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We investigate the spectral asymptotic properties of the stationary dynamical system
ξt = ϕ(T t(X0)). This process is given by the iterations of a piecewise expanding map
T of the interval [0, 1], invariant for an ergodic probability µ. The initial state X0 is
distributed over [0, 1] according to µ and ϕ is a function taking values in R. We establish
a strong law of large numbers and a central limit theorem for the integrated periodogram
as well as for Fourier transforms associated with (ξt : t ∈ N). Several examples of
expanding maps T are also provided.
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1. Introduction

Over the last decade, the statistical properties of chaotic processes have been inves-
tigated in order to modalize complex systems [1, 2, 15].

More precisely, chaotic dynamical systems such as expanding maps of the inter-
val have been suggested to capture the complexity of packet traffic [15] or to analyze
the measurements of communication traffic from a wide variety of sources [2].

Chaos is the phenomenon by which low order nonlinear dynamical systems
exhibit complex, seemingly random behavior. One can notice that trajectories of
chaotic systems are very often fractal in nature, hence they can be used as conve-
nient generators of fractal structures.

In this paper, we shall focus our attention on the strictly stationary dynamical
system given, for all t ∈ N, by

ξt = ϕ(T t(X0)) = ϕ(Xt), (1)
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where T is a piecewise expanding map [19] of the interval [0, 1], invariant for an
ergodic probability µ. The initial state X0 is distributed over [0, 1] according to µ

and ϕ is a function from [0, 1] to R. Under suitable assumptions on T and ϕ, we shall
establish a strong law of large numbers and a central limit theorem for the integrated
periodogram associated with (ξt : t ∈ N). We shall also prove similar results for
Fourier transforms of (ξt : t ∈ N). We will apply our results to several parametric
Lasota–Yorke maps [19] which are piecewise expanding maps of the interval [0, 1]. It
is well known [6,8,17,20,21] that such maps admit a unique absolutely continuous
invariant measure. One can find very few papers dealing with the problem of the
nonparametric estimation of the invariant density [7, 9, 25]. Our purpose is now
to analyze the spectral asymptotic properties of such chaotic processes. We shall
assume that the process (ξt : t ∈ N) is zero mean and we denote by (γ(t)) its
covariogram defined, for all t ≥ 0, by

γ(t) = Eµ[ξ0ξt]. (2)

The spectral density of (ξt : t ∈ N) is given, for all λ in the torus T = [−π, π[, by

f(λ) =
1
2π

∑
t∈Z

γ(|t|)e−itλ. (3)

If the maps ϕ and T are both continuous and (γ(t)) goes to zero at a polynomial
rate of order > 2, Lopes and Lopes [22] have proven the convergence in distribution
sense of the empirical periodogram to the spectral density f . One can observe that
the periodogram is evaluated on the discrete Fourier frequencies.

More recently, Chazottes, Collet and Schmitt [7] studied the convergence in L
2 of

the empirical spectral distribution for a wide class of dynamical systems, including
piecewise expanding maps of the interval [0, 1] satisfying Devroye’s inequality.

Our approach is totally different. We first propose central limit theorem for
the integrated periodogram of (ξt : t ∈ N), in the spirit of the original work of
Rosenblatt [26]. This result only holds under several conditions on the stationary
process and on its covariogram. We propose projective criteria, expressed with pro-
jective coefficients in the style of Gordin, under which assumptions for the central
limit theorem are satisfied. We next introduce the time reversal process (Yt : t ∈ N)
associated with the underlying process (Xt : t ∈ N). The process (Yt : t ∈ N) is a
Markov chain [4]. One can check that (X0, X1, . . . , Xt) shares the same distribution
as (Yt, Yt−1, . . . , Y0). Via Markov arguments, we show that the projective criteria
are fulfilled for our reversed process (ϕ(Yt) : t ∈ N). Finally, by the use of similar
techniques, we deduce from [30] the asymptotic behavior of Fourier transforms of
(ξt : t ∈ N) defined, for a given real-valued function g and for all θ ∈ R, by

Sn(θ) =
n∑

t=1

g(ξt)eitθ.

The paper is organized as follows. In Sec. 2, we give the central limit theorem
for the integrated periodogram of (ξt : t ∈ N). Section 3 is devoted to the time
reversal Markov chain (Yt : t ∈ N) associated with (Xt : t ∈ N).
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Coefficients of dependence, very useful to measure the dependence structure of
the underlying process (Xt : t ∈ N), are given in Sec. 4. We also propose projective
criteria under which the assumptions of the central limit theorem are satisfied. By
use of (Yt : t ∈ N), we show that the projective criteria are fulfilled so that we get
the central limit theorem for the integrated periodogram of (ξt : t ∈ N). Several
examples of expanding maps T whose reversed process satisfies the projective crite-
ria are provided in Sec. 5. Section 6 is devoted to the asymptotic results concerning
the Fourier transforms of (ξt : t ∈ N) while Sec. 7 deals with the non-stationary
case. Finally, all the technical proofs are postponed to Sec. 8.

