
A Mixed Integer Linear Programming approach to
minimize the number of late jobs with and without

machine availability constraints

Boris Detienne

Institut de Mathématiques de Bordeaux - Université Bordeaux 1
Team RealOpt - INRIA Bordeaux Sud-Ouest, France

Abstract

This study investigates scheduling problems that occur when the weighted num-
ber of late jobs that are subject to deterministic machine availability constraints
have to be minimized. These problems can be modeled as a more general job
selection problem. Cases with resumable, non-resumable, and semi-resumable
jobs as well as cases without availability constraints are investigated. The pro-
posed efficient mixed integer linear programming approach includes possible
improvements to the model, notably specialized lifted knapsack cover cuts. The
method proves to be competitive compared with existing dedicated methods:
numerical experiments on randomly generated instances show that all 350-job
instances of the test bed are closed for the well-known problem 1|ri|

∑
wiUi.

For all investigated problem types, 98.4% of 500-job instances can be solved to
optimality within one hour.

Keywords: Scheduling, Integer programming, Modeling, Availability
constraints, Late jobs, Exact method

1. Introduction

Even though most scheduling problems assume that a job can be processed
anytime after its release date, an increasing number of research papers inves-
tigate scheduling problems that are subject to machine or job availability con-
straints. In this context, machines or jobs may be unavailable for processing
during given time intervals. Such constraints appear [Sch00, KBF+02, MSCK09,
HDV12, MKSC13] in the cases of joint production and maintenance manage-
ment (where preventive maintenance or periodic repair tasks limit the usage
time of machines), operating systems for mono and multi-processors (where
high priority tasks interfere with low priority programs) or when implementing

Email address: boris.detienne@u-bordeaux1.fr (Boris Detienne)

Preprint submitted to Elsevier October 9, 2013

rolling time horizon approaches (where decisions taken for a first time horizon
are considered as fixed for the consecutive overlapping time horizon). . .

The problems investigated in this paper are defined by a set I = {J1, . . . , Jn}
of n jobs. Each job Ji is characterized by a release date ri, a due date di, a
processing time pi, and a weight wi. All jobs must be processed on a single
machine so that the weighted number of late jobs is minimized. A job cannot
be preempted by another one: if a job starts on the machine, no other job
can start until the first one completes. Additional input consists of a set of
K time intervals [Bs, Fs], s ∈ {1, . . . ,K}, when the machine is unavailable.
Moreover, we add two fictitious unavailability periods 0 and K + 1 with no loss
of generality, such that B0 = F0 = 0 and BK+1 = FK+1 = ∞. All data are
integers and deterministic.

We investigate different job behaviors in terms of unavailability constraints.
First, jobs are said to be non-resumable, according to the classification of
[MCZ10]: if a job has started but has not completed before an unavailabil-
ity period, it must be restarted from zero after the unavailability period. This
problem is denoted by 1, hk|ri, nr − a|

∑
wiUi in standard three-field notation

[GLL+79]. Conversely, jobs may be resumable: a job may start before an un-
availability period and be resumed thereafter. In this case, the completion of
the job is simply postponed for the duration of the unavailability periods crossed
by the job. This problem is denoted by 1, hk|ri, r − a|

∑
wiUi. A third type of

problem allows jobs to be resumed after an unavailability period at the expense
of an additional setup time. Two variations are possible for this feature, which
we refer to as semi-resumable jobs: according to [Lee99], interrupted jobs must
be partially restarted after an unavailability period, occupying the machine for
a time which is proportional to the duration of the job that has already been
processed. In this paper, we address a variation of this feature for which the ad-
ditional setup time is fixed and job-dependent, analogous to the work of [GL99].
More precisely, the setup duration is equal to min(αi, Bs+1−Fs), where αi is a
fixed setup time related to job Ji. The hypothesis is motivated by the following:
The industrial process does not require partial job reprocessing in many real-
life situations, especially in the case of preventive and planned maintenance.
Instead, the machine requires a setup operation, whose duration only depends
on the job to be resumed. An example of this kind of requirement is encountered
in the corrugated cardboard industry following the periodic cleaning operations
of cutting devices. These setup times are implicitly included in job process-
ing times when no maintenance activities are considered. Also, sometimes a
setup operation following Fs will not be completed before Bs+1, and another
setup time will be performed after Fs+1. Therefore, in many practical situa-
tions, the job will simply be deferred until Fs+1. According to the classification
of [ANCK08], these are referred to as non-batch sequence-independent setup
times. The problem is denoted by 1, hk|ri, STsi|

∑
wiUi, of which problems

1, hk|ri, r − a|
∑
wiUi and 1|ri|

∑
wiUi are clearly special cases.

This paper aims to provide a generic mixed integer linear programming
(MILP) approach to solve problems 1, hk|ri, nr−a|

∑
wiUi and 1, hk|ri, STsi|

∑
wiUi

and their special cases 1, hk|ri, r−a|
∑
wiUi and 1|ri|

∑
wiUi. Because problem

2

1|ri|
∑
wiUi is strongly NP-hard [GLL+79], so are the other problems. To the

best of our knowledge, to date no published work proposes an exact solution
approach for cases with availability constraints, nor an efficient MILP approach
for 1|ri|

∑
wiUi.

Our paper is structured as follows: Section 2 contains a brief literature re-
view for related scheduling problems. Section 3 describes the general scheduling
problem (STWP) of selecting and scheduling jobs that are subject to time
windows and group constraints on parallel machines; three MILP models are
proposed. Section 4 presents valid inequalities and bound tightening results
to improve these models. In particular, we use one of the MILP formulations
to derive lifted knapsack cover cuts, which are also valid for the other mod-
els. We propose two specialized lifting procedures, embedding a subset of the
specific constraints of STWP to yield stronger cuts. Section 5 describes how
problems 1, hk|ri, nr − a|

∑
wiUi and 1, hk|ri, STsi|

∑
wiUi can be converted

into STWP . Moreover, we show that problem 1, hk|ri, r− a|
∑
wiUi is equiva-

lent to 1|ri|
∑
wiUi, which proves some complexity results. Our method proves

to be reasonably competitive compared with existing dedicated methods: in
Section 6, numerical experiments on randomly generated instances show that
most (98.4%) 500-job instances can be solved to optimality within one hour for
all investigated problem types. For the well-known problem 1|ri|

∑
wiUi, all

350-job instances are closed and only one (resp. four) 400-job instance (resp.
500-job instances) remains open. Section 7 discusses possible extensions and
improvements to this work. Finally, an Appendix provides details concerning
the dynamic programming algorithms used by the lifting procedures.

2. Literature review

The problem of minimizing the (weighted) number of late jobs on one ma-
chine has been studied extensively. For the general case 1|ri|

∑
wiUi, [DP95,

DPS02] present lower bounds and heuristics and [BPP03, PPR03, Sad08] de-
scribe algorithms to solve the problem to optimality. To our knowledge, the
best known exact algorithms have been contributed by [MB07] for the weighted
case and by [KSJH12] for the unweighted case 1|ri|

∑
Ui. These methods make

it possible to solve instances with up to 200 and 300 jobs, respectively. [BS09]
present a generic MILP model for total cost scheduling problems with piecewise
linear objective functions. According to their numerical experiments, this very
general model does not perform as well as existing dedicated approaches.

Concerning only the case of deterministic machine availability constraints
(when unavailability periods are perfectly known in advance), [MCZ10] gathers
more than 90 research papers. Interestingly, only one paper mentioning the
minimization of the number of late jobs is referenced in this survey: [Lee96]
shows that 1, h1|r−a|

∑
Ui is polynomial and that Moore-Hodgson’s algorithm

[Moo68] leads to an absolute error of 1 to solve the problem 1, h1|nr−a|
∑
wiUi.

Another survey [Sch00] cites [LM89], who studies the minimization of the num-
ber of late jobs on two machines whose speeds can vary (and possibly be null)
over time if preemption is allowed. [Che09], who studies a special case of

3

1, hk|nr−a|
∑
Ui in which unavailability intervals correspond to periodic main-

tenance, develops a branch-and-bound to optimally solve instances with up to
32 jobs. [ZOW14] studies the Order Acceptance and Scheduling problem with
such constraints, which is an extension of the problem.

Semi-resumable jobs with non-batch sequence-independent setup times were
studied in [GL99], where the authors consider both job and maintenance plan-
ning for problems 1|STsi|Lmax and 1|STsi|

∑
wiCi. The study provides com-

plexity results and algorithms for some polynomial and ordinary NP-hard spe-
cial cases. [LC02] and [LC04] investigate problems 1|STsi, pmnt, ri|Dmax and
1|STsi, pmnt, ri|

∑
wiCi, where a fixed setup time occurs after each job preemp-

tion. A special case of STWP is studied in [SW06], where the authors combine
MILP and constraint programming techniques to solve R|ri, di|

∑
cij , for which

jobs have to be assigned to machines so that the assignment cost is minimized
and all jobs are processed within their respective time window. The authors
report success for instances with up to nine machines and 54 jobs.

