EXPLORATORY TOOLS IN MODEL-BASED CLUSTERING

L.A. García-Escudero, A. Gordaliza, C. Matrán and A. Mayo-Iscar Dpto. de Estadística e I. O. Universidad de Valladolid (SPAIN)

BoSanTouVal 2009

1.- Introduction

• Two key questions:

- Oblight to Adequately choose the number of groups in a clustering problem?
- How to measure the strength of data point cluster assignments?
- It is **impossible to answer** these two questions without:
 - Stating clearly which is the probabilistic model assumed.
 - Putting constrains on the allowed clusters scatters.
 - Stating clearly what we understand by noise.

2.- Model Based Clustering:

- Many statistical practitioners view the **Cluster Analysis** as a collection of **mostly heuristic techniques** for partitioning multivariate data.
- This view relies on the fact that most of the cluster techniques are not explicitly based on a probabilistic model:
 - "...lead the naive investigator into believing that he or she did not make any assumption at all, and that the results therefore are 'objective'..." (Flury 1997, page 123)
- ⇒ A properly stated underlying probabilistic model is convenient

- Two model-based clustering approaches:
 - Mixture approach:

$$\prod_{i=1}^{n} \left[\sum_{j=1}^{k} \pi_j \phi(x_i; \theta_j) \right]$$

(assign x_i to cluster j whenever $\pi_j \phi(x; \theta_j) > \pi_l \phi(x; \theta_l)$ for $l \neq j$).

 \diamond "Crisp" (0-1) approach:

$$\prod_{j=1}^{k} \prod_{i \in R_j} \phi(x_i; \theta_j)$$

 $(R_i \text{ indexes of the } x_i \text{'s assigned to cluster } j).$

Mixture approach:

$$\prod_{i=1}^{n} \left[\sum_{j=1}^{k} \pi_{j} \phi(x_{i}; \theta_{j}) \right] \Rightarrow \text{EM-algorithm}$$

(assign x_i to cluster j whenever $\pi_j \phi(x; \theta_j) > \pi_l \phi(x; \theta_l)$ for $l \neq j$).

⋄ "Crisp" (0-1) approach:

$$\prod_{j=1}^{k} \prod_{i \in R_j} \phi(x_i; \theta_j) \Rightarrow \mathsf{CEM-algorithm}$$

 $(R_j \text{ indexes of the } x_i \text{'s assigned to cluster } j).$

- Noise in real problems ⇒ Robust Clustering
- Two **robust clustering approaches** providing "theoretical well-based clustering criterion in presence of outliers" (Bock 2002):
 - Mixture modeling: The noise is fitted through mixture components
 (Fraley and Raftery, Peel and McLachlan,...)
 - \diamond **Trimming approach:** A fraction α of most outlying data is trimmed. (Gallegos and Ritter, Cuesta-Albertos et al., García-Escudero et al., Neykov et al.,...).

- Noise in real problems ⇒ Robust Clustering
- Two **robust clustering approaches** providing "theoretical well-based clustering criterion in presence of outliers" (Bock 2002):
 - Mixture modeling: The noise is fitted through mixture components
 (Fraley and Raftery, Peel and McLachlan,...)
 - \diamond **Trimming approach:** A fraction α of most outlying data is trimmed. (Gallegos and Ritter, Cuesta-Albertos et al., García-Escudero et al., Neykov et al.,...).
 - ⇒ We will focus on the trimming approach!!

3.- TCLUST methodology

• Spurious-Outlier Model (Gallegos 2001 and Gallegos and Ritter 2005):

$$\left[\prod_{j=1}^{k} \prod_{i \in R_{j}} f(x_{i}; \mu_{j}, \Sigma_{j})\right] \left[\prod_{i \notin R} g_{\psi_{i}}(x_{i})\right]$$

- $\diamond f(x_i; \mu, \Sigma)$ is a *p*-variate normal *p.d.f.*.
- $\Leftrightarrow R = \cup_{j=1}^k R_j$ contains $[n(1-\alpha)]$ regular data.
- $\diamond g_{\psi_i}$ are some *p.d.f.*'s for the **non-regular** data.

