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Abstract

Consider the class of even convex functions � : R → [0;∞) with �(0) = 0 and concave derivative on

(0;∞). Given any �-integrable martingale (Mn)n¿0 with increments Dn
def=Mn − Mn−1, n¿ 1, the Topchii–

Vatutin inequality (Theory Probab. Appl. 42 (1997) 17) asserts that

E�(Mn)− E�(M0) 6 C
n∑

k=1

E�(Dk)

with C = 4. It is proved here that the best constant in this inequality is C = 2 for general �-integrable
martingales (Mn)n¿0, and C=1 if (Mn)n¿0 is further nonnegative or having symmetric conditional increment
distributions.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction and result

Let (Mn)n¿0 be a martingale with increments Dn
def=Mn − Mn−1, n¿ 1, and associated absolute

maxima M ∗
n
def=max06k6n |Mk |, n¿ 0. Let further G0 be the class of even convex functions � :

R → [0;∞) with �(0) = 0 and G1 its subclass of �∈G0 with a concave derivative on (0;∞).
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Note that the latter class comprises the functions �(x) = |x|p for p∈ [1; 2] as well as �(x) = (|x|+
a)p logr(|x|+ a)− ap logr a for p∈ [1; 2), r ¿ 0 and a¿ 0 suEciently large. The following convex
function inequality is due to Topchii and Vatutin (1997): There exists a Fnite positive constant C
such that for all �∈G1, all martingales (Mn)n¿0 and all n¿ 1

E�(Mn)− E�(M0) 6 C
n∑

k=1

E�(Dk): (1.1)

More precisely, they showed (1.1) be true with C = 4 and M0 = 0. If �(x) = |x| or �(x) = x2, then
it is well-known that (1.1) holds true with C = 1 and that this value cannot be improved. We shall
prove in this note that the best constant for general �∈G1 and general �-integrable martingales
is C = 2, but that C = 1 is optimal when imposing certain additional restrictions on the class of
considered martingales. The result is stated as the following theorem.

Theorem 1. If 0 �≡ �∈G1 and M = (Mk)06k6n is a �-integrable martingale, then

E�(Mn)− E�(M0)¡ 2
n∑

k=1

E�(Dk): (1.2)

The constant 2 is sharp in the sense that, for each �∈ (0; 1), there exists a bounded martingale M
and some �∈G1 such that

E�(Mn)− E�(M0)¿ (2− �)
n∑

k=1

E�(Dk): (1.3)

If M is nonnegative or having symmetric conditional increment distributions, then inequality (1.1)
holds true with C = 1.

An analogue of (1.1) for the maximum M ∗
n can be quite easily inferred from the following

Burkholder–Davis–Gundy inequality (see e.g. Chow and Teicher, 1997 Theorem 1, p. 425): Let
�¿ 0 and G

(�)
0 be the class of all �∈G0 satisfying �(2x)6 ��(x) for all x. Then there exists a

constant C∗
� ∈ (0;∞) such that for all �∈G

(�)
0 and all martingales (Mn)n¿0 having M0 = 0

E�(M ∗
n )6C∗

� E�


( n∑

k=1

D2
k

)1=2

 : (1.4)

This inequality applies to class G1 because G1 ⊂ G
(4)
0 as will be shown in Lemma 2 at the end

of Section 2. DeFning  (t)def=�(t1=2), the same lemma will further show that  is concave and
subadditive on [0;∞), that is  (

∑n
k=1 xk)6

∑n
k=1  (xk) for all x1; : : : ; xn¿ 0 and n∈N. Utilizing

this last fact on the right-hand side in (1.4), we obtain

E�(M ∗
n )6C∗

4

n∑
k=1

E�(Dn): (1.5)

Let us Fnally mention that sharp inequalities similar to those considered here were derived in a
recent paper by de la Peña et al. (2002) for inFnite degree order statistics.
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2. Proof of Theorem 1

The proof of Theorem 1 and in particular of the sharpness of the constant C = 2 in (1.1) are
heavily based on several reductions, the main one being that it suEces to consider only certain
extremal elements �∈G1. This was also used by Alsmeyer (1996) and R+osler (1995) for the study
of odd functional moments of positive random variables with a decreasing density. The general
background is that the class of increasing convex (or concave) functions � : [0;∞) → [0;∞) with
�(0)=0 as well as many important subclasses like G1 form a convex cone for which Choquet theory
tells us that each element � can be written as an integral of its extremal elements with respect to
some measure on [0;∞] (depending on �). For the given classes these integral representations are
obtained by simple partial integration. The following lemma provides the result for the class G1 and
exempliFes the general procedure.

