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Abstract

For Bienaym�e–Galton–Watson processes in adaptive tracking situations, we establish asymptotic results for weighted
estimators of the mean and the variance of the o�spring distribution. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

Consider the Bienaym�e–Galton–Watson (BGW) process with adaptive control

Xn+1 =
Xn+Un∑
i=1

Yn; i; (1)

where the o�spring distribution (Yn; i) is a sequence of i.i.d. nonnegative, integer-valued random variables with
�nite mean m and �nite variance �2. The BGW process without control has been extensively studied in the
literature (see e.g. Guttorp, 1991, and the references therein). The purpose of this note is to add an adaptive
control to the BGW process in order to estimate the unknown parameters m and �2. By the same token, the
adaptive control also forces the BGW process to track, step by step, a given reference trajectory.
Let F=(Fn) be the natural �ltration of the model. The control (Un) is a sequence of integer-valued random

variables adapted to F such that, whatever the value of n ∈ N, Xn + Un¿1. The initial variables X0 and U0
can be arbitrarily chosen. Our only assumption is that they are square-integrable and independent of (Yn; i).
Rewrite (1) as the autoregressive form

Xn = man + �n; an = Xn−1 + Un−1; (2)
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where �n=Xn−man. Clearly, (�n) is a martingale di�erence sequence adapted to F with E[�2n |Fn−1]=�2an. In
order to estimate m, we propose the weighted least-squares estimator m̂n that minimizes the quadratic criterion

n∑
k=0

a−1k (Xk − mak)2:

Consequently, we obviously have

m̂n = A−1n
n∑
k=1

Xk where An =
n∑
k=1

ak : (3)

Set

bn =
an
An

and Bn =
n∑
k=1

bk :

We �rst give three useful lemmas which immediately follow from the strong law of large numbers for
martingales. See Neveu (1972, Proposition 7.2.4), Du
o (1997, Theorem 1.3.24 and Theorem 4.3.16) and
Wei (1987, Theorem 1).

Lemma 1. Assume that

lim
n→∞ An =+∞ a:s: (4)

Then, m̂n is a strongly consistent estimator of m and for all 
¿ 0

|m̂n − m|2 = o
(
(logAn)1+


An

)
a:s:;

n∑
k=1

ak(1− bk)(m̂k−1 − m)2 = o((logAn)1+
) a:s:

In addition, if (Yn; i) has a �nite moment of order ¿ 2, then

|m̂n − m|2 = O
(
logAn
An

)
a:s:; (5)

1
Bn

(
An(m̂n − m)2 +

n∑
k=1

ak(1− bk)(m̂k−1 − m)2
)

→ �2 a:s: (6)

Remark 1. The assumption (4) always holds since an¿1 so that An¿n.

2. Adaptive tracking

The goal of adaptive tracking is to �nd a control sequence (Un) that forces the BGW process (Xn) to follow
a given reference trajectory (xn). We assume that (xn) is a predictable sequence of nonnegative, integer-valued
random variables. We have from (2)

Xn − xn = �n + �n; (7)
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where �n=man−xn. The performance of the tracking can be evaluated by the average weighted cost sequence
(Cn) de�ned by

Cn =
1
n

n∑
k=1

a−1k (Xk − xk)2: (8)

The adaptive tracking is said to be optimal on average if Cn converges a.s. to �2. In order to estimate the
variance �2, we can also propose

�n =
1
n

n∑
k=1

a−1k (Xk − m̂k−1ak)2; �n =
1
n

n∑
k=1

a−1k (Xk − m̂kak)2:

Lemma 2. If �n = 1
n

∑n
k=1 a

−1
k �

2
k , then we always have

|Cn − �n|=O
(
1
n

n∑
k=1

a−1k �
2
k

)
a:s: (9)

In addition, if (Yn; i) has a �nite moment of order ¿ 2, then

lim inf
n→∞ Cn¿�2 a:s: (10)

with equality if and only if
∑n

k=1 a
−1
k �2k = o(n) a.s.

