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1.- Introduction

e Two key questions:

¢ How to adequately choose the number of groups in a clustering
problem?

¢ How to measure the strength of data point cluster assignments?

e |t is impossible to answer these two questions without:

¢ Stating clearly which is the probabilistic model assumed.
¢ Putting constrains on the allowed clusters scatters.
¢ Stating clearly what we understand by noise.



2.- Model Based Clustering:

e Many statistical practitioners view the Cluster Analysis as a collection
of mostly heuristic techniques for partitioning multivariate data.

e This view relies on the fact that most of the cluster techniques are not
explicitly based on a probabilistic model:

“...lead the naive investigator into believing that he or she did
not make any assumption at all, and that the results therefore
are ‘objective’...” (Flury 1997, page 123)

= A properly stated underlying probabilistic model is convenient




e Two model-based clustering approaches:

¢ Mixture approach:

ﬁ [Z?qub Ti; j)]
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(assign x; to cluster j whenever m;¢(x;0;) > mo(x;0;) for | # 7).

o “Crisp” (0-1) approach:

k
H H o4 0;)
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(R, indexes of the z;'s assigned to cluster j).



¢ Mixture approach:

n k
H [ qub(:vi;ej)] = EM-algorithm
=1 - j5=1

(assign z; to cluster j whenever 7,;¢(x;60;) > mp(z; 0;) for | # j).

o “Crisp” (0-1) approach:

k
H H ¢(z4;0;) = CEM-algorithm

J=1 iERj

(R, indexes of the z;'s assigned to cluster j).



e Noise in real problems = Robust Clustering
e Two robust clustering approaches providing “theoretical well-based
clustering criterion in presence of outliers” (Bock 2002):

¢ Mixture modeling: The noise is fitted through mixture components
(Fraley and Raftery, Peel and McLachlan,...)

¢ Trimming approach: A fraction o of most outlying data is trimmed.
(Gallegos and Ritter, Cuesta-Albertos et al., Garcia-Escudero et al.,
Neykov et al.,...).




e Noise in real problems = Robust Clustering
e Two robust clustering approaches providing “theoretical well-based
clustering criterion in presence of outliers” (Bock 2002):

¢ Mixture modeling: The noise is fitted through mixture components
(Fraley and Raftery, Peel and McLachlan,...)

¢ Trimming approach: A fraction o of most outlying data is trimmed.
(Gallegos and Ritter, Cuesta-Albertos et al., Garcia-Escudero et al.,

Neykov et al.,...).
= We will focus on the trimming approach!!




3.- TCLUST methodology

e Spurious-Outlier Model (Gallegos 2001 and Gallegos and Ritter 2005):

[anxz,uj, || T oo
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o f(xs; p,X) is a p-variate normal p.d.f.
o R = Ué‘?:le contains [n(1 — «)| regular data.

o gy, are some p.d.f.’s for the non-regular data.



e |f no conditions are possed on X;'s = Not a well-defined problem.

e Restrictions are needed:

o Same spherical covariance matrices (i.e., 3; = - I) = Trimmed

k-means (Cuesta-Albertos et al. 1997).

o Same (not necessarily spherical) covariance matrices (¥; = ¥) =
Determinantal criteria (Gallegos and Ritter 2005).

o Different covariances but with equal scales (|X1] = ... = |¥,|) =
Heterogeneous robust clustering (Gallegos 2001, 2003)



e A different constrain:

M, = max max X\(X;)and m, = min min \(¥;),
j=1,..k I=1,....p j=1,...k I=1,....p

where \;(3;) are the eigenvalues of the X;.

e Fix a constant c such that

M,,/m,, < c (Eigenvalues-ratio restriction).