3. The problem of scheduling jobs with time windows

This section describes the problem of selecting jobs with time windows on
parallel processors (STWP), which is solved with the help of an efficient mixed
integer linear program.

3.1. Definition

An instance of STWP is defined by the following data:

• A set I = {J1, . . . , JnI
} of nI jobs;

• A partition G of I into nG disjoint groups: G = {G1, . . . , GnG
};

• A set M = {M1, . . . ,MnM
} of nM machines;

• For each job Ji ∈ I, the following integers are given: a release date ri, a
deadline d̄i, a processing cost wi, a processing time pi, and a processing
machine mi.

A feasible solution of this instance of STWP satisfies the following constraints:
For each group Gg, g ∈ {1, . . . , nG}, exactly one job in Gg must be processed.
Processing job Ji, i ∈ {1, . . . , nI} generates a cost wi. If it is selected, job Ji
must be processed on machine Mmi without preemption within its processing
time window [ri, d̄i]. The objective is to minimize the total processing cost.

This problem clearly generalizes the problem of minimizing the number of
tardy jobs on parallel machines (P ||

∑
Ui); it is NP-hard in the strong sense

[GJ79] when the number of machines is arbitrary.

4

3.2. Characterizing feasible job selections

This section introduces a dominance property for optimal schedules of STWP .
It is a generalization of a result proposed in [DDY11], where the authors present
MILP models to minimize a regular step cost function of job completion times
on parallel machines. A similar principle was also used in [DPS02] to mini-
mize the number of late jobs on a single machine. Their prior work and our
current investigation are both based on the idea of inducing a strict order on
the set of processed jobs to derive strong MILP models by greatly simplifying
the expression of both conjunctive and disjunctive constraints. However, these
two approaches lead to different dominant orders as well as different models
resulting in different possible improvements.

The core idea can be seen as an extension of the earliest deadline first (EDF)
rule [Jac55], which is dominant in the special case of jobs with equal release
dates. Additional virtual jobs are added to the instance data in order to obtain
a similar result when release dates are arbitrary. Formally, for each job Ji ∈ I,
the set of associated virtual jobs is defined by

Hi = {Jh(i,j)|Jj ∈ I,mi = mj , ri < rj , d̄i > d̄j , ri + pi + pj ≤ d̄j}.

In this expression, h(i, j) denotes the index of the unique virtual job created
to represent the processing of job Ji before job Jj when their time windows are
not agreeable. For each virtual job Jh(i,j), Ji ∈ I, Jj ∈ I − {i}, Jh(i,j) ∈ Hi, we
define h−1(h(i, j)) = j, and for each actual job Ji ∈ I, h−1(i) = ∅. Each job
Jl ∈ Hi, i ∈ {1, . . . , nI} has the following characteristics: rl = ri, d̄l = d̄h−1(l),
pl = pi, wl = wi, and ml = mi.

The enhanced set of jobs is denoted by I ′ = I ∪ (∪nI
i=1Hi), and we set

nI′ = |I ′|. The new problem is also characterized by enhanced groups of jobs:
G′ = {G′1, . . . , G′nG

}, with G′g = Gg ∪ (∪Ji∈GgHi), g ∈ {1, . . . , nG}. Also, let
I ′m = {Ji ∈ I ′|mi = m}, m ∈ {1, . . . , nM} be the set of jobs that can be
processed on machine Mm, and let G′mg = G′g ∩ I ′m be the set of jobs from
group G′g that can be processed on machine Mm.

Proposition 1. Consider an instance Ω of STWP and the corresponding en-
hanced set of jobs I ′. There is at least one optimal solution to Ω such that, on
each machine, selected jobs are scheduled according to a non-decreasing order
of their deadlines, with ties being broken according to a non-decreasing order of
their release dates.

Proof. Consider an optimal schedule S, and focus on a single machine Mm.
Let Ji and Jj be two jobs processed consecutively on Mm (Ji precedes Jj).
Let Ci (resp. Cj) denote the completion time of Ji (resp. Jj) in S. Observe
that active schedules are dominant for STWP . We therefore assume that each
selected job starts as soon as possible. Concerning the positions of Ji and Jj
with respect to their release dates and deadlines, the three following cases can
occur:

• Case 1: d̄i < d̄j or (d̄i = d̄j and ri < rj). Ji and Jj are scheduled
according to a non-decreasing order of their deadlines.

5

• Case 2: d̄i ≥ d̄j and ri ≥ rj . Consider a schedule S′, built from S by
swapping Ji and Jj . Both Ji and Jj clearly meet their deadlines in S′.
Moreover, Ji completes no later in S′ than Jj in S, so that the latest part
of the schedule is not modified. Because the set of selected jobs does not
change, the cost of S′ equals the cost of S, and S′ is optimal. Finally, Ji
and Jj are scheduled in the desired order.

• Case 3: d̄i > d̄j and ri < rj . First, note that ri + pi + pj ≤ d̄j because S
is feasible. Then, by construction, there exists a job Jk with k = h(i, j),
such that mk = m, rk = ri, d̄k = d̄j , pk = pi, and wk = wi. Consider
the schedule S′ built from S by selecting Jk instead of Ji and placing it
at the same position on machine Mm. Because both jobs have the same
release date and processing time, the completion time of other jobs does
not change; all jobs still meet their deadlines. Because C ′k = Ci and
Ci < Cj ≤ d̄j , we have C ′k < d̄k. And because Jk and Ji belong to the
same group Gg and possess the same processing cost, S′ is feasible and
also optimal. Finally, Jk and Jj are scheduled in the desired order.

3.3. Generalized existing ILP models

The following two ILP models are generalizations of models described in
[DDY11]. In order to build them, assume that, for each machine Mm ∈ M ,
(virtual and real) jobs that can be processed on Mm are sorted according to a
non-decreasing order of their deadlines, with ties being broken according to an
arbitrary non-decreasing order of their release dates. Additionally, let σm(k)
be the index of the kth job that can be processed on Mm. For the sake of
readability, let us introduce the following notation: rmk = rσm(k) is the release

date of the kth job on machine Mm. We use a similar notation for durations,
deadlines, and weights. Then, problem STWP can be expressed as follows:

(A) min

nM∑
m=1

|I′m|∑
k=1

wmk x
m
k (1)

nM∑
m=1

∑
k|Jk∈G′mg

xmk = 1 g = 1, . . . , nG (2)

tmk − (rmk + pmk)xmk ≥ 0 m = 1, . . . , nM , k = 1, . . . , |I ′m| (3)

tmk − tmk−1 − pmk xmk ≥ 0 m = 1, . . . , nM , k = 2, . . . , |I ′m| (4)

0 ≤ tmk ≤ d̄mk m = 1, . . . , nM , k = 1, . . . , |I ′m| (5)

xmk ∈ {0, 1} m = 1, . . . , nM , k = 1, . . . , |I ′m| (6)

In this model, the variable tmk denotes the completion time of the kth job on
machine Mm, if it is processed. Otherwise, it is a lower bound of the starting
time of the next processed job. Variable xmk is equal to 1 if and only if the
kth job on machine Mm is processed, or else it is equal to 0. Constraints (2)
ensure that exactly one job of each group is selected. Constraints (3) state that

6

each job cannot start before its release date, whereas Constraints (4) express
the resource and conjunctive constraints (each machine can handle at most one
job at a time, and selected jobs are processed in the correct order). Constraints
(5) force each job to complete before its deadline. Note that, because jobs are
sorted according to a non-decreasing order of their deadlines, Constraint (5)
at rank k does not over-constrain the completion times of jobs in the range
k′, k′ < k. Expression (1) is the objective function, which minimizes the sum
of the costs of selected jobs. Note that Constraints (3), (4), and (5) concern
the feasibility of the selection of jobs from a resource point of view. [DDY11]
describe another ILP characterization of these constraints for their problem as a
set of knapsack constraints, which are used in an iterative constraint generation
procedure. The adaptation to STWP is straightforward and leads to a multiple-
choice multidimensional knapsack problem formulation (MMKP) by replacing
(3), (4), and (5) with

(rmk + pmk)xmk +

l∑
k′=k+1

pmk′x
m
k′ ≤ d̄ml m = 1, . . . , nM , k = 1, . . . , |I ′m|, l ≥ k.

3.4. Alternative model

The main drawback of formulation (A) is that Constraints (3) induce a
poor linear relaxation when some jobs have large release dates. The (MMKP)
formulation provides a better linear relaxation, but cannot be used directly due
to its large number of constraints.