• If no conditions are possed on Σ_i 's \Rightarrow Not a well-defined problem.

Restrictions are needed:

- \diamond Same spherical covariance matrices (i.e., $\Sigma_j = \sigma^2 \cdot I$) \Rightarrow Trimmed k-means (Cuesta-Albertos et al. 1997).
- \diamond Same (not necessarily spherical) covariance matrices $(\Sigma_j = \Sigma) \Rightarrow$ Determinantal criteria (Gallegos and Ritter 2005).
- \diamond Different covariances but with equal scales ($|\Sigma_1| = ... = |\Sigma_g|$) \Rightarrow Heterogeneous robust clustering (Gallegos 2001, 2003)

• A different constrain:

$$M_n = \max_{j=1,\dots,k} \max_{l=1,\dots,p} \lambda_l(\Sigma_j) \text{ and } m_n = \min_{j=1,\dots,k} \min_{l=1,\dots,p} \lambda_l(\Sigma_j),$$

where $\lambda_l(\Sigma_j)$ are the **eigenvalues** of the Σ_j .

• Fix a **constant** c such that

$$M_n/m_n \leq \mathbf{c}$$
 (Eigenvalues-ratio restriction).

- ⋄ c controls the strength of the restriction:
 - \cdot **c** = 1 \Rightarrow Trimmed k-means.
 - · Large $c \Rightarrow An$ almost unrestricted solution.
- It extends Hathaway's restrictions $\sigma_i^2 \leq \mathbf{c} \cdot \sigma_j^2$ for $1 \leq i, j \leq k$.

- Weights: We consider group weights $\pi_j \in [0,1]$.
- Trimming + Eigenvalue restrictions + Weights \Rightarrow TCLUST

(García-Escudero et al. (2008) Annals of Statistics, 36, 1324-1345)

- ♦ Existence of both theoretical and sample solutions.
- **⋄** Consistency.
- Feasible algorithm.

3. Guidance in choosing k

• Many procedures for choosing k in "crisp" clustering are based on **monitoring** the size of the (log-) "likelihoods":

$$k \mapsto \sum_{j=1}^k \sum_{i \in R_j} \log \phi(x_i; \widehat{\theta_j}) \text{ for } k = 1, 2, \dots.$$

• Examples:

- $\diamond \Sigma_j = \sigma^2 I$ (k-means) \Rightarrow Friedman and Rubin 1967, Engelman and Hartigan 1969, Calinski and Harabasz 1974,...
- $\diamond \Sigma_j = \Sigma \text{ (determinant criterium)} \Rightarrow \text{Marriot 1971,...}$
- Trimmed versions can be also considered ⇒ García-Escudero et al 2003.

• **Drawback:** The log-likelihoods **strictly increase** when increasing k:

• Log-likelihoods: -4765.8 (k=1) < -3530.1 (k=2) < -3197.7 (k=3)

• Figure:

• Solutions:

- ♦ Searching for an "elbow".
- ♦ Nonlinear transformation by Sugar and James 2003.

• The TCLUST does not suffer from this problem:

- Log-likelihoods: -4765.8 (k=1) < -4203.2 (k=2) = -4203.2 (k=3)
- Recall the presence of weights (which can be set to zero) $\Rightarrow \pi_3 = 0$ in k = 3 solution!.

• The TCLUST does not suffer from this problem:

- Log-likelihoods: -4765.8 (k=1) < -4203.2 (k=2) = -4203.2 (k=3)
- This fact was already noticed by Bryant (1991) when dealing with the so-called Penalized Classification Maximum Likelihood...

• Importance of the "trimming" and the scatter constrain:

 \Rightarrow " \circ " are trimmed points in the figure on the right.