2. Integrated Periodogram

We shall now define the integrated periodogram associated with (ξt : t ∈ N) given
by (1) and investigate its asymptotic properties. Assume in the sequel that Eµ[ξ4

0 ]
is finite. The fourth cumulants of (ξt : t ∈ N) are given, for all (r, s, t) ∈ Z

3, by

κ(r, s, t) = Eµ[ξ0ξrξsξt] − Eµ[ξ0ξr]Eµ[ξsξt] − Eµ[ξ0ξs]Eµ[ξrξt] − Eµ[ξ0ξt]Eµ[ξrξs].

By stationarity of the process (ξt : t ∈ N), those cumulants may be defined over Z
3.

It is natural [26, Corollary 1, p. 59] to assume that

γ =
∑
t∈N

γ(t)2 < +∞ and κ =
∑

(r,s,t)∈Z3

|κ(r, s, t)| < +∞. (4)

The empirical periodogram associated with (ξt : t ∈ N) is defined, for all λ ∈ T, by

In(λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

ξte
−itλ

∣∣∣∣∣
2

. (5)

Let (γn(t)) be the empirical covariances given, for all 0 ≤ t ≤ n − 1, by

γn(t) =
1
n

n−t∑
k=1

ξkξt+k

and γn(t) = 0 if t ≥ n. One can easily see from (5) that, for all λ ∈ T

In(λ) =
1
2π

∑
t∈Z

γn(|t|)e−itλ. (6)

It is well known that In(λ) is not a good estimator of f(λ).
It is more appropriate to make use of the integrated periodogram

In(g) =
∫ π

−π

g(λ)In(λ) dλ , (7)

where g belongs to the set of functions

G = {g : T → R, 2π-periodic and continuous with g ∈ L
2(T)}.
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We shall prove the almost sure convergence of In(g) to

I(g) =
∫ π

−π

g(λ)f(λ) dλ

together with a central limit theorem which makes use of the bispectral density
function

f4(λ, µ, ν) =
1

(2π)3
∑

(r,s,t)∈Z3

κ(r, s, t)e−i(rλ+sµ+tν) .

Theorem 1. For all t ∈ N,

lim
n→∞ γn(t) = γ(t) a.s.

In addition, assume that (4) holds and, for all t ∈ N,

∞∑
s=1

(E[(E[ξ0ξs|ξt+s] − γ(t))2])1/2 < ∞ (8)

and

σ2(t) = E[(ξ0ξt − γ(t))2] + 2
∞∑

s=1

E[(ξsξt+s − γ(t))(ξ0ξt − γ(t))] > 0. (9)

Then, for all t ∈ N,

√
n(γn(t) − γ(t)) L→ N (0, σ2(t)). (10)

Furthermore, for all s, t ∈ N, set

σ(s, t) = E[(ξ0ξs − γ(s))(ξ0ξt − γ(t))] + 2
∞∑

r=1

E[(ξrξt+r − γ(t))(ξ0ξs − γ(s))].

Then, for all d ≥ 1 and for arbitrary distinct integers t1, t2, . . . , td ∈ N, we have

{√n(γn(ti) − γ(ti))}1≤i≤d
L→ Nd(0, Γ), (11)

where Γ is the positive definite covariance matrix given by

Γ = (σ(ti, tj))1≤i,j≤d.

Theorem 2. For all g ∈ G,

lim
n→∞ In(g) = I(g) a.s. (12)

In addition, under assumptions (4), (8) and (9), we have the finite dimensional
convergence of {√n(In(g) − I(g)), g ∈ G} to the zero mean Gaussian process
{Z(g), g ∈ G} with covariance given, for all g1, g2 ∈ G by

Γ(g1, g2) = 4π

∫ π

−π

g1(λ)g2(λ)f2(λ)dλ + 2π

∫ π

−π

∫ π

−π

g1(λ)g2(µ)f4(λ,−µ, µ)dλdµ.

Proof. The proof of Theorems 1 and 2 are postponed to Sec. 8.
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3. The Associated Markov Chain

For the process (ξt : t ∈ N), the randomness only enters when setting the initial
state. The analogy with classical process is therefore clearer when considering the
reversed process, for which randomness enters progressively at each step. Starting
from this remark of Barbour et al. [4], we introduce the time reversal process (Yt :
t ∈ N) associated with the underlying process (Xt : t ∈ N) given by (1). First
of all, let L be the operator from L

1([0, 1]) to L
1([0, 1]) given, for all functions

h ∈ L
1([0, 1]) and k ∈ L

∞([0, 1]), by the identity∫ 1

0

L(h)(x)k(x) dx =
∫ 1

0

h(x)k(T (x)) dx.

