+�
|Ṽ (�1 − �0)− Ṽ (�2 − �0)|¿ a

)

=P

(
sup

06�1 ;�26�
|Ṽ (�1)− Ṽ (�2)|¿ a

)
6P

(
sup

06�1¡�26�

|Ṽ (�1)− Ṽ (�2)|
|�1 − �2|" ¿ a�−"

)

=P
(

sup
06�1¡�26�

|Ṽ (�1)− Ṽ (�2)|
|�1 − �2|" ¿

8 
 − 2

(4!)1=r
)

6
CA
!

= 4CA
(

8 
 − 2

)r � −2

ar ; (1.12)

where

A=
∫ �

0

∫ �

0
|u− s|1+�− ds du=

1
2 + �−  

∫ �

0
(u2+�− + (�− u)2+�− ) du

=
2��+3− 

(�−  + 2)(�−  + 3)
(1.13)

and (1.10) follows from (1.12) and (1.13).
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Lemma 1.3. (cf. Hall and Heyde, 1980, p. 23). If {Si;Fi ; 16i6n} is a martingale and 1¡p¡∞,
then there exist constants c1 and c2 depending only on p such that

c1E

(
n∑

i=1

X 2
i

)p=2

6E|Sn|p6 c2E

(
n∑

i=1

X 2
i

)p=2

; (1.14)

where X1 = S1 and Xi = Si − Si−1; 26 i6 n.

2. Main result

Theorem 2.1. Consider the nonlinear regression model (1.1), suppose that there exist positive
constants c1; c2; c3; c4, such that

c1|�1 − �2|6 |gi(�1)− gi(�2)|6 c2|�1 − �2|; (2.1)

for all �1; �2 ∈� and for all i¿ 1,

c36wi6 c4; ∀ i¿ 1: (2.2)

Further suppose that {�n} satis3es the conditions: there exists t ∈ (1; 2] such that supnE|�n|t ¡∞,
and for any real number sequence {cni} there exists positive constant C1(t) such that

E

∣∣∣∣∣
n∑

i=1

cni�i

∣∣∣∣∣
t

6C1(t)
n∑

i=1

|cni|t ; ∀ n¿ 1: (2.3)

Then, there exists a constant C(t), such that

P(n1=2|�n − �0|¿�)6C(t)n1−t=2�−t ; (2.4)

for every �¿ 0 and for all n¿ 1.

Proof. Let

 n(�1; �2) =
1
n

n∑
i=1

w2
i (gi(�1)− gi(�2))2; (2.5)

Vn(�) =
1

n1=2

n∑
i=1

�i(gi(�)− gi(�0)); (2.6)

Un(�) =
Vn(�)

n1=2 n(�; �0)
; � �= �0; (2.7)

for simplicity, we will assume that wi ≡ 1, the general case follows from similar arguments in view
of (2.2). By (2.1) we have

c21(�1 − �2)26  n(�1; �2)6 c22(�1 − �2)2; (2.8)
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for all �1; �2 ∈� and for all n¿ 1. By (2.8) and the proof of Theorem 2.1 of Hu (2002), we know
that

P(n1=2|�n − �0|¿�)6P

(
sup

|�−�0|¿�
|Un(�)|¿ 1

2

)

+P

(
sup

�n−1=2¡|�−�0|6�
|Un(�)|¿ 1

2

)
; (2.9)

P

(
sup

|�−�0|¿�
|Un(�)|¿ 1

2

)
6P

(
sup

|�−�0|¿�

|Vn(�)|
n1=2 1=2

n (�; �0)
¿

1
2
c1�

)
: (2.10)

Notice that 1¡t6 2, thus by Cr inequality, (2.1) and (2.8) we obtain∣∣∣∣∣ Vn(�)

n1=2 1=2
n (�; �0)

∣∣∣∣∣
t

=

∣∣∣∣∣1n
n∑

i=1

�i

(
gi(�)− gi(�0)

 1=2
n (�; �0)

)∣∣∣∣∣
t

6
1
nt n

t−1
n∑

i=1

|�i|t |gi(�)− gi(�0)|t
 t=2
n (�; �0)