4.- Classification Trimmed Likelihood Curves

• Based on the TCLUST methodology, we monitor:

$$(\alpha, k) \mapsto \mathcal{L}(\alpha, k) := \sum_{j=1}^{k} n_j \log \widehat{\pi}_j + \sum_{j=1}^{k} \sum_{i \in R_j} \log \phi(x_i; \widehat{\theta}_j),$$

when $k = 1, 2, \dots$ and $\alpha \in (0, 1)$.

- Smallest k such that $\mathcal{L}(\alpha, k) \simeq \mathcal{L}(\alpha, k+1)$ (for almost every α) $\Rightarrow k$ is a good **choice for the number of groups**.
- $\mathcal{L}(\alpha, k)$ increase very fast till $\alpha \leq \alpha_0 \Rightarrow \alpha_0$ is a good choice for the trimming level.
- They provide information about the group sizes.

Example 1: Mixture $0.9 \cdot N(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix}) + 0.1 \cdot N(\begin{pmatrix} 5 \\ -5 \end{pmatrix}, \begin{pmatrix} 30 & 0 \\ 0 & 30 \end{pmatrix})$

Example 2: $0.3 \cdot N\left(\left(\begin{smallmatrix} -5 \\ 5 \end{smallmatrix} \right), \left(\begin{smallmatrix} 4 & 1 \\ 1 & 1 \end{smallmatrix} \right)\right) + 0.3 \cdot N\left(\left(\begin{smallmatrix} 5 \\ -5 \end{smallmatrix} \right), \left(\begin{smallmatrix} 4 & -1 \\ -1 & 1 \end{smallmatrix} \right)\right) + 0.3 \cdot N\left(\left(\begin{smallmatrix} 5 \\ 5 \end{smallmatrix} \right), \left(\begin{smallmatrix} 4 & 0 \\ 0 & 4 \end{smallmatrix} \right)\right) + 0.1 \cdot N\left(\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 30 & 0 \\ 0 & 30 \end{smallmatrix} \right)\right)$

Example 3: "The topography of multivariate normal mixtures" (Ray and Lindsay 2005) \Rightarrow Mixture with 2 components.

Mixture with 2 components with 3 modes:

5.- Strength of cluster assignments

- Confirmatory tool: Were satisfactory the choices made for k and α ?
- The strength of the cluster assignment of observation x_i to group j:

$$D_j(x_i, \hat{\theta}) = \pi_j \phi(x_i, \hat{\theta_j})$$

• If $D_{(1)}(x,\hat{\theta}) \leq ... \leq D_{(k)}(x,\hat{\theta})$, define some Bayes factors as:

$$\mathsf{BF}(i) = \log \left(D_{(k-1)}(x_i; \hat{\theta}) / D_{(k)}(x_i; \hat{\theta}) \right).$$

 \diamond Small BF $(i) \Rightarrow$ Clear cluster assignment for the observation x_i .

 Bayes factors for trimmed points: Given the maximum possible strength:

$$d_i = \max_{j=1,\dots,k} \{\pi_j \phi(x_i,\widehat{\theta_j})\} = D_{(k)}(x_i,\widehat{\theta})$$
, we have:

$$\Diamond$$
 $d_{(1)} \leq ... \leq d_{([n\alpha])} \leq ... \leq d_{(n)} \Rightarrow [n\alpha]$ observations to be trimmed.

- \diamond Bayes factors for trimmed data \Rightarrow BF $(i) = \log (D_{(k)}(x_i, \hat{\theta}) / d_{([n\alpha])}).$
- \diamond Small BF $(i) \Rightarrow$ More clearly observation i should be trimmed.

• Graphical display I: "Silhouette" plot

- Graphical display II: "Most Doubtful assignments"
 - \diamond Label observations i's with BF $(i) \ge \log(3/4)$:

[PCA, discriminant or Bhattacharyya coordinates (Hennig and Christlieb 2002) if p>2...]