Lemma 1. For each �∈G1, there exists a unique =nite measure Q� on [0;∞] such that

�(x) =
∫
[0;∞]

�t(x)Q�(dt); x¿ 0; (2.1)

where �0(x) = |x|, �∞(x) = x2, and

�t(x)
def=

{
x2 if |x|6 t

2xt − t2 if |x|¿t
(2.2)

for t ∈ (0;∞).

Note that the functions �t also arise in problems of robust estimation and are known in statistics
as Huber functions or Huber’s �-functions, see e.g. Huber (1964, 1973).

Proof. Each �∈G1 has a concave derivative �′ with �′
+(0)

def= limx→+0 �′(x)¿ 0 and thus also

a nonincreasing second right derivative �′′
+ with asymptotic value �′′

+(∞)def= limx→∞ �′′
+(x)¿ 0.

Therefore ��′((x;∞))def= �′′
+(x)− �′′

+(∞) for x¿ 0 deFnes a measure on (0;∞). Put

G∗
1
def={�∈G1 : �′

+(0) = 0; �′′
+(∞) = 0}:

and �∗(x)def= �(x)−�′
+(0)|x|−�′′

+(∞)x2=2 which is an element of G∗
1 . Partial integration now gives

for x¿ 0

�′(x)− �′
+(0)− �′′

+(∞)x=
∫ x

0
(�′′

+(y)− �′′
+(∞)) dy

=
∫ x

0

∫
(y;∞)

��′(dt) dy

=
∫
(0;∞)

(x ∧ t)��′(dt)
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and also

�∗(x) =
∫ x

0
(�′(y)− �′

+(0)− �′′
+(∞)y) dy

=
∫
(0;∞)

∫ x

0
(y ∧ t) dy��′(dt)

=
∫
(0;∞)

�t(x)Q�∗(dt);

where Q�∗
def=��′=2. We conclude (2.1) with Q�

def=�′
+(0)�0 +

1
2 �

′′
+(∞)�∞ + Q�∗ .

Proof of Theorem 1. The following reduction arguments will show that it suEces to prove

E�1(s+ D)6�1(s) + C E�1(D) (2.3)

for all s¿ 0 and all centered random variables D having a two point distribution, where C = 2 in
the general case, while C =1 if D is symmetric or s+D¿ 0. Of course, �1 is the function deFned
by (2.2). Note that in terms of the martingales under consideration the former means nothing but a
reduction to martingales of the form (M0; M1) = (s; s+ D).

First reduction: As noted above, for each �∈G1 the even function �∗(x) = �(x) − �′
+(0)|x| −

�′′
+(∞)x2=2 is an element of G∗

1 . Since

E�(Mn) = E�∗(Mn) + �′
+(0)E|Mn|+ �′′

+(∞)
2

EM 2
n

6E�∗(Mn) + �′
+(0)

(
E|M0|+

n∑
k=1

E|Dk |
)

+
�′′
+(∞)
2

(
EM 2

0 +
n∑

k=1

ED2
k

)
;

it suEces to prove Theorem 1 for functions �∈G∗
1 .

Second reduction: Using (2.2), �t(x)=t2�1(x=t) for all t ∈ (0;∞) and Q�({0;∞})=0 if �′
+(0)=0

and �′′
+(∞) = 0 (see at the end of the proof of Lemma 1), we infer for each �∈G∗

1

E�(Mn) =
∫
(0;∞)

E�t(Mn)Q�(dt) =
∫
(0;∞)

t2E�1(Mn=t)Q�(dt):

Since (Mk=t)06k6n is still a martingale, it suEces to prove Theorem 1 with �= �1.
Third reduction: By conditioning

E�1(Mn)− E�1(Mn−1)− C E�1(Dn)

=
∫

(E(�1(s+ Dn)|Mn−1 = s)− �1(s)− C E(�1(Dn)|Mn−1 = s))P(Mn−1 ∈ ds);

where, given Mn−1 = s, Dn has conditonal mean 0. This reduces the proof to that of (2.3) for any
centered random variable D and any s∈R. We may further restrict to s¿ 0 because E�1(s+D) =
E�1(−s− D) and −D is also centered.

