EXAMEN ALGORITHMES STOCHASTIQUES MARTINGALES

Durée 3 heures

PROBLÈME I

8 points

Le but de ce premier problème est l'étude du comportement asymptotique de l'algorithme de Kiefer-Wolfowitz qui est un algorithme de recherche d'un maximum d'une fonction. Pour une fonction f strictement concave, on veut trouver x^* satisfaisant

$$x^* = \arg\max_{x \in \mathbb{R}} f(x).$$

Cela revient à trouver x^* vérifiant $F(x^*) = 0$ où la fonction F est donnée par

$$F(x) = \lim_{c \to 0} \frac{f(x+c) - f(x-c)}{2c}.$$

L'algorithme de Kiefer-Wolfowitz, analogue à celui de Robbins-Monro, est de la forme

$$X_{n+1} = X_n + \frac{\gamma_n}{c_n} (Y_{n+1} - Z_{n+1})$$

où l'état initial X_0 est arbitrairement choisi et (γ_n) , (c_n) sont deux suites déterministes, positives et décroissantes vers zéro avec $c_n \leq 1$. On suppose également que

$$\sum_{n=1}^{\infty} \gamma_n = +\infty, \qquad \sum_{n=1}^{\infty} \gamma_n c_n < +\infty, \qquad \sum_{n=1}^{\infty} \left(\frac{\gamma_n}{c_n}\right)^2 < +\infty.$$

Les suites (Y_n) et (Z_n) sont données par

$$Y_{n+1} = h(X_n + c_n, \varepsilon_{n+1})$$
 et $Z_{n+1} = h(X_n - c_n, \xi_{n+1})$

où h est une fonction que l'on sait évaluer et (ε_n) , (ξ_n) sont deux suites indépendantes de variables aléatoires indépendantes et de même loi. On note $\mathbb{F} = (\mathcal{F}_n)$ la filtration naturelle donnée par $\mathcal{F}_n = \sigma(X_0, \varepsilon_1, \cdots, \varepsilon_n, \xi_1, \cdots, \xi_n)$. Pour tout $n \ge 0$, on suppose que

$$\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = f(X_n + c_n) \qquad \text{et} \qquad \mathbb{E}[Z_{n+1}|\mathcal{F}_n] = f(X_n - c_n).$$

On pose $\mathbb{E}[Y_{n+1}^2|\mathcal{F}_n] = g(X_n + c_n)$ et $\mathbb{E}[Z_{n+1}^2|\mathcal{F}_n] = g(X_n - c_n)$. On suppose que $f \in \mathcal{C}^2(\mathbb{R})$ et qu'il existe a, b > 0 vérifiant, pour tout $x \in \mathbb{R}$

$$|f''(x)| \le a(1+|x|)$$
 et $g(x) \le b(1+x^2)$.

On va montrer que

$$\lim_{n \to \infty} X_n = x^*$$
 p.s.

- 1) Proposer deux suites (γ_n) et (c_n) satisfaisant les conditions ci-dessus.
- 2) Montrer que, pour tout $x \in \mathbb{R}$, 0 < c < 1, $\alpha = 2a \max(2, |x^*|)$ et $\beta = 8b \max(1, (x^*)^2)$

$$|f(x+c) - f(x-c) - 2cf'(x)| \le \alpha c^2 (1 + |x-x^*|),$$

$$g(x+c) + g(x-c) \le \beta(1 + (x-x^*)^2).$$

3) Si X_0 est de carré intégrable, montrer par récurrence que $V_n = (X_n - x^*)^2$ est intégrable. Déterminer alors trois suites aléatoires positives (a_n) , (A_n) et (B_n) telles que, pour tout $n \ge 0$

$$\mathbb{E}[V_{n+1}|\mathcal{F}_n] \leqslant (1+a_n)V_n + A_n - B_n$$
 p.s

avec

$$\sum_{n=1}^{\infty} a_n < +\infty, \qquad \sum_{n=1}^{\infty} A_n < +\infty \qquad \text{p.s.}$$

- 4) Montrer à l'aide du théorème de Robbins-Siegmund que (V_n) converge p.s. vers une variable aléatoire finie.
- 5) Conclure, comme pour l'algorithme de Robbins-Monro, que $X_n \to x^*$ p.s.