This section is devoted to a new model aimed at circumventing those draw-
backs by keeping a relatively small size and providing a stronger linear relax-
ation. This MILP model is inspired by the work of [DPS02], in which the
authors establish a related dominant order (represented by a so-called master
sequence) for 1|ri|

∑
wiUi. They propose a MILP model that also makes use of

large constants, but, in practice, these constants are smaller than those involved
in Constraints (3). Unfortunately, their model is based on the master sequence,
assuming that selected jobs are sequenced according to a non-decreasing order
of their release dates, which is the wrong assumption in our case.

We then arrive at the following key idea: Consider a single machine problem,
suppose that a selection of jobs is fixed (and that the sequence of jobs is fixed
accordingly), and focus on the timing sub-problem. This sub-problem consists
in checking whether all selected jobs can be scheduled according to this sequence
while satisfying their time windows. For this purpose, a simple strategy is to
schedule selected jobs as soon as possible on each machine, and verify that
all jobs complete before their deadline. We can now reverse the direction of
time in the timing problem by considering that the time horizon ends at time
0 and starts at a sufficiently late time instant (e.g. d̄max = maxk d̄

m
k). Let

us assign reverse time windows to each job, defined by r̂mk = d̄max − dk and

d̂mk = d̄max − rk. Immediately, the timing problem and its reverse counterpart
are equivalent, and when jobs are sorted according to the dominant order used

7

in Proposition 1, they are sorted according to a non-decreasing order of their
reverse release dates r̂. We can thus write the following model:

(B) min

nM∑
m=1

|I′m|∑
k=1

wmk x
m
k (7)

nM∑
m=1

∑
k|Jk∈G′mg

xmk = 1 g = 1, . . . , nG (8)

t̂mk ≥ r̂mk m = 1, . . . , nM , k = 1, . . . , |I ′m| (9)

t̂mk−1 − t̂mk − pmk xmk ≥ 0 m = 1, . . . , nM , k = 2, . . . , |I ′m|(10)

t̂mk + pmk x
m
k −Mm

k (1− xmk) ≤ d̂mk m = 1, . . . , nM , k = 1, . . . , |I ′m|(11)

xmk ∈ {0, 1}, t̂mk ≥ 0 m = 1, . . . , nM , k = 1, . . . , |I ′m|(12)

In this model, we assume that jobs are sorted as for model (A) and (MMKP),
and variables (xmk) have the exact same meaning as in both previous models.
Variable t̂mk denotes the starting time in the reverse timing problem of the kth

job on machine Mm. Constraints (9) state that no job can start before its
release date. Constraints (10) ensure that no job starts before the preceding
job has completed. Finally, Constraints (11) force each selected job to complete
before its deadline. Constant Mm

k is used not to over constrain the starting
time of unselected jobs. The value of constant Mm

k can safely be set to Mm
k =

max(0,maxl>k{d̂ml − d̂mk }).

4. Improvements

This section provides several potential improvements to the models presented
in the previous section. An interesting feature of these MILP is that they share
the set of variables x, which have the exact same meaning in all three of the
models. Hence, any relation involving this set of variables can be used in any
model. In the sequel, let us assume that, on each machine Mm ∈ M , the
enhanced set of jobs I ′m is ordered according to Proposition 1.

4.1. Strengthening the models

The following two propositions exploit the classical selections on disjunction
[see e.g. Car82] to strengthen the model.

Proposition 2. Let Ji ∈ I and Jj ∈ I, i 6= j, mi = mj = m. If ri+pi+pj > d̄j
and rj + pj + pi > d̄i, then the following inequality holds:∑

k|Jk∈Hi∪Hj∪{Ji,Jj}

xmk ≤ 1

Proof. The inequality simply expresses that Ji and Jj (or one of their corre-
sponding virtual jobs) cannot both be processed in a feasible solution. �

8

Proposition 3. Let Mm ∈ M , k ∈ {1, . . . , |I ′m|}, l ∈ {k + 1, . . . , |I ′m|}. If
rmk + pmk + pml > dml , then the following inequality holds:

xmk + xml ≤ 1

Proof. The inequality simply expresses that Jσm(k) and Jσm(l) (actual or vir-
tual jobs) cannot both be processed in a feasible solution. �

Proposition 4 strengthens the model by removing some equivalent feasible
solutions.

Proposition 4. If at least one feasible solution exists, there exists at least one
optimal solution such that the following inequalities hold:

xmk ≥ xmk′ m = 1, ..., nM , k = 1, ..., |I ′m|,
k′ = 1, ..., |I ′m|, σm(k) = h−1(σm(k′))

Proof. The relation σm(k) = h−1(σm(k′)) expresses the fact that virtual job
Jσm(k′) has been generated to represent a job Ji processed before Jσm(k), as
a result of case 3. If Jσm(k) is not processed, then Ji (or another virtual job
created to represent Ji) can replace Jσm(k′) in another feasible schedule in which
jobs are also sequenced according to Proposition 1. Therefore, there is no need
to select the virtual job Jσm(k′) associated with it. We thus allow the selection
of a virtual job only if the real job that generated it is selected. �

The following propositions allow us to tighten the time windows of jobs by
showing that their deadlines can be decreased.

Proposition 5. Let S be an optimal schedule such that S is active, and selected
jobs are sequenced according to Proposition 1 on each machine. For all m ∈
{1, . . . , nM}, k ∈ {1, . . . , |I ′m|}, let Dm(k) = max{t|t ∈ {0, . . . , d̄mk }, Dm(k, t) =
1}, with

Dm(k, t) =

 1 if
(
Dm(k − 1, t− pmk) = 1 ∨t = rmk + pmk

∨Dm(k − 1, t) = 1
)

0 otherwise

k = 1, . . . , |I ′m|, t = 0, . . . , d̄m|I′m|

And Dm(0, t) = 0, m ∈ {1, . . . , nM}, t = 0, . . . , d̄m|I′m|. Then, for all k ∈
{1, . . . , |I ′m|}, Jσm(k) does not complete after Dm(k).

Proof. Clearly, Dm(k, t) = 1 if and only if at least one job among the first
k that can be processed on Mm can complete at time t. Indeed, Jσm(k) can
complete at t only if t ≤ d̄mk and at least one of the following propositions holds:

• Jσm(k) starts at its release date (i.e. t = rmk + pmk).

9

• Jσm(k) starts at the completion time of a preceding job. In this case, there
exists Jσm(k′), k

′ < k, such that Dm(k′, t) = 1, and then Dm(k− 1, t) = 1
holds. �

Note that all Dm(k) values can be computed using an O(|I ′m| · d̄m|I′m|)-time and

O(d̄m|I′m|)-space dynamic programming algorithm.

Proposition 6. For all m ∈ {1, . . . , nM}, let δm = min{k∈1,...,|I′m|} r
m
k . For all

m ∈ {1, . . . , nM}, for all k ∈ {1, . . . , |I ′m|}, replacing the time window [rmk , d̄
m
k]

with [ṙmk , ḋ
m
k] leads to the same set of optimal selections of jobs, where ṙmk =

rmk − δm, ḋmk = max(ḋmk−1, e
m
k)− δm and

emk =

{
Dm(k)− ph−1(σm(k)) if h−1(σm(k)) 6= ∅
Dm(k) if h−1(σm(k)) = ∅

Proof. First, it is easy to see that all dates can be shifted together from any
number δm of time slots without changing the set of integer solutions, as soon
as none of the quantities are negative. We can verify that δm is chosen so
that all dates are nonnegative and as small as possible. Second, according to
Proposition 5, Jσm(k) cannot complete after Dm(k). Moreover, according to
Proposition 4, a virtual job can be selected only if the real job that generated
it is selected. Thus, if Jσm(k) is a virtual job, then it must complete before
Jh−1(σm(k)), which must itself complete before Dm(k). Hence, Jσm(k) must
complete before Dm(k) − ph−1(σm(k)). We can therefore decrease the deadline
of Jσm(k) to this value if we do not over constrain the preceding jobs, i.e. if we

do not prevent that Jσm(k−1) completes at ḋmk−1. �

4.2. Specialized knapsack cover cuts

Lifted knapsack cover inequalities have proved to be a powerful tool for
solving (mixed) integer linear programs involving knapsack constraints [Bal75,
CJP83]. The concept was substantially improved by introducing lifted general-
ized upper bound cover inequalities [GNS98] and sequence-independent lifting
procedures [Wol77, GNS00, LW07].

This section presents valid inequalities that can be used to further strengthen
our models. As already mentioned, any relation involving the set of variables
x can be used in any of the three models presented in Section 3. Thus, we
use the (MMKP) formulation to identify classical knapsack cover cuts. Then,
different lifting procedures are designed to provide cuts that can also be used on
models (A) and (B). We rely on sequence-dependent lifting procedures, which
are known to be less powerful than sequence-independent methods. However,
this simple strategy allows us to design specialized lifting procedures for STWP
by introducing specific constraints in the lifting sub-problems.