6
C(t)
n

n∑
i=1

|�i|t ; ∀ � �= �0; (2.11)

therefore by (2.10), (2.11), Markov’s inequality and supnE|�n|t ¡∞, we get

P

(
sup

|�−�0|¿�
|Un(�)|¿ 1

2

)
6P

(
C(t)
n

n∑
i=1

|�i|t¿
(
1
2
c1�
)t
)

6
(

2
c1�

)t C(t)
n

n∑
i=1

E|�i|t6C1(t)�−t : (2.12)

Let

�(m) = �0 +
�

n1=2
+

m�
[n1=2]

;

�m = �(m)− �0; for m= 0; 1; · · · ; [n1=2]:
Then by (2.8) and the proof of Theorem 2.1 of Hu (2002) we know that

P

(
sup

�n−1=2¡�−�06�
|Un(�)|¿ 1

2

)

6
[n1=2]−1∑
m=0

P

(
sup

�m6�−�06�m+1

|Vn(�)|¿ 1
2
c21�

2
mn

1=2

)
; (2.13)
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P

(
sup

�m6�−�06�m+1

|Vn(�)|¿ 1
2
c21�

2
mn

1=2

)

6P
(
|Vn(�(m))|¿ 1

4
c21�

2
mn

1=2

)

+P

(
sup

�(m)6�1 ;�26�(m+1)
|Vn(�2)− Vn(�1)|

¿
1
4
c21�

2
mn

1=2

)
: (2.14)

Notice that

Vn(�(m)) =
1

n1=2

n∑
i=1

�i(gi(�(m))− gi(�0));

Vn(�2)− Vn(�1) =
1

n1=2

n∑
i=1

�i(gi(�2)− gi(�1));

and by Markov’s inequality, (2.1) and (2.3), we get

P
(
|Vn(�(m))|¿ 1

4
c21�

2
mn

1=2

)
6
(

4
c21�2

mn1=2

)t

E

∣∣∣∣∣ 1
n1=2

n∑
i=1

�i(gi(�(m))− gi(�0))

∣∣∣∣∣
t

6C1(t)�−2t
m n−t

n∑
i=1

|gi(�(m))− gi(�0)|t

6C2(t)�−2t
m n1−t|�(m)− �0|t = C2(t)�−t

m n1−t ; (2.15)

E|Vn(�2)− Vn(�1)|t6C1(t)n−t=2
n∑

i=1

|gi(�2)− gi(�1)|t

6C2(t)n1−t=2|�2 − �1|t , C(n; t)|�2 − �1|t ; (2.16)

for all �1; �2 ∈� and for all n¿ 1. If we take r = t = 1 + �; C = C(n; t); �= �=[n1=2]; a= 1
4c

2
1�

2
mn

1=2;
 ∈ (2; t + 1) in Lemma 1.2, then

P

(
sup

�(m)6�1 ;�26�(m+1)
|Vn(�2)− Vn(�1)|¿ 1

4
c21�

2
mn

1=2

)

=P

(
sup

�(m)6�1 ;�26�(m)+�=[n1=2]
|Vn(�2)− Vn(�1)|¿ 1

4
c21�

2
mn

1=2

)
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6
8C2(t)n1−t=2

(t + 1−  )(t + 2−  )

(
8 

 − 2

)t ( �
[n1=2]

)t ( 4
c21�2

mn1=2

)t

6C3(t)�tn1−3t=2�−2t
m : (2.17)

Notice that �0 = �n−1=2, �m ¿m�n−1=2, and combining (2.13)–(2.15), (2.17), we obtain that

P

(
sup

�n−1=2¡�−�06�
|Un(�)|¿ 1

2

)
6

[n1=2]−1∑
m=0

(
C2(t)�−t

m n1−t + C3(t)�tn1−3t=2�−2t
m

)

6
C2(t)

nt=2−1�t +
C3(t)

nt=2−1�t +
1

nt=2−1�t

[n1=2]−1∑
m=1

(
C2(t)
mt +

C3(t)
m2t

)

6C4(t)n1−t=2�−t : (2.18)

Similarly we can get

P

(
sup

�n−1=2¡�0−�6�
|Un(�)|¿ 1

2

)
6C5(t)n1−t=2�−t ; (2.19)

and (2.4) follows from (2.9), (2.12), (2.18) and (2.19).