The operator L is called the Perron–Frobenius operator of T .
Assume that the probability distribution µ is absolutely continuous with respect

to the Lebesgue measure. Denote by fµ the density function associated with µ. Let
I∗ ⊂ [0, 1] be the support of µ and choose a version of fµ such that fµ > 0 on I∗

and fµ = 0 otherwise. One can observe that it is possible to choose L such that
L(fµh)(x) = L(fµh)(x)Ifµ(x)>0. Let K be the Markov kernel associated to T given,
for all x ∈ [0, 1], by

K(h)(x) =
L(fµh)(x)

fµ(x)
Ifµ(x)>0 + µ(h)Ifµ(x)=0. (13)

The time reversal process (Yt : t ∈ N) associated with (Xt : t ∈ N) is a stationary
Markov chain with invariant distribution µ and transition kernel K. It is easy to
check [4] that (X0, X1, . . . , Xt) shares the same distribution as (Yt, Yt−1, . . . , Y0).
Hence, to prove Theorem 1, we study the asymptotic behavior of

√
n

(
1
n

n−t∑
k=1

ϕ(Yk)ϕ(Yt+k) − γ(t)

)
.

Consequently, it is necessary to go further in the study of the reversed process
(Yt : t ∈ N). Denote by BV ([0, 1]) the set of functions

BV ([0, 1]) = {h : [0, 1] → R such that h ∈ L
1([0, 1]), ‖Dh‖ < +∞},

where ‖Dh‖ = |Dh|([0, 1]) stands for the total variation of the distributional deriva-
tive of h on [0, 1]. Of course, if h is absolutely continuous, Dh is a function which
coincides with the pointwise derivative h′ of h. The set BV ([0, 1]) is a Banach space
endowed with the norm ‖h‖v = ‖h‖1+‖Dh‖. In many interesting cases, the spectral
analysis of the Perron–Frobenius operator L in the Banach space BV ([0, 1]) can be
achieved by using the Ionescu–Tulcea and Marinescu theorem [6,18]. Assume that 1
is a simple eigenvalue of L and that the rest of the spectrum is contained in a closed
disk of radius strictly smaller than one. Then, one can find a unique T -invariant
absolutely continuous probability distribution µ whose density function fµ belongs
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to BV ([0, 1]), such that all the powers of the Kernel K can be decomposed for all
x ∈ [0, 1], as

Kn(h)(x) =
Ψn(fµh)(x)

fµ(x)
Ifµ(x)>0 + µ(h)Ifµ(x)=0 (14)

with Ψ(fµ) = 0 and

‖Ψn(h)‖v ≤ cρn‖h‖v (15)

for some 0 < ρ < 1 and c > 0. In addition, assume that

d =
∥∥∥∥ 1

fµ
Ifµ>0

∥∥∥∥
v

< ∞. (16)

It was proven by Dedecker and Prieur [10] that, for any functions h ∈ BV ([0, 1])
and k ∈ L

1([0, 1]),

|Cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1‖h‖v, (17)

where an = αρn with α = 2cd(‖Dfµ‖ + 1).
We refer to the paper of Broise [6] for examples of dynamics T satisfying assump-

tion (15) and to the paper of Morita [24] for sufficient conditions implying assump-
tion (16). Two examples of piecewise expanding maps are detailed in Sec. 5.

4. Coefficients of Dependence

In order to check that the assumptions of Theorem 1 are satisfied, we introduce
coefficients of dependence which allow us to measure the dependence structure of
the reversed process (ϕ(Yt) : t ∈ N). For dynamical systems, and in particular for
piecewise expanding maps of the interval, such coefficients of dependence are closely
related to covariance inequalities.

Definition 1. Let (Zt) be a stationary sequence of zero mean real-valued random
variables. Let F = (Ft) be the filtration given by Ft = σ(Z0, Z1, . . . , Zt) and denote
by Et the conditional expectation with respect to Ft. For any integers 0 ≤ i < j and
k ≥ 0, let Γi,j,k be the set of multiintegers (t1, t2, . . . , tj) such that 0 ≤ t1 ≤ · · · ≤ ti
and ti + k ≤ ti+1 ≤ · · · ≤ tj . For m ∈ {1, 2}, set

θi,j,m(k) = sup
(t1,...,tj)∈Γi,j,k

‖Zt1 · · ·ZtiEti [Zti+1 · · ·Ztj − E[Zti+1 · · ·Ztj ]]‖m. (18)

In the case where m = 1, these coefficients have been first introduced [11] to
derive Esseen’s mean central limit theorems for dependent sequences.