Given a fractional solution x∗ to the linear relaxation of (MMKP), or a
partial solution of (A) or (B), the procedure used to derive our valid inequalities
follows these steps derived from [GNS98]:

10

• Selection For each knapsack constraint to be treated, denoted by
∑
k∈N akxk ≤

b, perform the following steps:

• Initial cover Try to determine a cover C ⊆ N , i.e. a subset of indices of
variables such that

∑
k∈C ak > b and ∀k ∈ C, x∗k > 0.

• Cover partition Partition set C into the two subsets C2 = {k|k ∈
C, x∗k = 1} and C1 = C − C2.

• Lifting Partition the remaining variables into F = {k|k ∈ N −C, x∗k > 0}
and R = {k|k ∈ N−C, x∗k = 0}. Lift up variables in F , lift down variables
in C2, and lift up variables in R.

The lifting phase consists in determining coefficients (αk)k∈N−C and (γk)k∈C2

such that the following inequality is valid (satisfied by all integer solutions of
the problem): ∑

k∈C1

xk +
∑

k∈N−C

αkxk +
∑
k∈C2

γkxk ≤ β +
∑
k∈C2

γk (13)

where β is equal to the maximum number of variables in C1 that can be
set to 1 if all variables in C2 are set to 1. Up-lifting is used to strengthen the
cover inequality: given a valid inequality and an index of variable j, it consists
in finding the largest coefficient αj that can multiply variable xj while keeping
a valid inequality (αj = 0 suffices for validity). Down-lifting is used to ensure
validity (γj = 0 does not yield a valid inequality).

As described in Section 4.2.3, the lifting step consists in sequentially solv-
ing optimization problems. Classical lifting procedures for knapsack cover in-
equalities are based on a single knapsack constraint, and lifting one coefficient
corresponds to solving one knapsack problem. The first specialized lifting pro-
cedure that we propose integrates constraints on time windows of the jobs and
can be performed in polynomial time. The second procedure introduces group
constraints and constraints from Proposition 4 in order to obtain stronger lifted
coefficients. Both lifting problems can be considered scheduling problems.

4.2.1. Lifting problem with time windows

Let us introduce the optimization problem LIFT1, whose instances are char-
acterized by the following:

• A set Θ = {θ1, . . . , θu} of u jobs;

• A subset of mandatory jobs Φ ⊆ Θ;

• For each job θi ∈ Θ, the following integers are given: a release date ri, a
deadline d̄i, a weight ωi, and a processing time pi. In addition, jobs in Θ
are ordered according to Proposition 1.

The lifting problem with time windows, LIFT1, is to determine the maximum
weight of a subset of jobs in Θ that can be processed on a single machine with
respect to the given order, provided that all jobs in Φ are selected. Appendix
A presents an O(u

∑u
i=1 ωi)-time algorithm to solve this problem to optimality.

11

4.2.2. Lifting problem with time windows, groups of jobs, and dominance of
actual occurrences over virtual occurrences

An instance of the problem LIFT2 is defined by the following:

• A set Θ = {θ1, . . . , θu} of u jobs;

• |π| disjoint subsets of Θ (groups of jobs) {π1, . . . , π|π|};

• A subset of mandatory jobs Φ ⊆ Θ;

• An integer χ related to the considered constraints from Proposition 4 (see
below);

• For each job θi ∈ Θ, the following integers are given: a release date ri,
a deadline d̄i, a weight ωi, a processing time pi, a dominance constraint
identifier λi ∈ {−χ, . . . , χ}, and a group identifier gi = g if θi ∈ πg, gi = ∅
if 6 ∃g|θi ∈ πg. In addition, jobs in Θ are ordered according to Proposition
1.

The lifting problem with time windows, groups of jobs, and dominance of actual
occurrences over virtual occurrences, LIFT2, is to determine the maximum
weight of a subset of jobs in Θ that can be processed on a single machine with
respect to the given sequence with the following constraints: all jobs in Φ are
selected, and at most one job is selected in each set πg ∈ π. In addition for
any selected job θi ∈ Θ such that λi < 0, the job θj such that j = min{k|λk =
−λi, k > i} is selected. Note that this last constraint allows for the expression
of the dominance property from Proposition 4.

Appendix B describes a dynamic program, running in O(u ·
∑
ωi · 2|π|+χ),

to solve this problem. Proposition 7 shows that, in some cases, the number χ
can be drastically reduced while keeping an equivalent problem.

Proposition 7. For all λ ∈ {1, . . . , χ}, define

E(λ) =
{

[i, j]|i ∈ {1, . . . , u}, λi = −λ, j = min{k|λk = λ, k > i}
}
.

Consider two instances, Ω and Ω′, of LIFT2. For notational convenience, we
add a Ω (resp. Ω′) subscript to the data of instance Ω (resp. Ω′). Let λ ∈
{1, . . . , χ} and λ′ ∈ {1, . . . , χ}− {λ}. Assume that instance Ω′ is obtained from
Ω by resetting, for all i ∈ {1, . . . , u}, λΩ′,i = λ if λΩ,i = λ′ and λΩ′,i = −λ if
λΩ,i = −λ′.

If for all (e, e′) ∈ EΩ(λ)× EΩ(λ′), e ∩ e′ = ∅, then Ω and Ω′ have the same
set of feasible solutions.

Proof. First, we observe a one-to-one correspondence for all l ∈ {1, . . . , χ} be-
tween, on the one hand, the set of pairs of jobs (θi, θj), such that θj is scheduled
if θi is scheduled and λj = l, and on the other hand, the set of intervals EΩ(l).
Thus, there is a one-to-one correspondence between the set of all pairs of jobs
(θi, θj) such that θj is scheduled if θi is scheduled and the set of all intervals
∪χl=1EΩ(l).

12

Because e ∩ e′ = ∅ for all (e, e′) ∈ EΩ(λ)× EΩ(λ′), we have
∀i ∈ {1, . . . , u}|λΩ,i = −λ,

min{k|λΩ,k = λ, k > i}
= min{k|(λΩ,k = λ ∨ λΩ,k = λ′) ∧ k > i}

∀i ∈ {1, . . . , u}|λΩ,i = −λ′,
min{k|λΩ,k = λ′, k > i}

= min{k|(λΩ,k = λ ∨ λΩ,k = λ′) ∧ k > i}

Thus,{
∀i ∈ {1, . . . , u}|λΩ,i = −λ, min{k|λΩ,k = λ, k > i} = min{k|λΩ′,k = λ, k > i}
∀i ∈ {1, . . . , u}|λΩ,i = −λ′, min{k|λΩ,k = λ′, k > i} = min{k|λΩ′,k = λ, k > i}

Therefore, EΩ′(λ) = EΩ(λ) ∪ EΩ(λ′), and EΩ′(λ
′) = ∅. Then, the constraints

of both instances are the same. �

Proposition 7 is particularly useful when all jobs in STWP have a different
deadline: in this case, all virtual jobs that are created to represent other jobs
scheduled before job Jk are placed consecutively and immediately before Jk in
the order given by Proposition 1. It follows that all dominance from Proposition
4 can be encoded by setting λσm(k) = 1 and setting λσm(k−l) = −1 for all l
virtual jobs linked with Jk, since we know that they are dominated by the next
actual job. In this case, χ = 1 is sufficient to encode all dominance constraints.
Note that, in general, choosing χ as the maximum number of actual jobs that
share the same deadline is sufficient, which considerably reduces the memory
space requirement to solve the lifting problem.

4.2.3. Overall procedure to derive specialized lifted cover inequalities

The procedure takes as input a fractional solution x∗ to the linear relaxation
of (MMKP), or a partial solution of (A) or (B), and builds a valid inequality.
For the sake of readability, let Jmk = Jσm(k) denote the kth job that can be
processed on machine m according to Proposition 1.

Selection and initial cover. First, choose a knapsack constraint in the (MMKP)
model that would be violated if each component of x∗ was rounded up. On a
machine m, this determines a sequence µ of q jobs (Jmµ(1), . . . , J

m
µ(q)) that cannot

fit in the time window [rmµ(1), d̄
m
µ(q)] (which defines the initial cover C = {µ(i)|i =

1 . . . , q}). With N = [µ(1), µ(q)] ∩ N, the knapsack constraint is

rmµ(1)x
m
µ(1) +

∑
k∈N

pmk x
m
k ≤ d̄mµ(q) (14)

Cover partition. Set C2 = {k|k ∈ C, x∗k = 1} and C1 = C − C2. Then suppose
that the jobs corresponding to C2 are actually selected. Under this assumption,
let us compute β. This requires us to answer the question Q1: “What maximum
number β of jobs in C1 is it possible to process together with all jobs in C2?”.
To this end, we solve an instance of LIFT2 defined by the following:

13

• Θ = {Ji|i ∈ C1 ∪ C2}, and release dates, deadlines, and processing times
are the same as in the instance of STWP;

• Φ = {Ji|i ∈ C2};

• ωi = 1 if i ∈ C1, otherwise ωi = 0.

