PARTIEL SÉRIES CHRONOLOGIQUES

Durée 2 heures

PROBLÈME I

4 points

Soit (X_n) un processus aléatoire lié à une suite déterministe (S_n) périodique ou saisonnière de période $p \ge 1$, satisfaisant pour tout $n \in \mathbb{Z}$, $S_n = S_{n-p}$. Calculer l'espérance, la variance et la covariance du processus (X_n) pour les modèles suivants où (ε_n) est un bruit blanc de variance σ^2 .

- 1) Le processus (X_n) est associé au modèle additif $X_n = S_n + \varepsilon_n$.
- 2) Le processus (X_n) est associé au modèle multiplicatif

$$X_n = S_n(1 + \varepsilon_n).$$

PROBLÈME II

6 points

On considère le processus aléatoire (X_n) défini, pour tout $n \in \mathbb{Z}$, par

$$X_n = an^2 + bn + c + \sin(\theta + n\pi) + \varepsilon_n$$

avec $a, b, c \in \mathbb{R}$, $0 < \theta < \pi$, et où (ε_n) est un bruit blanc de variance $\sigma^2 > 0$. On note Δ l'opérateur de différenciation $\Delta X_n = X_n - X_{n-1}$, tandis que ∇_p représente l'opérateur de désaisonnalisation $\nabla_p X_n = X_n - X_{n-p}$.

- 1) Montrer que le processus (X_n) n'est pas stationnaire.
- 2) Vérifier que le processus (Y_n) défini par $Y_n = \nabla_2 X_n$ n'a plus de tendance saisonnière.
- 3) Quel est l'effet de l'opérateur ∇_2 sur la tendance polynomiale $an^2 + bn + c$?
- 4) En déduire le processus (Z_n) , que l'on exprimera en fonction de (X_n) , qui n'offre plus de tendances polynomiale et saisonnière.
- 5) Montrer que (Z_n) est stationnaire et déterminer sa fonction d'autocovariance.

PROBLÈME III

4 points

Soit $0 < a \leqslant \pi$ et (X_n) le processus stationnaire dont la densité spectrale est donnée par

$$f(x) = \begin{cases} \frac{a - |x|}{a^2} & \text{si } |x| \leq a, \\ 0 & \text{sinon.} \end{cases}$$

- 1) Trouver la fonction d'autocovariance associée à (X_n) .
- 2) En déduire l'égalité

$$\sum_{n=1}^{\infty} \frac{\cos(na)}{n^2} = \frac{1}{12} (3(\pi - a)^2 - \pi^2).$$

PROBLÈME IV

6 points

On considère le processus autorégressif d'ordre deux donné, pour tout $n \in \mathbb{Z}$, par

$$X_n = 2\theta X_{n-1} - \theta^2 X_{n-2} + \varepsilon_n$$

avec $\theta \in \mathbb{R}$, et où (ε_n) est un bruit blanc de variance $\sigma^2 > 0$. On lui associe le polynôme A défini, pour tout $z \in \mathbb{C}$, par $A(z) = 1 - 2\theta z + \theta^2 z^2$.

- 1) Trouver une condition sur le paramètre θ sous laquelle le polynôme A est causal.
- 2) Si A est causal, calculer la densité spectrale associée à (X_n) .
- 3) Déterminer, si A est causal, la fonction d'autocovariance associée à (X_n) .