We now give projective criteria using these dependence coefficients under which
the central limit theorem for the integrated periodogram of a stationary process
with mean zero holds.
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Theorem 3. Assume that the reversed process (ϕ(Yt) : t ∈ N) associated to the
process (ξt : t ∈ N) given by (1) satisfies the following three conditions (a), (b) and
(c). Then, (4) and (8) hold true for (ξt : t ∈ N).

(a)
∑∞

k=0θ1,2,1(k) < +∞,

(b) For any 1 ≤ i < j ≤ 4,
∞∑

k=0

kj−2θi,j,1(k) < +∞,

(c)
∑∞

k=1θ0,2,2(k) < +∞.

Proof. The proof of Theorem 3 is postponed to Sec. 8.

Theorem 4. Assume that (15) and (16) hold. Moreover, suppose that ϕ is in
BV ([0, 1]). Then, assumptions (a), (b) and (c) of Theorem 3 are satisfied.

Proof. The proof is given in Sec. 8.

Remark. Under assumptions (15) and (16), we know from Theorems 3 and 4 that
(4) and (8) hold true for (ξt : t ∈ N). But we did not say anything about assumption
(9) of Theorem 1. The case

σ2(t) = E[(ξ0ξt − γ(t))2] + 2
∞∑

s=1

E[(ξsξt+s − γ(t))(ξ0ξt − γ(t))] = 0

is a degenerate case. The result of Theorem 1 still holds but the limit is a Gaussian
law with variance zero. Let us give a simple situation under which we can prove that
we are not in the degenerate case. We know from [26, Chap. III] that the limiting
variance in Theorem 1 satisfies

σ2(t) = lim
n→+∞

1
n

n∑
k=0

n∑
l=0

Cov(ξkξk+t, ξlξl+t). (19)

Let us endow BV ([0, 1]) with the scalar product defined, for all h, k in BV ([0, 1]), by

〈h, k〉µ =
∫ 1

0

h(x)k(x)fµ(x)dx.

For all x ∈ [0, 1] and t ≥ 0, set ht(x) = ϕ(x)ϕ(T t(x)) − γ(t).
Relation (19) can be rewritten as

σ2(t) = lim
n→+∞

1
n

n∑
k=0

n∑
l=0

〈ht(T k), ht(T l)〉µ =
∑
k∈Z

〈ht(T k), ht〉µ.

Hence, it follows from Proposition 7.1 of [6] that, for a piecewise expanding map T ,
if the associated partition is countably infinite, and if assumption (16) is satisfied,
then the limit σ2(t) is strictly positive as soon as the function ϕ is not a con-
stant. The proof relies on Ionescu–Tulcea and Marinescu Theorem on the spectral
decomposition of the Perron–Frobenius operator L associated to T .
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5. Piecewise Expanding Maps

Several examples of expanding maps T satisfying conditions (15) and (16) are given
in [6, p. 11]. We shall now focus our attention on two specific transformations. On
the one hand, for some integer β ≥ 2 and for all x ∈ [0, 1], let

Tβ(x) = βx − [βx]. (20)

This map is commonly called β-transformation. The invariant probability µ is the
Lebesgue measure on [0, 1]. A straightforward calculation leads to

E[X0] =
1
2

and Var(X0) =
1
12

.

Consequently, for all x ∈ [0, 1], we choose ϕ(x) = x− 1/2. It is not hard to see that
for all t ≥ 0

γ(t) =
1

12βt
.

Hence, if we set

σ2 =
β2 − 1

12
,

we deduce via (3) that the spectral density associated with (20) is given, for all
λ ∈ T, by

f(λ) =
σ2

2π(1 + β2 − 2β cos(λ))
.

We can estimate the unknown parameter β by the Yule–Walker estimator

β̂n =
γn(0)
γn(1)

=
∑n

k=1 ξ2
k∑n−1

k=1 ξkξk+1

.

It immediately follows from Theorem 1 that β̂n → β a.s. Furthermore, we have the
decomposition

√
n(β̂n − β) =

√
n

γn(1)

(
γn(0) − γ(0) − γ(0)

γ(1)
(γn(1) − γ(1))

)
.

Consequently, we infer from (11) together with Slutsky’s lemma that

√
n(β̂n − β) L→ N (0, τ2),

where

τ2 = (12β)2(σ2(0) + β2σ2(1) − 2βσ(0, 1)).
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On the other hand, consider the transformation given, for some 0 < a < 1 and for
all x ∈ [0, 1], by

Ta(x) =


x

a
if 0 ≤ x < a,

1 − x

1 − a
if a ≤ x < 1.