3. The application of Theorem 2.1

Using Theorem 2.1, we can get weak consistency and weak consistency rate of �n when the �n
are some dependent sequences.

Theorem 3.1. Consider the nonlinear regression model (1.1), we assume that conditions (2.1) and
(2.2) are satis3ed and the {�n} is independent or a martingale di5erence sequence, there exists
t ∈ (1; 2] such that supnE|�n|t ¡∞, then (2.4) holds.

Proof. Since independent random sequence {�n} with zero mean is a martingale diOerence sequence,
we only need to prove (2.4) for a martingale diOerence sequence. Assume that {�n} is a martingale
diOerence sequence, then it is easy to see that {cni�i; i = 1; 2; · · · ; n} is also a martingale diOerence
sequence. Thus by Lemma 1.3, Cr inequality and supnE|�n|t ¡∞, we have

E

∣∣∣∣∣
n∑

i=1

cni�i

∣∣∣∣∣
t

6C(t)E

(
n∑

i=1

(cni�i)2
)t=2

6C(t)
n∑

i=1

|cni|tE|�i|t6C1(t)
n∑

i=1

|cni|t ; ∀ n¿ 1; (3.1)

i.e. (2.3) holds, and (2.4) follows from Theorem 2.1.
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When supnE(�
2
n)¡∞, the condition (2.1) of the model (1.1) can be weakened into (2.8). In fact,

we have the following result.

Theorem 3.2. Consider the nonlinear regression model (1.1), we assume that conditions (2.2) and
(2.8) are satis3ed, supnE(�

2
n)¡∞, and one of the following four conditions holds:

(i) {�n} is a independent or a martingale di5erence sequence;
(ii) {�n} is a ’-mixing sequence with

∑∞
i=1(’(i))

1=2 ¡∞;
(iii) {�n} is a negatively associated (NA) sequence;
(iv) {�n} is a general weakly stationary linear process: �t=

∑∞
j=−∞  jzt−j,

∑∞
j=−∞ | j|¡∞; {zl;Fl}

is a adapted martingale di5erence, there exists 1¿ 0 such that E(z2l | Fl−1)=12, a.s.; Then,
there exists a constant c¿ 0, such that

P(n1=2|�n − �0|¿�)6 c�−2 (3.2)

for every �¿ 0 and for all n¿ 1.

Proof. Assume that the conditions of Theorem 3.2 hold. For any real number sequence {cni},
similarly to the proof of Theorem 3.1 and Example 4.1 of Hu (2002) (take t = 2 in the Ref. of
Hu, 2002), we know that there exists a constant c1 ¿ 0 such that

E

(
n∑

i=1

cni�i

)2

6 c1
n∑

i=1

c2ni; ∀ n¿ 1; (3.3)

based on (3.3) and Lemma 1.2 and similarly to the proof of Theorem 2.1 of Hu (2002) we can
get (3.2).

Combining Theorem 3.2, Theorem 3.1 of Hu (2002) and the proof of Example 4.1 of Hu (2002),
we get the following result.

Theorem 3.3. Suppose that supnE|�n|t ¡∞, suplE|zl|t ¡∞ for some t¿ 2 and the conditions of
Theorem 3.2 hold. Then there exists a constant c¿ 0 such that

P(n1=2|�n − �0|¿�)6 c�−t (3.4)

for every �¿ 0 and for all n¿ 1.

Remark. Theorem 3.3 generalizes the result of Ivanov (1976) to the case when {�n} is dependent
and improves the results of Prakasa Rao (1984). For any �¿ 0, we can take M large enough such
that C(t)M−t ¡ �, then we take �= �(n;M) =Mn1=t−1 and by (2.4) we have

P(|�n − �0|¿Mn1=t−1) = P(n1=2|�n − �0|¿Mn1=t−1=2)6
C(t)n1−t=2

Mtn1−t=2 ¡�; (3.5)

hence �n is a consistent estimator of �n and it has the convergence rate

�n − �0 = Op

(
1

n1−1=t

)
: (3.6)
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