Lemma 3. Assume that (4) is satis�ed with lim supn→∞(an=An)¡ 1 a.s. Then, for all 
¿ 0

|�n − �n|= o
(
(logAn)1+


n

)
; |�n − �n|= o

(
(logAn)1+


n

)
a:s:

In addition, if (Yn; i) has a �nite moment of order ¿ 2, then

|�n − �n|=O
(
logAn
n

)
; |�n − �n|=O

(
logAn
n

)
a:s: (11)

Remark 2. If (Yn; i) has a �nite moment of order �¿ 2, then we have by Chow’s Theorem (Chow, 1965)
together with Kronecker’s Lemma

|�n − �2|= o
(
�n
n

)
a:s:

where (�n) is a positive deterministic sequence such that

∞∑
n=1

(
1
�n

)�=2
¡+∞:

We can choose, for example, �n = n� with 2�−1¡�¡ 1. Moreover, if (Yn; i) has a �nite moment of order
¿ 4, then

|�n − �2|2 = O
(
log n
n

)
a:s:

The choice of the adaptive control sequence (Un) is crucial. From relation (7), if the parameter m were known,
we would choose Un such that �n+1 be as close as possible to zero i.e. Un=P(m−1xn+1)−Xn where P denotes
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the projection operator on N. Therefore, we propose to make use of the adaptive tracking control

Un =



1− Xn if P(m̂−1

n xn+1) = 0;

P(m̂−1
n xn+1)− Xn otherwise:

(12)

3. Main results

Theorem 4. Assume that (Yn; i) has a �nite moment of order ¿ 2 and that (xn) converges a.s. to an integer
x¿0. If we use the adaptive control given by (12), then m̂n is a strongly consistent estimator of m

|m̂n − m|2 = O
(
log n
n

)
a:s: (13)

In addition, if �=max(1; P(m−1x)), then we have the central limit theorem

√
n(m̂n − m) L→N

(
0;
�2

�

)
; (14)

the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)
(m̂n − m)2 = �

2

�
a:s: (15)

and the quadratic strong law

lim
n→∞

1
log n

n∑
k=1

(m̂k − m)2 = �
2

�
a:s: (16)

Theorem 5. Assume that (Yn; i) has a �nite moment of order ¿ 2 and that (xn) converges a.s. to an integer
x¿0. If we use the adaptive control given by (12), then �n and �n are both strongly consistent estimators
of �2

|�n − �n|=O
(
log n
n

)
; |�n − �n|=O

(
log n
n

)
a:s: (17)

More precisely

lim
n→∞

n
log n

(�n − �n) = �2; lim
n→∞

n
log n

(�n − �n) =−�2 a:s: (18)

Therefore, assume that (Yn; i) has a �nite moment of order ¿ 4. Denote by �4 the fourth-order centered
moment of (Yn; i) and set � = �−1�4 + (2 − 3�−1)�4. Then we have, for (�n) as for (�n), the central limit
theorem

√
n(�n − �2) L→N(0; �); (19)

the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)
(�n − �2)2 = � a:s: (20)

and the quadratic strong law

lim
n→∞

1
log n

n∑
k=1

(�k − �2)2 = � a:s: (21)
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Remark 3. First, if (Yn; i) has only a �nite moment of order 2, then (13) and (17) hold replacing the con-
vergence rates O(log n=n) by o((log n)1+
=n) for all 
¿ 0. Next, the tracking is residually optimal since (Cn)
converges a.s. to �2 + � where �= �−1(m� − x)2 which di�ers from zero except for x ∈ mN∗. Therefore, in
order to obtain the tracking optimality, we have to require more on (xn).

Theorem 6. Assume that (Yn; i) has a �nite moment of order ¿ 2. Choose the reference trajectory (xn) such
that

xn = m̂n−1zn; (22)

where (zn) is a predictable sequence of positive integer-valued random variables which converges a.s. to a
positive integer z. If we use the adaptive control given by (12), then m̂n is a strongly consistent estimator of
m and relations (13)–(16) hold replacing � by z. In addition, (17) and (18) are also valid and the tracking
is optimal

|Cn − �n|=O
(
log n
n

)
a:s: (23)

More precisely

lim
n→∞

n
log n

(Cn − �n) = �2 a:s: (24)

Finally, assume that (Yn; i) has a �nite moment of order ¿ 4. Then, relations (19)–(21) hold for (Cn), (�n)
and (�n) replacing � by z in the de�nition of �.