(21)

As before, the invariant probability µ is the Lebesgue measure on [0, 1] so that we
also take, for all x ∈ [0, 1], ϕ(x) = x − 1/2. One can easily see [23, p. 26] that for
all t ≥ 0

γ(t) =
1
12

(2a − 1)t.

If

σ2 =
a(1 − a)

6
,

the spectral density associated with (21) is given, for all λ ∈ T, by

f(λ) =
σ2

2π(1 − 2a(1 − a) + (2a − 1) cos(λ))
.

We can estimate the unknown parameter a by the Yule–Walker estimator

ân =
1
2

(
γn(1)
γn(0)

+ 1
)

=
1
2

(∑n−1
k=1 ξkξk+1∑n

k=1 ξ2
k

+ 1

)
.

We immediately deduce from Theorem 1 that ân → a a.s. In addition, one can
observe that

√
n(ân − a) =

√
n

2γn(0)

(
γn(1) − γ(1) − γ(1)

γ(0)
(γn(0) − γ(0))

)
.

Hence, we derive from (11) together with Slutsky’s lemma that
√

n(ân − a) L→ N (0, τ2),

where

τ2 = 36(σ2(1) + (2a − 1)2σ2(0) − 2(2a − 1)σ(0, 1)).

6. Fourier Transforms

In this section, we investigate the asymptotic behavior of Fourier transforms of
(ξt : t ∈ N) given, for all g ∈ BV ([0, 1]) and all θ ∈ R, by

Sn(θ) =
n∑

t=1

g(ξt)eitθ.

We shall assume that the function ϕ belongs to BV ([0, 1]) and that the expand-
ing map T satisfies (15) and (16).
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In addition, we suppose that Eµ[g(ξ0)] = 0 and Eµ[g2(ξ0)] is finite. It is obvious
to realize that Sn(θ) shares the same distribution as

Σn(θ) =
n∑

t=1

g(ϕ(Yt))eitθ,

where (Yt : t ∈ N) is the associated Markov chain of the underlying process (Xt :
t ∈ N). Consequently, we can deduce from [30], which deals with Fourier transforms
of stationary and ergodic Markov chains, the asymptotic behavior of Sn(θ).

Corollary 1. Assume that (15) and (16) are satisfied. Assume, moreover, that g is
in BV ([0, 1]) and satisfies Eµ[g(ξ0)] = 0 and Eµ[g2(ξ0)] is finite. Then, for almost
all θ ∈ R, there exists 0 ≤ σ(θ) < ∞ such that

Sn(θ)√
n

L→ N (0, σ2(θ)Id2). (22)

In addition, for almost all pairs (θ, λ) ∈ R
2, Sn(θ)/

√
n and Sn(λ)/

√
n are asymp-

totically independent. Finally, for almost all θ ∈ R, the spectral density of the process
(g(ξt) : t ∈ N) is given by fg(θ) = σ2(θ)/π.

Corollary 2. Assume that (15) and (16) are satisfied. Assume, moreover, that g

is in BV ([0, 1]) and satisfies Eµ[g(ξ0)] = 0 and Eµ[g2(ξ0)] is finite. Then, for all
θ ∈ [0, 2π[ there exists hθ(ξ0, ξ1) ∈ L

2([0, 1]) such that
n∑

t=1

eitθ(E[g(ξt)|ξ1] − E[g(ξt)|ξ0]) (23)

converges in L
2([0, 1]) to hθ(ξ0, ξ1), as n goes to infinity. In addition, we also have

E[|E[Sn(θ)|ξ0]|2] = o(n). Moreover,

(i) if θ �= 0, π,

Sn(θ)√
n

L→ N (0, σ2(θ)Id2), (24)

where σ2(θ) = E[h2
θ(ξ0, ξ1)]/2;

(ii) if θ = 0 or π,

Sn(θ)√
n

L→ N (0, τ2(θ))

with τ2(θ) = 2σ2(θ).

Proof. The proofs of Corollaries 1 and 2 are postponed to Sec. 8.

Remark. In the last case θ = 0 or π, the result is the central limit theorem stated
for example in [6] with limiting variance given by

τ2(θ) =
∞∑

k=0

〈g(ϕ(T k)), g(ϕ)〉µ.
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7. On the Non-Stationary Case

We shall now focus our attention on the asymptotic behavior of the non-stationary
process (ξ′t : t ∈ N) given, for all t ∈ N, by

ξ′t = ϕ(T t(X ′
0)) = ϕ(X ′

t), (25)

where T is a piecewise expanding map of the interval [0, 1] and ϕ ∈ BV ([0, 1]).
The initial state X ′