Moreover, all instances of LIFT2 that we have to solve during the construction
of the inequality share the following data:

• π = {G′1 ∩Θ, . . . , G′|π| ∩Θ};

• λi =

 i if Ji ∈ I and Θ ∩Hi 6= ∅
−h−1(i) if h−1(i) 6= ∅ and Jh−1(i) ∈ Θ
0 otherwise

, Ji ∈ Θ;

• χ = maxi{λi}.

Note that, once this instance is defined, it is possible to modify vector λ accord-
ing to Proposition 7 to obtain a minimal value of χ. By definition of LIFT2,
solving this instance answers Q1, taking into account a relaxation of constraints
from STWP. Supposing that the jobs corresponding to C2 are actually selected,
the following inequality holds for any feasible solution:∑

k∈C1

xmk ≤ β (15)

Up-lifting. Still assuming that the jobs corresponding to C2 are all processed
(i.e. ∀k ∈ C2, x

m
k = 1), let us suppose that coefficients (αk)k∈F and (γk)k∈C2

are determined such that the following inequality holds:∑
k∈C1

xmk +
∑

k∈F∪R

αkx
m
k +

∑
k∈C2

γkx
m
k ≤ β +

∑
k∈C2

γk (16)

Because (15) holds, valid initial values are αk = 0, k ∈ F ∪ R and γk = 0,
k ∈ C2. Then, given a sequence of variables in F , we sequentially find a (as
large as possible) coefficient αk for each variable xmk , k ∈ F , such that (16)
holds. For a given variable xmj , j ∈ F , this requires answering the question Q2:
“What is the maximum possible value z of the left-hand-side of (16), provided
that ∀k ∈ C2, x

m
k = 1, αj = 0, and xmj = 1?”, which is equivalent to Q2: “What

is the maximum possible weight z of jobs in C1∪F−{Jmj } that can be processed
together with Jmj and all jobs in C2?”, for which the weights of jobs are defined
as their coefficient in (16). Clearly, z satisfies z + αjx

m
j ≤ β in any feasible

solution where Jmj and jobs in C2 are processed. Thus, resetting αj = β − z
in (16) yields an inequality that is valid in all feasible solutions where all jobs
in C2 are processed. In order to answer Q2, we solve the following instance of
LIFT2: Θ = {Ji|i ∈ C1 ∪ C2 ∪ F}, Φ = {Ji|i ∈ C2} ∪ {Jj}, ωi = 1 if i ∈ C1,
ωi = αi if i ∈ F − {Jj}, and otherwise ωi = 0.

14

Down-lifting. When all variables in F are lifted up, we obtain an inequality that
is valid under the assumption that all jobs corresponding to C2 are processed.
In order to dispense with this hypothesis and make the inequality valid for the
whole problem, coefficients of variables in C2 must be lifted down. Given a
sequence of variables in C2, let L denote the set of indices of variables that
have already been down-lifted. At this stage, we have obtained an inequality
of the form (16), which is valid under the assumption that all jobs in C2 − L
are processed (i.e. ∀k ∈ C2 − L, xmk = 1). For the next variable xmj such that
j ∈ C2 − L, our aim is to find a coefficient γj such that (16) holds, under
the assumption that xmj = 0 and ∀k ∈ C2 − L − {Jmj }, xmk = 1. Note that, if
xmj = 1, any value for γj is suitable, so that the resulting inequality will be valid
whatever the value of xmj . The question to be answered here is Q3: “What is
the maximum possible value z of the left-hand-side of (16), given that xmj = 0
and ∀k ∈ C2 − L − {Jmj }, xmk = 1?”, or equivalently Q3: “Supposing that Jmj
is not processed, what is the maximum weight z of jobs with indices in C1 ∪ F
that can be processed together with all jobs with indices in C2 − L − {j}?”.
By construction, choosing γj = z − (β +

∑
k∈L γk) is valid. In order to answer

Q3, we solve the following instance of LIFT2: Θ = {Ji|i ∈ C1 ∪C2 ∪ F − {j}},
Φ = {Ji|i ∈ C2 − L− {j}}, ωi = 1 if i ∈ C1, ωi = αi if i ∈ F , ωi = γi if i ∈ L,
and ωi = 0 otherwise. Finally, in order to lift up the coefficients of variables xmj ,
j ∈ R, the following instance of LIFT2 is solved: Θ = {Ji|i ∈ C1 ∪C2 ∪F ∪R},
Φ = {Jj}, ωi = 1 if i ∈ C1, ωi = αi if i ∈ F ∪ R − {Jj}, ωi = γi if i ∈ C2, and
ωi = 0 otherwise.

Note that, because the constraints of LIFT2 consist of a relaxation of the
constraints of STWP, β and z may be over-estimated. In this case, coefficients
αj , j ∈ F ∪ R, may be under-estimated and coefficients γj , j ∈ C2 may be
over-estimated, so that the resulting inequality is also valid. Moreover, LIFT1

is clearly either a relaxation of LIFT2, so that it is possible to solve instances of
this simpler problem to compute (16), or it is a relaxation of LIFT2 containing
only a subset of group and dominance constraints.

Observe that ∀θk ∈ F , αk ≤ β ≤ nI′ . It follows that ∀k ∈ C2, γk ≤ n2
I′ ,

and ∀k ∈ R, αk ≤ n2
I′ . Therefore, for each instance of the lifting problem,∑u

i=1 ωi ≤ n3
I′ . Finally, computing all lifted coefficients for a given inequality

takes O(n5
I′) operations when using LIFT1 and O(n5

I′ ·2|π|+χ) operations when
using LIFT2.

5. Application to the problem of minimizing the number of late jobs

In this section, we show how instances of late job minimization problems can
be converted into instances of STWP.

5.1. 1, hk|ri, nr − a|
∑
wiUi

Let us consider an instance Ω of 1, hk|ri, nr− a|
∑
wiUi and let us build an

equivalent instance Ω̃ of STWP. In the remainder of this paper, for notational
convenience, we use a tilde (˜) sign to refer to data of the instance denoted by

15

Ω̃. The idea behind this conversion is that jobs that are not processed during
the same availability period cannot interfere with each other. More precisely,
the starting time of the first job processed in a period [Fs, Bs+1] (which does
not start before Fs) is not influenced by the completion time of the last job
processed in [Fs−1, Bs] (which does not complete after Bs < Fs). Therefore, we
can shift down all dates of events occurring during [Fs, Bs+1] by Fs time units.
This is equivalent to considering that each availability period corresponds to an
independent machine on which jobs can be processed in parallel. Formally, to
build an equivalent instance Ω̃ to Ω, we create K + 2 machines. For each job Ji
in Ω, we create a group of jobs composed of one job J̃i,s for each unavailability

period s where Ji can be processed, plus one fictitious late job: G̃i = {J̃i,s|1 ≤
s ≤ K + 1, Bs ≥ ri + pi, Fs−1 + pi ≤ di} ∪ {J̃i,∗}. The late job J̃i,∗ is such

that r̃i,∗ = 0, d̃i,∗ = 1, p̃i,∗ = 0, w̃i,∗ = wi, and m̃i,∗ = K + 2. The release
and due dates of other jobs are defined as r̃i,s = max(ri, Fs−1) − Fs−1 and

d̃i,s = min(di, Bs)− Fs−1. Finally, p̃i,s = pi, w̃i,s = 0, and m̃i,s = s.

5.2. 1, hk|ri, STsi|
∑
wiUi

The transformation proposed in this section is based on the idea that un-
availability periods have two consequences for jobs: First, no job can start
during one of them. Second, the completion of a job that crosses one or several
unavailability periods is postponed for a deterministic, foreseeable amount of
time. Let us introduce the following remarks.

Remark 1. For any job Ji ∈ I, for any time instant t ≥ ri, the completion
time of Ji starting at t is

Ci(t) =

{
∞ if ∃s ∈ {1, . . . ,K}, Bs ≤ t < Fs
min{β(t, i, s)|s ≤ K,β(t, i, s) ≤ Bs+1} otherwise

where

β(t, i, s) = t+ pi +

s∑
s′=s(t)+1

(
Fs′ −Bs′ + min(Bs′+1 − Fs′ , αi)

)
and s(t) = arg max{s|Bs < t}.