4. Proofs

Proof of Theorem 4. We always have an¿1 so that An¿n and (m̂n) converges a.s. to m. Therefore, (an)
and (An=n) both converge a.s. to � =max(1; P(m−1x)). Thus, (13) immediately follows from (5). Moreover,
assume that (Yn; i) has a �nite moment of order �¿ 2. From (1) and Rosenthal’s inequality (see Petrov, 1995,
Theorem 2.12), we have for all n¿1; E[|�n|�|Fn−1] = O(a

�=2
n ) so that

n∑
k=1

E[|�k |�|Fk−1] = O(n) a:s:

Consequently, the Lindeberg’s condition is satis�ed (see Du
o, 1997, p. 48). Hence, we deduce (14) from the
martingale central limit Theorem (see Brown, 1971, Theorem 2). In addition, (15) follows from the martingale
law of iterated logarithm (see Stout, 1970, Theorems 1 and 2 and Du
o, 1997, Corollary 6.4.25). Furthermore,
(nbn) converges a.s. to 1 so that Bn ∼ log n a.s. Therefore, since

An(m̂n − m)2 = o(log n) a:s:

we obtain from (6) that

lim
n→∞

1
log n

n∑
k=1

ak(m̂k−1 − m)2 = �2 a:s: (25)

which directly implies (16).

Proof of Theorem 5. We have seen that (An=n) converges a.s. to �. Hence, (11) immediately implies (17).
On the one hand, we have

Xn − m̂n−1an = an(m− m̂n−1) + �n:
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Consequently,

n(�n − �n) =
n∑
k=1

ak(m̂k−1 − m)2 + Rn; (26)

where Rn=o(log n) a.s. by (25). Therefore, again by (25) and (26), we obtain the �rst convergence of (18).
On the other hand, we also have

Xn − m̂nan = an(1− bn)(m− m̂n−1) + (1− bn)�n:
Consequently,

n(�n − �n) =
n∑
k=1

ak(1− bk)2(m̂k−1 − m)2 − 2Pn + Qn + Rn (27)

where Rn = o(log n) a.s. by (25) and

Pn =
n∑
k=1

a−1k bk�
2
k ; Qn =

n∑
k=1

a−1k b
2
k�
2
k :

From Chow’s Theorem (Chow, 1965) together with Kronecker’s Lemma, we have

lim
n→∞

1
log n

Pn = �2 a:s: (28)

In addition, (Qn) converges a.s. to a �nite positive random variable. Therefore, since bn=o(1) a.s., the second
convergence of (18) follows from (25), (27) and (28). Furthermore, set

Mn = n(�n − �2) =
n∑
k=1

Wk; Wn = a−1n �
2
n − �2:

From (1), E[�4n |Fn−1] = an�4 + 3an(an − 1)�4 so that E[W 2
n |Fn−1] = a−1n �

4 + (2− 3a−1n )�4 where �4 is the
fourth order centered moment of (Yn; i). Thus, (Mn) is a square-integrable martingale with increasing process
(〈M 〉n) such that

lim
n→∞

〈M 〉n
n

= � a:s:;

where � = �−1�4 + (2 − 3�−1)�4¿ 0. If (Yn; i) has a �nite moment of order �¿ 4, we also have from (1)
and Rosenthal’s inequality

n∑
k=1

E[|Wk |�=2 |Fk−1] = O(n) a:s:

Consequently, as in the proof of Theorem 4, Lindeberg’s condition is satis�ed. Hence, we obtain from the
martingale central limit Theorem

1√
n
Mn

L→N(0; �);
√
n(�n − �2) L→N(0; �): (29)

Relation (19) clearly follows from (17) and (29). In addition, by the martingale law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)
(�n − �2)2 = � a:s: (30)
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Thus, we directly obtain (20) by (17) and (30). Finally, from Du
o (1997, Theorem 4.3.16) together with
(30), we �nd that

lim
n→∞

1
log n

n∑
k=1

(
Mk
〈M 〉k

)2
= �−1; lim

n→∞
1
log n

n∑
k=1

(
Mk
k

)2
= � a:s:

lim
n→∞

1
log n

n∑
k=1

(�k − �2)2 = � a:s: (31)

Therefore, (18) and (31) imply (21) completing the proof of Theorem 5.

Proof of Theorem 6. We always have from (12) together with (22), an = zn so that (an) and (An=n) both
converge a.s. to z. Thus, we prove Theorem 6 exactly as before except for relations involving (Cn). In fact,
from (2) and (22), those relations have been already proved since Xn− xn=Xn− m̂n−1an so that Cn=�n:
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