0 is not distributed over [0, 1] according to µ but X ′
0 has a

probability density function p ∈ BV ([0, 1]). From a statistical point of view, it is
indeed interesting to carry out the asymptotic analysis of functionals which do not
depend on the unknown invariant density function fµ. In many situations, it is
possible to prove the convergence of the non-stationary case to the stationary one.
To be more precise, let us recall the following inequality [8, 20, 29] on the Perron–
Frobenius operator L in the case where the dynamical system is generated by a
Lasota–Yorke map T . One can find some 0 < δ < 1 and c > 0 such that, for any
n ≥ 0

‖Lnp − fµ‖∞ ≤ cδn. (26)

This result allows us to start from any initial state X ′
0 with probability density

function p ∈ BV ([0, 1]). Let us explain in details what happens in the case of the
periodogram. We know from Sec. 2 that for any t ≥ 0

Sn(t) =
√

n

(
1
n

n−t∑
k=1

ξkξk+t − γ(t)

)
L→ N (0, σ2(t)). (27)

We want to show that

S′
n(t) =

√
n

(
1
n

n−t∑
k=1

ξ′kξ′k+t − γ(t)

)
L→ N (0, σ2(t)). (28)

Denote by H the set of bounded differentiable functions h : R → R with continuous
and bounded derivative. The set H is dense in Cb(R). Hence, it is only necessary to
prove that, for any h ∈ H and t ≥ 0, the difference

∆n(h, t) = E[h(Sn(t)) − h(S′
n(t))]

goes to zero as n tends to infinity. Let h ∈ H and denote θ = ‖h‖∞ and ϑ = ‖h′‖∞.
For any 1 ≤ l ≤ n − t, set

Sn,l(t) =
1√
n

l∑
k=1

ξkξk+t and S′
n,l(t) =

1√
n

l∑
k=1

ξ′kξ′k+t.

As ϕ ∈ BV ([0, 1]), ϕ is bounded by some constant M > 0. Hence, both |Sn,l(t)|
and |S′

n,l(t)| are bounded by M2l/
√

n.
Furthermore, if Rn,l(t) = Sn(t) − Sn,l(t) and R′

n,l(t) = S′
n(t) − S′

n,l(t), we can
deduce from the mean-valued theorem that

|h(Sn(t)) − h(Rn,l(t))| ≤ ϑM2l√
n

and |h(S′
n(t)) − h(R′

n,l(t))| ≤
ϑM2l√

n
.
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Consequently, for any 1 ≤ l ≤ n − t, we obtain that

|∆n(h, t)| ≤ |E[h(Rn,l(t)) − h(R′
n,l(t))]| +

2ϑM2l√
n

.

However,

E[h(Rn,l(t)) − h(R′
n,l(t))] =

∫ 1

0

h(Zn,l(x, t))(fµ(x) − Llp(x)) dx,

where

Zn,l(x, t) =
√

n

(
1
n

n−t−l∑
k=1

ϕ(T k(x))ϕ(T k+t(x)) − γ(t)

)
.

Therefore, we infer from (26) that, for any 1 ≤ l ≤ n − t

|∆n(h, t)| ≤ θcδl +
2ϑM2l√

n
.

Finally, as 0 < δ < 1, we can conclude that, for l large enough, ∆n(h, t) goes to
zero as n tends to infinity.

8. Proofs

8.1. Proof of Theorems 1 and 2

For all t ∈ N, we immediately deduce from the ergodic theorem that γn(t) converges
almost surely to γ(t). Then, the strong law (12) clearly follows from Levy’s theorem
[3, Theorem 2.2, p. 106]. The finite dimensional central limit of Theorem 1 is a
direct application of [26, Theorem 3, p. 58] applied to the reversed process (ϕ(Yt) :
t ∈ N) which is an ergodic strictly stationary sequence with mean zero. Assume
that the process (ξt : t ∈ N) satisfies assumptions (4), (8) and (9). For all t ∈ N,
(X0, X1, . . . , Xt) shares the same distribution as (Yt, Yt−1, . . . , Y0). Consequently,
assumptions (4) and (9) hold for the process (ξt : t ∈ N), they also hold for the
reversed process (ϕ(Yt) : t ∈ N). Moreover, assumption (8) yields

∞∑
s=1

(E[(E[ϕ(Ys)ϕ(Yt+s)|ϕ(Y0)] − γ(t))2])1/2 < +∞ .

Hence, assumptions in [26, Theorem 3, p. 58] are satisfied for the reversed process
(ϕ(Yt) : t ∈ N), which implies the finite dimensional central limit theorem for
(ϕ(Yt) : t ∈ N) and therefore for (ξt : t ∈ N). Finally, we complete the proof of
Theorem 2 by the use of [26, Corollary 2, p. 61].