We can verify that β(t, i, s) is the completion time of a job Ji starting at t
if we take into account the unavailability periods up to period s. The actual
completion time of Ji is related to the earliest unavailability period that does
not postpone the end of Ji. Hence, the time during which the machine will be
unavailable for processing another job if Ji starts at t is f̄i(t) = Ci(t)−t. Taking
this variable duration as the processing time of Ji allows us to implicitly account
for the machine’s unavailability periods. Indeed, it ensures that, in any feasible
solution, no job starts during an unavailability period (or there is exactly one
such job, which is late and can be removed without changing the cost of the
schedule). Moreover, the completion time of each job will be correctly post-
poned. The following dominance property reduces the set of possible starting
times for each job.

16

Remark 2. There is at least one optimal solution such that, for all Ji ∈ I and
all s ∈ {1, . . . ,K}, Ji does not start in [Bs −min{αi, Bs+1 − Fs, pi − 1}, Fs].

Intuitively, if one such job exists in an optimal solution, it starts before Bs and
causes a setup time after Fs. Delaying the job to start at Fs removes the setup
time and does not result in the job completing later. The following remark
states that the duration for which the machine is occupied by each job is a
stepwise function of the job’s starting time.

Remark 3. Let Ji ∈ I and t ≥ 0 such that Fs1−1 ≤ t < Bs1 −min{αi, Bs1+1−
Fs1 , pi − 1} and Fs2−1 ≤ Ci(t) ≤ Bs2 . Then, for all t′ such that Fs1−1 ≤ t′ <
Bs1 −min{αi, Bs1+1 − Fs1 , pi − 1} and Fs2−1 ≤ Ci(t′) ≤ Bs2 , f̄i(t) = f̄i(t

′).

A formal proof would include showing that Ji crosses the same unavailability
periods when it starts at t as at t′ and therefore is subject to the same setup
times. The following remark allows us to consider a problem without unavail-
ability constraints, for the reasons given above. Note that the value of f̄i(t)
changes when either t or C(t) jumps to another availability period. Moreover,
when t jumps to a later availability period, cases where C(t) jumps to an earlier
period can be discarded thanks to Remark 2. Thus, at most 2K + 1 intervals
are required to define f̄i(t).

Remark 4. For each instance Ω of 1, hk|ri, STsi|
∑
wiUi, we can build an

equivalent instance Ω′ of 1|ri, pi(t) = f̄i(t)|
∑
wiUi, such that |I ′| = n and

for all Ji ∈ I, we create a job J ′i ∈ I ′ such that r′i = ri, d
′
i = di, w

′
i = wi, and

with a variable processing time p′i(t) = f̄i(t) = Ci(t)− t.

Note that the only events that can occur during an unavailability period are
release or due dates, which can be shifted to the beginning of the corresponding
period without consequences. Therefore, contracting the horizon during un-
availability periods, i.e. considering that no time elapses during them, yields an
equivalent problem. Let us define the following functions:

∆(t) =

{
t−
∑s(t)
s=1(Fs −Bs) if Fs(t) < t

Bs(t) −
∑s(t)
s=1(Fs −Bs) otherwise

∆+(t) = min
{
t+
∑s
s′=1(Fs′ −Bs′)|s ≤ K, t+

∑s
s′=1(Fs′ −Bs′) ≤ Bs+1

}
Function ∆ aims to shift a time instant from a problem with unavailability peri-
ods to a problem without unavailability periods by removing the unavailability
periods and considering that no time elapses during them. In its definition, the
first case applies when t lies between two unavailability periods, whereas the
second case concerns situations where t falls during an unavailability period.
Function ∆+ can be considered as the inverse function of ∆, defined for t values
that lie outside of the unavailability periods: ∆+(∆(t)) = t if Fs(t) < t.

Proposition 8. Let Ω′′ be an instance of 1|ri, pi(t) = f̄i(t)|
∑
wiUi obtained

from Ω′ by resetting, for all jobs J ′′i ∈ I ′′, r′′i = ∆(r′i), d
′′
i = ∆(d′i), and p′′i (t) =

∆(Ci(∆
+(t))) − t. Then, there exists a feasible schedule for Ω′ if and only if

there exists a feasible schedule for Ω′′ with the same cost.

17

Proof. Consider a feasible schedule S′ of instance Ω′, and let t′i denote the
starting time of J ′i ∈ I ′. Let t′′i denote the starting time of J ′′i ∈ I ′′ in a
schedule S′′ defined by t′′i = ∆(t′i) for all J ′i ∈ I ′. We show that S′′ is feasible
for Ω′′. First, ∆ is a non-decreasing function, so t′i ≥ r′i ↔ t′′i ≥ r′′i . Therefore,
S′′ satisfies the release date constraints.

Moreover, note that for all J ′i ∈ I ′, Fs(t′i) < t′i. So p′′i (∆(t′i)) = ∆(Ci(∆
+(∆(t′i))))−

∆(t′i) = ∆(Ci(t
′
i))−∆(t′i). It follows that ∆(Ci(t

′
i)) = t′′i + p′′i (t′′i).

Because S′ is feasible, Ci(t
′
i) ≤ d′i, equivalent to ∆(Ci(t

′
i)) ≤ d′′i , or t′′i +

p′′i (t′′i) ≤ d′′i . Therefore, S′′ satisfies the deadline constraints.
Finally, for all J ′j ∈ I ′ − {J ′i} such that J ′j is scheduled after J ′i in S′, we

have t′j ≥ Ci(t
′
i). This is equivalent to ∆(t′j) ≥ ∆(Ci(t

′
i)) or t′′j ≥ t′′i + p′′i (t′′i).

Thus, S′′ satisfies the resource constraints, and S′′ is feasible and evidently has
the same cost as S′. �

The principle of the transformation from an instance Ω′ of 1|ri, pi(t) =
f̄i(t)|

∑
wiUi to an instance (Ω̃) of STWP is to create one job in (Ω̃) for each

job in Ω′ and each interval for which the processing time of the job is constant.
Jobs of (Ω̃) associated with the same job of Ω′ are placed in the same group
together. Formally, for each job J ′i ∈ I ′, we denote

Ξi ={(t1, t2, s1, s2)|t1 ∈ {r′i, . . . , d′i}
s1 ∈ {1, . . . ,K + 1}, s2 ∈ {1, . . . ,K + 1},
Fs1−1 ≤ t1 ≤ Bs1 −min{αi, Bs1+1 − Fs1 , pi − 1},
Fs2−1 ≤ t2 ≤ min(Bs2 , d

′
i)}

For each job J ′i ∈ I ′, we define a group of jobs G̃i = {J̃i,s1,s2 |∃t ∈ {r′i, . . . , d′i}, (t, Ci(t), s1, s2) ∈
Ξi}. Job J̃i,s1,s2 corresponds to the execution of Ji such that it starts between
unavailability periods s1 − 1 and s1 and completes between unavailability peri-
ods s2−1 and s2. This job has the following characteristics: r̃i,s1,s2 = min{t|t ∈
{r′i, . . . , d′i}, (t, Ci(t), s1, s2) ∈ Ξi}, d̃i,s1,s2 = max{Ci(t)|t ∈ {r′i, . . . , d′i}, (t, Ci(t), s1, s2) ∈
Ξi}, p̃i,s1,s2 = ∆(Ci(∆

+(r̃i,s1,s2)))− r̃i,s1,s2 , and w̃i = wi for all i ∈ {1, . . . , n}.
Note that it is possible to determine the set of jobs Ĩ in O(nK) operations
thanks to Remarks 2 and 3.

Remark 5. Problem 1|ri, r−a|
∑
wiUi is a special case of 1, hk|ri, STsi|

∑
wiUi,

where ∀Ji ∈ I, αi = 0. By intuition, it is sufficient to remove all unavailabil-
ity periods and shift all dates accordingly to obtain an equivalent instance of
problem 1|ri|

∑
wiUi. Moreover, this transformation can be performed in poly-

nomial time and preserves any non-strict order on release and due dates, which
therefore implies the following complexity results: 1, hk|r − a|

∑
Ui is polyno-

mial [Moo68], 1, hk|r − a|
∑
wiUi is NP-hard in the ordinary sense [Kar72],

1, hk|ri, r − a|
∑
Ui is polynomial when release and due dates are similarly or-

dered [KIM78], 1, hk|r−a|
∑
wiUi is polynomial when processing times and job

weights are oppositely ordered [Law94]. . .

18

6. Numerical experiments

This section reports the computational results we obtained by solving the
problem through the transformations described in this paper with the help of
the commercial MILP solver IBM ILOG Cplex v12.4 using default settings on
a personal computer (PC) equipped with a 3.2 GHz quad-core processor and 3
GB RAM and running the Windows Seven 64-bit operating system.

6.1. Test bed

Based on Remark 5, problem 1, hk|ri, r−a|
∑
wiUi is equivalent to 1|ri|

∑
wiUi.