PROBLÈME II

4 points

Soit (ε_n) est une suite de variables aléatoires indépendantes et de même loi uniforme sur l'intervalle [0,1]. On considère le processus multiplicatif défini, pour tout $n \ge 0$, par

$$X_{n+1} = X_n^p \varepsilon_{n+1}$$

avec $0 . On suppose que l'état initial <math>0 < X_0 < 1$ est indépendant de (ε_n) .

- 1) Montrer que (X_n) est un modèle itératif markovien.
- 2) Déterminer sa probabilité de transition.
- 3) Montrer que le processus (X_n) est stable.
- 4) Déterminer la loi stationnaire μ associée à (X_n) .

PROBLÈME III

8 points

On étudie, dans ce troisième problème, le comportement asymptotique du processus autorégressif à coefficient aléatoire

$$X_{n+1} = \theta_{n+1} X_n + \varepsilon_{n+1}$$

où l'état initial $X_0=0$ et (θ_n) est une suite de variables aléatoires indépendantes et de même loi avec $\mathbb{E}[\theta_n]=\theta$ et $\mathbb{E}[\theta_n^2]=\tau^2>\theta^2$. On note $\mathbb{F}=(\mathcal{F}_n)$ la filtration naturelle donnée par $\mathcal{F}_n=\sigma(X_1,X_2,\cdots,X_n)$. On suppose que la suite (ε_n) vérifie $\mathbb{E}[\varepsilon_{n+1}|\mathcal{F}_n]=0$, $\mathbb{E}[\varepsilon_{n+1}^2|\mathcal{F}_n]=\sigma^2>0$ et qu'il existe a>2 tel que

$$\sup_{n\geqslant 0} \mathbb{E}[|\varepsilon_{n+1}|^a|\mathcal{F}_n] < \infty \qquad \text{p.s.}$$

On suppose finalement que les suites (θ_n) et (ε_n) sont indépendantes. On se place dans le cas explosif avec $\tau^2 > 1$.

- 1) Montrer que, pour tout $n \ge 1$, $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \theta X_n$ et $\mathbb{E}[X_{n+1}^2|\mathcal{F}_n] = \tau^2 X_n^2 + \sigma^2$.
- 2) Pour tout $n \ge 1$, on pose

$$Y_n = \frac{X_n^2}{\tau^{2n}}.$$

Vérifier que (Y_n) est une sous-martingale bornée dans \mathbb{L}^1 .

3) En déduire que (Y_n) converge p.s. vers une variable aléatoire intégrable Y et que

$$\lim_{n \to \infty} \frac{1}{\tau^{2n}} \sum_{k=1}^{n} X_k^2 = \frac{\tau^2}{\tau^2 - 1} Y$$
 p.s

- 4) On supposera, dans toute la suite, que Y est non nulle p.s. Vérifier que θ_n^2 converge p.s. vers τ^2 donc que θ_n^2 est dégénérée en τ^2 .
- 5) On propose tout d'abord d'estimer le paramètre inconnu θ par l'estimateur des moindres carrés donné par $\widehat{\theta}_n = A_n/B_n$ avec

$$A_n = \sum_{k=1}^n X_k X_{k-1}$$
 et $B_n = \sum_{k=1}^n X_{k-1}^2$.

Montrer que si $\widehat{\theta}_n \to \theta$ p.s. alors $\theta_n \to \theta$ p.s. ce qui est absurde car $\tau^2 > \theta^2$.

6) On propose ensuite d'estimer θ par l'estimateur des moindres carrés pondéré défini par $\widetilde{\theta}_n=C_n/D_n$ avec

$$C_n = \sum_{k=1}^n \alpha_{k-1}^{-1} X_k X_{k-1}$$
 et $D_n = \sum_{k=1}^n \alpha_{k-1}^{-1} X_{k-1}^2$

où $\alpha_n = 1 + X_n^2$. Montrer que $D_n/n \to 1$ et $\widetilde{\theta}_n \to \theta$ p.s.

7) On suppose qu'il existe b>2 tel que $\mathbb{E}[|\theta_n|^b]<\infty$. Etablir le théorème limite centrale avec $\ell>0$ à déterminer

$$\sqrt{n}(\widetilde{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \ell).$$

8) Proposer un estimateur $\widehat{\sigma}_n^2$ de σ^2 et étudier ses propriétés de convergence.