8.2. Proof of Theorem 3

First of all, we shall prove that the projective criterion (a) implies that γ is finite.
For all t ≥ 0, we have

|γ(t)| = |E[ξ0ξt]| = |E[ϕ(Y0)ϕ(Yt)]| .
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Moreover,

|E[ϕ(Y0)ϕ(Yt)]| = |E[ϕ(Y0)E0[ϕ(Yt)]]| ≤ ‖ϕ(Y0)E0[ϕ(Yt)]‖1 ≤ θ1,2,1(t).

Therefore, if (a) holds,
∞∑

t=0

|γ(t)| ≤
∞∑

t=0

θ1,2,1(t) < +∞

which immediately implies that γ is finite. Next, let us prove that (a) and (b) lead to
κ finite. To prove that the sum κ of the fourth cumulants of the process (ξt : t ∈ N)
is finite, we prove that the sum τ of the fourth cumulants of the reversed process
(ϕ(Yt) : t ∈ N) is finite. For this, we shall proceed by induction as in [12] for strong
mixing processes. It is necessary to introduce some notations. For n ≥ 1 and n

real-valued random variables A1, . . . , An, define

cum(A1, . . . , An) =
∑

(−1)k−1(k − 1)!E[Πi∈ν1Ai] · · ·E[Πi∈νk
Ai], (29)

where ν1, . . . , νk is a partition of (1, 2, . . . , n) and one sums over all these partitions.
Moreover, let ν be a subset of {1, . . . , n} and define Cν = cum(Ai, i ∈ ν).

We have from [26, Chap. II] that

E[A1 · · ·An] =
∑

Cν1 · · ·Cνk
, (30)

where one sums over all partitions ν1, . . . , νk of (1, 2, . . . , n). As (ϕ(Yt) : t ∈ N)
is centered, we get that for all (r, s, t) ∈ N

3, τ(r, s, t) = cum(ϕ(Y0), ϕ(Yr), ϕ(Ys),
ϕ(Yt)). For 2 ≤ p ≤ 4, let

Cp =
∑

0=t1≤···≤tp

|c(t1, · · · , tp)|,

where c(t1, . . . , tp) = cum(ϕ(Yt1), . . . , ϕ(Ytp)).
We already saw that

C2 =
∞∑

t=0

|γ(t)| < +∞.

Our purpose is to show by induction that, under (a) and (b), C4 is finite.
For p ≥ 3 and 0 = t1 ≤ · · · ≤ tp, let r = tm+1 − tm where

m = inf{1 ≤ m < p/tm+1 − tm = max(t2 − t1, . . . , tp − tp−1)}.
One can observe that |c(t1, . . . , tp)| is bounded by

|E[ϕ(Yt1) · · ·ϕ(Ytp)] − E[ϕ(Yt1 ) · · ·ϕ(Ytm)]E[ϕ(Ytm+1 ) · · ·ϕ(Ytp)]| + R (31)

with

R ≤
∑
k �=1

1
k
|E[Πi∈ν1ϕ(Yi)]| · · · |E[Πi∈νk

ϕ(Yi)]|,
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where ν1, . . . , νk is a partition of (t1, . . . , tp) with k �= 1. By use of (30), one can
find some constant M(p) > 0 such that

R ≤ M(p)
∑
k �=1

1
k

max |Cν1 · · ·Cνk
|, (32)

where the maximum is taken over all partitions ν1, . . . , νk of (t1, . . . , tp) with k �= 1.
It follows from (18) that

|E[ϕ(Yt1 ) · · ·ϕ(Ytp)] − E[ϕ(Yt1 ) · · ·ϕ(Ytm)]E[ϕ(Ytm+1 ) · · ·ϕ(Ytp)]| ≤ θm,p,1(r).

(33)

Hence, we can deduce from (31) to (33) that

Cp ≤
∞∑

r=0

rp−2θm,p,1(r) + M(p)
∑
k �=1

1
k

∑
p1+···+pk=p

Cp1 · · ·Cpk
.

The first right-hand term is finite because of (b). In addition, the second right-hand
term is also finite by induction as all pi < p. We can conclude that C4 and τ are
finite.

It remains to prove that (c) implies condition (8). This implication clearly follows
from the fact that for all s, t ≥ 0

E[ξ0ξs|ξt+s] = E[ϕ(Ys)ϕ(Yt+s)|ϕ(Y0)]

and

(E[(E[ϕ(Ys)ϕ(Yt+s)|ϕ(Y0)] − γ(t))2])1/2 ≤ θ0,2,2(s)

which completes the proof of Theorem 3.