Thus, we test our solving method by generating instances for these problems
as described in [DPS02]. More precisely, the generator takes the following pa-
rameters as input: The number n of jobs, a release date factor R, and a due
date factor D. For each job Ji, a processing time pi is drawn from a uniform
distribution {1, . . . , 100}. To each job i is assigned a release date ri, drawn
from a uniform distribution {0, . . . , nR}, and a due date di, drawn from a
uniform distribution {ri + pi, . . . , ri + pi + nD}. Parameter R controls the
dispersion of the release dates, whereas parameter D controls the size of the
job execution windows. The parameters used to build our test bed are the
combinations of n ∈ {200, 250, 300, 350, 400, 450, 500}, R ∈ {1, 5, 10, 20}, and
D ∈ {1, 5, 10, 20}. Ten instances are generated for each combination of these
parameters, leading to a total of 1120 instances. In order to generate a test
bed for 1, hk|ri, nr − a|

∑
wiUi, we introduce two additional parameters: K

is the number of unavailability periods in the instance, and UR is the ratio
of unavailability of the machine over the planning horizon. We then generate
K unavailability intervals [Bs, Fs] such that Bs is drawn from a uniform dis-
tribution {mini pi, . . . ,maxi di − mini pi} and Fs = Bs + 1 + UR×maxi di

100×K . If
two generated periods overlap or are adjacent, the instance is rejected. We re-
port results for all combinations of n ∈ {200, 300, 400, 500}, R ∈ {1, 5, 10, 20},
D ∈ {1, 5, 10, 20}, K ∈ {1, 3, 5}, and UR ∈ {1, 5, 10}. Five instances are gener-
ated for each combination of parameters, leading to a total of 2880 instances.
This test bed is used for problem 1, hk|ri, STsi|

∑
wiUi, and we define for all

jobs Ji ∈ I, αi = dαpie, with α ∈ {0.1, 0.25}, deriving 5760 instances.

6.2. Implementation details

It is computationally expensive to calculate the specialized lifted cover cuts
(SLCC) described in Section 4.2. The procedure therefore uses several param-
eters that we fixed according to preliminary tests. In our experiments, (SLCC)
are applied at root node only and through several passes. At each pass, only
cuts based on an initial cover {µ(i)|i ∈ {1, . . . , q}} with less than qmax vari-
ables are generated. We vary qmax in {3, 5, 7, 9, 14,∞} in increasing order to
generate cuts with few variables first. Only knapsack constraints such that
µ(q)−µ(1) ≤ 100 are examined. Each pass consists of a loop that ends when no
cut is added to the model. Each turn of the loop starts by computing the linear
relaxation of the current MILP model (B), which yields a fractional solution,

19

and then determines an initial cover by scanning the variables in increasing or-
der of their machines and indices. Then, the set N of indices of variables is
extended to [µ(1)− 50, µ(q) + 50]∩N. Although some of these variables do not
belong to the chosen knapsack constraint, they can be integrated to the lifted
cover inequality because the lifting problems do not rely on this constraint only.
In order to elaborate the lifting sequence, variables in F are sorted according
to two criteria: variables in [µ(1), µ(q)] ∩ F are lifted first, and then variables
in ([µ(1) − 50, µ(1)[∪]µ(q), µ(q) + 50]) ∩ F are processed. Inside each group,
variables with the highest value in the current solution are lifted first. Variables
in C2 are lifted according to a non-decreasing order of their reduced cost. A
similar rule is used for variables in R, except that variables in [µ(1), µ(q)] ∩ R
are lifted first. If the current solution violates the valid inequality, it is added to
the model and the loop is restarted. Otherwise, we look for the next knapsack
constraint.

When LIFT2 is used to compute the lifting coefficients, only a subset of |π|
group constraints is taken into account. At the beginning of the lifting process
for a given valid inequality and for each group of jobs of the current solution,
we sum the values of variables that are in the group and in N . Throughout
the lifting procedure, we retain only the |π| groups with the largest cumulated
values. Also, the value of χ is limited. For each inequality being constructed, we
first assign a suitable value of parameter λi ∈ {−χ, . . . , χ} for all jobs θi ∈ Θ.
For this purpose, we use a simple greedy algorithm, which proceeds from the
first variable to the last, storing the set of unused possible values. Each time it
encounters a dominated variable, it assigns it the first unused value, if there is
one available, and sets this value as used. If no value is available, it assigns 0,
which means that the corresponding constraint will not be taken into account
for this valid inequality. When it encounters a dominating variable such that
at least one of the linked dominated variables received a non-zero value, its
opposite is assigned, and the value is reset as unused. In order to control
memory requirements, we abort the search for an optimal solution of LIFT2 if
the current maximal value exceeds nI/8, i.e. one eighth of the overall number
of jobs. The value of χ is passed to the method as a fixed parameter. The value
|π| is calculated from nI and χ so that the size of the dynamic program cannot
exceed 3 GB. A time limit of 360 seconds is imposed for the generation of all
SLCC. Because there can be many of them, the number of constraints issued
from Proposition 3 is limited to 10000.

6.3. Results

Table 1 reports results we obtained when solving different types of problems
by applying the MILP solver to Model (B) through the transformation proposed
in this paper and using all described improvements except SLCC. This approach
proves to be very efficient in spite of its genericity, because all 250-job instances
of 1|ri|

∑
wiUi are solved to optimality within one hour. Also, more than 96% of

500-job instances are solved within this time limit for the three types of problems
we have considered. Model (A), used with the same improvements and under
the same benchmarking conditions, leaves open 28 instances of 1|ri|

∑
wiUi. In

20

addition, this model is very sensitive to parameter R due to the structure of
Constraints (3): 27 of them are generated with the combination of parameters
R = 20 and D = 1. For the problem 1, hk|ri, nr − a|

∑
wiUi, 49 instances are

left open using this first model. For the case of semi-resumable jobs, 55 300-job
instances cannot be solved within one hour, which is five more times than for
Model (B). This is explained by the large release dates generated for the jobs
in (STWP) for this problem. Because of these premiliminary results, we did not
evaluate Model (A) for the whole test bed of 1|ri, STsi|

∑
wiUi. As expected,

Model (B) yields a stronger linear relaxation, which also requires about half
the computing time. Increasing parameter K makes the two other problems
harder to solve: 99.3% vs. 97.1% (resp. 99.2% vs. 97.7%) of the instances of
1|ri, STsi|

∑
wiUi (resp. of 1|ri, nr− a|

∑
wiUi) are closed when K is increased

from K = 1 to K = 5. This is easily explained by the increase in the number of
jobs in STWP. Increasing parameter UR has a slighter, opposite effect, which
can be explained by the fact that the more the machine is unavailable, the fewer
feasible solutions exist.

For the sake of comparison, we tested the method described in [TF12] on
our set of instances of problem 1|ri|

∑
wiUi. This algorithm solves to optimal-

ity 100 out of 160 200-job instances. The average computing time for instances
solved to optimality is 415.7 seconds, compared with only 10.8 seconds using
our method. Let us recall that the work of [TF12] applies to generic total cost
single machine problems, which explains these modest results on our specific
problem. To the best of our knowledge, the best dedicated method for solving
1|ri|

∑
wiUi has been published in [MB07], where the authors report success

for instances with up to 200 jobs. Although their algorithm is likely to perform
better with the computer power available today, it is based on a MILP formula-
tion that cannot handle machine availability constraints. Because our method
is theoretically suitable for multiple machine problems, we applied it to solving
the multi-machine assignment and scheduling problem [SW06]. The test bed
proposed by the authors is composed of 36 instances counting up to 54 jobs to be
assigned to nine machines, and their method, based on constraint programming
and integer programming cooperation, solves all of them in less than one hour.
The use of Model (B) is not as efficient, given that only 15 instances are solved
on our faster computer. By using (SLCC), only 4 more instances can be solved.
These degraded results suggest that our model is good at sequencing jobs once
they are assigned to machines, but it is not very adapted to the assignment
component of the problem.