Fourth reduction: Finally, since every centered distribution is a mixture of centered two point
distributions, we conclude that it is indeed enough to prove (2.3) for all s¿ 0 and all centered D
taking only two values, see e.g. HoeOding (1955).
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In the following, we simply write f′ and always mean f′
+ in those cases where left and right

derivatives are diOerent.
Proof of (2.3) with C = 1 for symmetric D. Suppose D has distribution (�−a + �a)=2 for some

a¿ 0 and let

�(s)def=E�1(s+ D)− E�1(D)− �1(s); s¿ 0:

Then

�(s) =
�1(s+ a) + �1(s− a)

2
− �1(a)− �1(s);

�′(s) =
�′
1(s+ a) + �′

1(s− a)
2

− �′
1(s);

�′′(s) =
�′′
1 (s+ a) + �′′

1 (s− a)
2

− �′′
1 (s)

for s¿ 0. In particular �(0) = �′(0) = 0 and �′′(0)6 0. Note that

�′
1(x)

def=

{
2x if |x|6 1

2 sign(x) if |x|¿ 1
and �′′

1 (x) = 21[−1;1](x)�− a:e;

where � denotes Lebesgue measure on R and 1B the indicator function of a set B. Hence, if a∈ [0; 1],
then �-a.e.

�′′(s) =




0 if 06 s6 1− a or s¿a+ 1;

−1 if 1− a¡s6 1;

1 if 1¡s6 a+ 1

while in case a∈ (1; 2]

�′′(s) =




−2 if 06 s6 a− 1;

−1 if a− 1¡s6 1;

1 if 1¡s6 a+ 1;

0 if s¿a+ 1

and in case a¿ 2

�′′(s) =




0 if 1¡s6 a− 1 or s¿a+ 1;

−2 if 06 s6 1;

1 if a− 1¡s6 a+ 1:

We also have that �(s) and �′(s) vanish at s=0 and (by linearity of �1 on (1;∞)) for suEciently
large s. From this we see that �′ is everywhere nonpositive and unimodal which in turn yields
�(s)6 0 for all s¿ 0 and thus (2.3) with C = 1.

Proof of (2.3) with C = 1 for nonnegative s + D. Let D be a centered random variable with
distribution p�−a + q�b for a; b¿ 0, hence p + q = 1 and qb− pa= 0. The function � now takes
the form

�(s) = p�1(s− a) + q�1(s+ b)− p�1(−a)− q�1(b)− �1(s)
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and has derivative �′(s) = p�′
1(s− a) + q�′

1(s+ b)− �′
1(s). By concavity of �′

1 on [0;∞),

�′(s)6�′
1(s− pa+ qb)− �′

1(s) = 0

for all s¿ a. Consequently, E�1(s + D)6E�1(D) + �1(s) follows for all s¿a if this is true for
s= a.
If s= a6 1, then �1(s) = s2 whence �1(s+ x)−�1(x) ≤ (s+ x)2 − x2 = s(2x+ s) for all x¿− s

implies the asserted inequality, namely

E�1(s+ D)− E�1(D)6 sE(2D + s) = s2:

Now Fx s= a¿ 1, note that ED= 0 implies p= b=(s+ b), and look at �(s) as a function G(b),
say, of b. We obtain

G(b) = q�1(s+ b)− p�1(−s)− q�1(b)− �1(s)

= q�1(s+ b)− q�1(b)− (1 + p)�1(s)

=
s�1(s+ b)− s�1(b)− (s+ 2b)�1(s)

s+ b
:

This implies in case b¿ 1

G(b) =
s(2(s+ b)− 1)− s(2b− 1)− (s+ 2b)(2s− 1)

s+ b
=

s+ 2b− 4sb
s+ b

6 0;

and in case 0¡b¡ 1

G(b) =
s(2(s+ b)− 1)− sb2 − (s+ 2b)(2s− 1)

s+ b
=

−2b(s− 1)− sb2

s+ b
6 0:

So we have again shown that (2.3) holds with C = 1.
Proof of (2.3) with C = 2 for general D. The assertion to prove may be rephrased in terms of