¢ c controls the strength of the restriction:
- ¢ =1 = Trimmed k-means.
- Large ¢ = An almost unrestricted solution.

e It extends Hathaway's restrictions 0% < c - O'J2- for 1 <i,5 <k.



e Weights: We consider group weights 7; € [0, 1].

e | Trimming + Eigenvalue restrictions + Weights = TCLUST

(Garcia-Escudero et al. (2008) Annals of Statistics, 36, 1324-1345)

¢ Existence of both theoretical and sample solutions.
¢ Consistency.
¢ Feasible algorithm.




3. Guidance in choosing k

e Many procedures for choosing k in “crisp” clustering are based on
monitoring the size of the (log-) “likelihoods":

e Examples:

o %; = 02l (k-means) = Friedman and Rubin 1967, Engelman and
Hartigan 1969, Calinski and Harabasz 1974,...
o 3; = X (determinant criterium) = Marriot 1971,...

e Trimmed versions can be also considered = Garcia-Escudero et al 2003.



e Drawback: The log-likelihoods strictly increase when increasing k:

X

Log-likelihoods: -4765.8 (k = 1) < -3530.1 (k = 2)

-3197.7 (k = 3)



e Figure:
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e Solutions:

¢ Searching for an “elbow”.
¢ Nonlinear transformation by Sugar and James 2003.



e The TCLUST does not suffer from this problem:

o Log-likelihoods: -4765.8 (k = 1) < -4203.2 (k = 2)[ = |-4203.2 (k = 3)

e Recall the presence of weights (which can be set to zero) = 73 =0 in
k = 3 solution!.



e The TCLUST does not suffer from this problem:

o Log-likelihoods: -4765.8 (k = 1) < -4203.2 (k = 2)[ = |-4203.2 (k = 3)

e This fact was already noticed by Bryant (1991) when dealing with the
so-called Penalized Classification Maximum Likelihood...




e Importance of the “trimming” and the scatter constrain:

(a) k=3, alpha=0 and large c (b)) k=2, alpha=0.1 and moderate c
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= “o” are trimmed points in the figure on the right.



4.- Classification Trimmed Likelihood Curves

Based on the TCLUST methodology, we monitor:

(o, k) — Lo, k) : anlogﬁj+2210g¢ xz,
Jj=1i€R;

when £ =1,2,... and a € (0,1).

Smallest k such that L(a, k) ~ L(a, k + 1) (for almost every a) = k is
a good choice for the number of groups.

L(a, k) increase very fast till a < ag = g is a good choice for the
trimming level.

They provide information about the group sizes.
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Example 2: 0.3 - N((3?),(#1)) +03-N((2),(4 7)) +03-
N((3).(59))+0.1-N((8),(¥ %)
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Example 3: “The topography of multivariate normal mixtures” (Ray and
Lindsay 2005) = Mixture with 2 components.
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Mixture with 2 components with 3 modes:




5.- Strength of cluster assighments

e Confirmatory tool: Were satisfactory the choices made for k and o7
e The strength of the cluster assignment of observation z; to group j:

A A

Dj(x;,0) = mjp(xs,0;)

o If D(z, ) < ..< D(k)(:z:,é), define some Bayes factors as:

BF (i) = log (Dx—1) (w3 0) /Doy (w3 ).

o Small BF(i) = Clear cluster assignment for the observation x;.



e Bayes factors for trimmed points:

strength:

Given the maximum possible

d; = maxk{ﬂj(b(xi,é?j)} = Dy (s, 9), we have:

71=1,...,

O d(l) S S d([na])

< ... < d(n) =

[na| observations to be trimmed.

o Bayes factors for trimmed data = BF(¢) = log (D 1) (;, é)/d([m})).

o Small BF (i) = More clearly observation i should be trimmed.




e Graphical display I: “Silhouette” plot

(a) k=3 and alpha= 0.1
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e Graphical display Il: “Most Doubtful assignments”
o Label observations i's with BF(i) > log(3/4):
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[PCA, discriminant or Bhattacharyya coordinates (Hennig and Christlieb 2002) ifp > 2...]