8.3. Proof of Theorem 4

In order to prove Theorem 4, assume that ϕ ∈ BV ([0, 1]) and let C = ‖Dϕ‖.
Denote by BV1([0, 1]) the subset of all functions h ∈ BV ([0, 1]) whose bounded
variation norm is smaller than 1, that is ‖Dh‖ ≤ 1. As ϕ is bounded by some
constant M > 0, it follows from (18) that for any integers 0 ≤ i < j, k ≥ 0 and for
any t = (t1, t2, . . . , tj) ∈ Γ = Γi,j,k and m ∈ {1, 2},
θi,j,m(k) = sup

t∈Γ
‖ϕ(Yt1) · · ·ϕ(Yti )Eti [ϕ(Yti+1) · · ·ϕ(Ytj ) − E[ϕ(Yti+1) · · ·ϕ(Ytj )]]‖m

≤ sup
t∈Γ

‖ϕ(Yt1) · · ·ϕ(Yti )Eti [ϕ(Yti+1) · · ·ϕ(Ytj ) − E[ϕ(Yti+1) · · ·ϕ(Ytj )]]‖∞
≤ M i sup

t∈Γ
‖Eti [ϕ(Yti+1) · · ·ϕ(Ytj ) − E[ϕ(Yti+1 ) · · ·ϕ(Ytj )]]‖∞

≤ M iCj−iΦj−i(k), (34)
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with Fti = σ(ϕ(Y0), . . . , ϕ(Yti)) ⊂ Gti = σ(Y0, . . . , Yti),

Φj−i(k) = max
1≤l≤j−i

sup
ti+k≤ti+1≤···≤ti+l

φ(Gti , Yti+1 , . . . , Yti+l
),

φ(Gti , Yti+1 , . . . , Yti+l
) = ‖∆il‖∞,

∆il = sup

∣∣∣∣∣EGti

[
l∏

s=1

(ϕs(Yti+s)−E[ϕs(Yti+s)])

]
−E

[
l∏

s=1

(ϕs(Yti+s)−E[ϕs(Yti+s)])

]∣∣∣∣∣,
where one takes the supremum over all functions ϕ1, . . . , ϕl ∈ BV1([0, 1]) and where
EGti

is the conditional expectation with respect to Gti . Under assumptions (15) and
(16), we have for any h ∈ BV ([0, 1]),

‖DKn(h)‖ = ‖DKn(h − h(0))‖ ≤ 2d‖Ψn(fµ(h − h(0)))‖v,

≤ 4αρn‖Dh‖,

where α = 2cd(‖Dfµ‖ + 1). Hence, we find using exactly the same lines as [10,
Lemma 1] that for all k ≥ 0

Φ3(k) ≤ 2α(1 + β + β2)ρk (35)

with β = 4α. For any integers 0 ≤ i < j, one can deduce from the definition of Φj−i

that, for all k ∈ N,

Φ1(k) ≤ Φ2(k) ≤ Φ3(k) .

Therefore, under assumptions (15) and (16) of Theorem 4, it clearly follows from
(34) and (35) that for 0 ≤ i < j ≤ 4, m ∈ {1, 2}, the coefficients θi,j,m(k) decrease
exponentially fast to zero as k tends to infinity. Hence the three conditions of
Theorem 3 are satisfied, which concludes the proof of Theorem 4.

8.4. Proof of Corollary 1

Corollary 1 immediately follows from Theorem 1 and Proposition 2 of [30]. More
precisely, we have to check that condition (2) in [30] is satisfied, so that

∞∑
t=1

1
t
E[(E[g(ϕ(Yt))|ϕ(Y0)])2] < ∞.

For all t ≥ 0, we have

E[(E[g(ϕ(Yt))|ϕ(Y0)])2] ≤ θ2
0,1,2(t).

In addition, under (15) and (16), θ0,1,2(t) goes exponentially fast to zero as t

tends to infinity. Hence, condition (2) in [30] is satisfied.
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8.5. Proof of Corollary 2

For θ = 0, π, Corollary 2 follows from the classical central limit theorem for partial
sums. It is stated for example in [6]. For θ �= 0, π, Corollary 2 can be proven by use
of Theorem 2 of [30].

More precisely, we have to check that condition (7) in [30] is satisfied, so that
∞∑

t=1

‖E[g(ϕ(Yt))|ϕ(Y1)] − E[g(ϕ(Yt))|ϕ(Y0)]‖2 < +∞.

By the triangular inequality, ‖E[g(ϕ(Yt))|ϕ(Y1)] − E[g(ϕ(Yt))|ϕ(Y0)]‖2 is
bounded by

‖E[g(ϕ(Yt))|ϕ(Y1)]‖2 + ‖E[g(ϕ(Yt))|ϕ(Y0)]‖2 . (36)

Both right-hand terms in inequality (36) decrease exponentially fast to zero as t

tends to infinity, which concludes the proof of Corollary 2.
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16. M. Fréchet, Sur la distance de deux lois de probabilité, C. R. Acad. Sci. Paris 244
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