�(s) as

�(s)6E�1(D) = p�1(s− a) + q�1(s+ b)

for all s¿ 0. Since s = 0 is trivial, Fx an arbitrary s¿ 0, let D have distribution p�−a + q�b and

suppose #def=a − s¿ 0 (only this case needs to be considered after the previous part of the proof).
Note that ED=0 implies b=(p=q)a and thus D d=p�−s−#+q�(p=q)(s+#). In order to prove (2.3) with
C = 2, Fx any p∈ (0; 1) and consider

H (#) def= E�1(s+ D)− 2E�1(D)− �1(s)

= p(�1(#)− 2�1(s+ #)) + q(�1(s+ (p=q)(s+ #))− 2�1((p=q)(s+ #)))− �1(s)

for #¿ 0. Since s+ D¿ 0 if #= 0, we infer H (0)6− E�1(D)¡ 0 from the previous part of the
proof. DiOerentiation with respect to # gives

H ′(#) =p(�′
1(#)− 2�′

1(s+ #)) + p(�′
1(s+ (p=q)(s+ #))− 2�′

1((p=q)(s+ #)))

=p((�′
1(s+ (p=q)(s+ #))− �′

1((p=q)(s+ #)))− (�′
1(s+ #)− �′

1(#))

−(�′
1(s+ #) + �′

1((p=q)(s+ #)))): (2.4)
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The function �′
1 is monotone and is subadditive as a nonnegative concave function on [0;∞). It

follows that

�′
1(s+ #) + �′

1((p=q)(s+ #)) ≥ �′
1(s+ #+ (p=q)(s+ #))¿�′

1(s+ (p=q)(s+ #))

and thereby in (2.4)

H ′(#)6− p(�′
1((p=q)(s+ #)) + (�′

1(s+ #)− �′
1(#)))6 0:

Consequently, H is nonincreasing on [0;∞) with H (0)¡ 0 and therefore everywhere negative. This
proves (2.3) with C = 2 and strict inequality.

Attaining the bound in (2.3) with C = 2. We Fnally have to provide examples showing that the
bound C = 2 is sharp. Let s¿ 1 and D be distributed as [b=(a + b)]�−a + [a=(a + b)]�b for some
a¿ 1 + s and b∈ [0; 1]. Then

E�1(s+ D)− �1(s)− (2− �)E�1(D)

=
1

a+ b
(b(2a− 2s− 1) + a(2s+ 2b− 1)− (a+ b)(2s− 1)− (2− �)(b(2a− 1) + ab2))

=
b

a+ b
(2− 2ab− 4s+ �(2a− 1 + ab)):

Now it is easily seen that, for any �¿ 0, a positive value is obtained when choosing b= 1=a and a
suEciently large. The proof of Theorem 1 is herewith complete.

Recall that G(�)
0 denotes the class of all �∈G0 satisfying �(2x) ≤ ��(x) for all x. We claimed in

the Introduction that G1 ⊂ G
(4)
0 as well as G1 ⊂ G2, where G2 denotes the subclass of G0 containing

those � for which  (x)def=�(x1=2) is concave on [0;∞). These claims are Fnally conFrmed in the
subsequent lemma.

Lemma 2. G1 ⊂ G2 and G1 ⊂ G
(4)
0 .

Proof. Note that each nonnegative concave function f on [0;∞) is subadditive and that f(x)=x
is nonincreasing (because −f is evidently star-shaped, see Marshall and Olkin, 1979, p. 453).
Given any �∈G1, use this for f = �′ to see that the pertinent  is indeed concave because
 ′(x)=[�′(x1=2)]=2x1=2. Moreover, the subadditivity of �′ on [0;∞) implies �′(2x)6 2�′(x) and thus

�(2x) =
∫ 2x

0
�′(t) dt =

∫ x

0
2�′(2t) dt6

∫ x

0
4�′(t) dt = 4�(x)

for all x¿ 0.

Note added in Proof

In a recent paper, Li [7, Theorem 2.1] proved the following large deviation inequality for a

martingale (Mn)n¿0 with M0 = 0: If 1¡p6 2 and K def= supn¿1E|Mn|p ¡∞, then

P
(

max
16i6n

|Mn|¿nx
)
6CKn1−px−p
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for all x¿ 0; n¿ 1 and C = (18pq1=2)p, where q is such that 1
p + 1

q = 1. A combination of Doob’s
maximal inequality (see [2, p. 255]) with our Theorem 1 for �(x) = |x|p immediately shows that
Li’s inequality actually holds true with the considerably smaller constant C = 2.
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