In order to evaluate the pertinence of the specialized lifting cover cuts, we
apply the procedures to solving the hardest instances of our test bed. We
select instances which cannot be solved within 1000 seconds (corresponding
to the column ”#unsolved 1000 sec.” in Table 1) using model (B) alone to
test LIFT1 and LIFT2 with χ ∈ {0, 1, 2}. The polynomial-time procedure
LIFT1 allows us to close all 200-job instances of problem 1|ri, STsi|

∑
wiUi

and, compared with other methods, seems to perform well for 450 and 500-job
instances of 1|ri|

∑
wiUi. (Although we remain cautiously optimistic concerning

these results due to the small number of instances concerned.) Procedure LIFT2

21

Model (B) Model (A)

Problem type #unsolved #unsolved Avg. time Avg. LR Avg. LR Avg. LR Avg. LR
#jobs #instances 1000 sec. 1 h. (sec.) time (sec.) gap time (sec.) gap

1|ri|
∑
wiUi

200 160 0 0 11.6 1.9 1.40% 2.3 1.64%
250 160 2 0 50.7 3.3 1.11% 4.3 1.24%
300 160 1 1 46.9 5.2 0.85% 7.1 0.99%
350 160 2 1 69.1 7.9 0.67% 11.5 0.75%
400 160 7 5 89.9 12.0 0.59% 18.0 0.69%
450 160 4 3 143.9 17.1 0.48% 25.6 0.54%
500 160 7 5 181.8 23.0 0.45% 38.6 0.50%

1|ri, nr − a|
∑
wiUi

200 720 0 0 7.7 0.9 1.24% 1.2 1.36%
300 720 7 5 32.7 2.8 0.78% 5.0 0.86%
400 720 16 10 66.7 5.9 0.52% 11.4 0.56%
500 720 34 21 124.5 11.6 0.38% 24.9 0.41%

1|ri, STsi|
∑
wiUi

200 1440 5 8 11.9 2.3 1.31% 3.0 1.56%
300 1440 11 24 51.7 7.5 0.81% 14.7 0.94%
400 1440 27 51 92.3 17.6 0.53% 38.9 0.63%
500 1440 55 75 120.1 34.8 0.40% 74.7 0.45%

Table 1: Results without (SLCC). Computing time for linear relaxation (LR) and average
gap between LR and the best known integer solution are reported for Models (A) and (B).
The numbers of instances solved to optimality within 1000 seconds and within one hour
are summarized for Model (B). The average time is calculated only on instances solved to
optimality within 1 hour.

proves to be powerful, because it allows us to close all instances of our test bed
with up to 350 jobs for problem 1|ri|

∑
wiUi. Only one (resp. four) 400-job

instance (resp. 500-job instances) is left open with parameter χ = 0, and only
three 500-job instances remain open with χ = 1. This setting permits us to
solve all 400-job instances of problem 1|ri, nr− a|

∑
wiUi; one 300-job instance

is left open. It seems preferable to use parameter χ = 1 only for problem
1|ri, nr − a|

∑
wiUi, and larger values do not seem to improve the efficiency of

the method.
LIFT2 is decidedly better for instances with large release dates: for 1|ri, STsi|

∑
wiUi,

the gap improvement at root node is 26.5% on average, 3.0% when R = 1, and
33.9% when R = 20. It is calculated as Root lower bound after cuts - Root lower bound

Best known upper bound - Root lower bound .

This result is not surprising because the root gap, calculated as 2 Best known upper bound - Root lower bound
Best known upper bound + Root lower bound ,

is 1.7% on average, 0.3% for R = 1, and 2.2% for R = 20, so that there is little
room for improvement when release dates are small. In contrast, the root gap
improvement is 35.7% for D = 1 and 2.1% for D = 20, with the same possible
explanation. Other parameters do not seem to clearly affect the performance of
SLCC.

Out of the 9760 instances of our test bed, composed of 200 jobs or more,
149 are not solved using model (B) alone. Using LIFT2 with χ = 0 or χ = 1

22

allows us to close 95 more instances. Finally, 99.4% of the test bed is closed,
and 98.4% of the 500-job instances are closed.

7. Conclusion and perspectives

This paper shows that the generic problem STWP can serve to model sev-
eral scheduling problems, and assist in solving these problems efficiently through
the use of a MILP approach. Indeed, the performance of the developed method
matches that of dedicated methods for the most well-known problem investi-
gated in this study. Furthermore, the method can be directly adapted to parallel
machine problems and cases where different unavailability periods are defined
for each job. There is still room for improvement: although it seems to us that
integrating dominance properties into the lifting problem is of theoretical inter-
est, it does not appear to be of great help in practice. This might be caused by
the naive assignment of the constraint identifiers employed in our study, which
could be refined. Additionally, it might be possible to improve the theoretical
and practical time-complexity of the lifting procedures. Considerable progress
might be achieved by investigating the possibility of sequence-independent lift-
ing procedures that integrate specific STWP constraints. In addition, it is likely
that our methods cannot solve some instances, not because the size of the MILP
model is too large or because of a poor linear relaxation, but because of the exis-
tence of a large number of symmetrical solutions generated by similar machines
in the constructed STWP problem. Thus, another means of improvement lies
in the development of symmetry breaking techniques for this problem. We hope
that it will be possible to extend this work to solve other scheduling problems by
embedding more realistic constraints, such as sequence-dependent setup times,
precedence constraints, batching features and the like.

References

[ANCK08] Ali Allahverdi, C.T. Ng, T.C.E. Cheng, and Mikhail Y. Kovalyov. A
survey of scheduling problems with setup times or costs. European
Journal of Operational Research, 187(3):985–1032, June 2008.

[Bal75] Egon Balas. Facets of the knapsack polytope. Mathematical Pro-
gramming, 8(1):146–164, 1975.

[BPP03] Philippe Baptiste, Laurent Peridy, and Eric Pinson. A branch and
bound to minimize the number of late jobs on a single machine with
release time constraints. European Journal of Operational Research,
144(1):1–11, January 2003.

[BS09] Philippe Baptiste and Ruslan Sadykov. On scheduling a single ma-
chine to minimize a piecewise linear objective function: A compact
MIP formulation. Naval Research Logistics, 56(6):487–502, 2009.

23

[Car82] J. Carlier. The one-machine sequencing problem. European Journal
of Operational Research, 11:42–47, 1982.

[Che09] Wen-Jinn Chen. Minimizing number of tardy jobs on a single ma-
chine subject to periodic maintenance. Omega, 37(3):591–599, June
2009.

[CJP83] Harlan Crowder, Ellis L. Johnson, and Manfred Padberg. Solving
large-scale zero-one linear programming problems. Operations Re-
search, 31(5):803–834, January 1983.

[DDY11] Boris Detienne, Stéphane Dauzère-Pérès, and Claude Yugma.
Scheduling jobs on parallel machines to minimize a regular step to-
tal cost function. Journal of Scheduling, 14(6):523–538, November
2011.

[DP95] Stephane Dauzère-Pérès. Minimizing late jobs in the general one
machine scheduling problem. European Journal of Operational Re-
search, 81(1):134–142, February 1995.

[DPS02] Stephane Dauzère-Pérès and Marc Sevaux. Using lagrangean re-
laxation to minimize the weighted number of late jobs on a single
machine. Naval Research Logistics, 50(3):273–288, 2002.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GL99] Gregory H. Graves and Chung-Yee Lee. Scheduling maintenance and
semiresumable jobs on a single machine. Naval Research Logistics
(NRL), 46(7):845–863, 1999.

[GLL+79] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G.Rinnooy Kan,
E.L. Johnson P.L. Hammer, and B.H. Korte. Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey.
In Proceedings of the Discrete Optimization Symposium, volume Vol-
ume 5, pages 287–326. Elsevier, 1979.

[GNS98] Zonghao Gu, George L. Nemhauser, and Martin W. P. Savelsbergh.
Lifted cover inequalities for 0-1 integer programs: Computation.
INFORMS Journal on Computing, 10(4):427 –437, 1998.

[GNS00] Zonghao Gu, George L. Nemhauser, and Martin W.P. Savelsbergh.
Sequence independent lifting in mixed integer programming. Journal
of Combinatorial Optimization, 4(1):109–129, March 2000.

[HDV12] Navid Hashemian, Claver Diallo, and Béla Vizvàri. Makespan min-
imization for parallel machines scheduling with multiple availability
constraints. Annals of Operations Research, pages 1–14, 2012.

24

[Jac55] J.R. Jackson. Scheduling a production line to minimize maxi-
mum tardiness (research report 43). Management Science Research
Project, University of California, Los Angeles, 1955.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Com-
putations, pages 85–103. Plenum Press, 1972.

[KBF+02] Wieslaw Kubiak, Jacek Blazewicz, Piotr Formanowicz, Joachim
Breit, and Gunter Schmidt. Two-machine flow shops with lim-
ited machine availability. European Journal of Operational Research,
136(3):528–540, February 2002.

[KIM78] Hiroshi Kise, Toshihide Ibaraki, and Hisashi Mine. A solvable case
of the One-Machine scheduling problem with ready and due times.
Operations Research, 26(1):121–126, January 1978.

[KSJH12] Gio Kao, Edward Sewell, Sheldon Jacobson, and Shane Hall.
New dominance rules and exploration strategies for the 1|ri|

∑
Ui

scheduling problem. Computational Optimization and Applications,
51(3):1253–1274, 2012.

[Law94] E. L. Lawler. Knapsack-like scheduling problems, the Moore-
Hodgson algorithm and the [‘]tower of sets’ property. Mathematical
and Computer Modelling, 20(2):91–106, 1994.

[LC02] Zhaohui Liu and T.C.Edwin Cheng. Scheduling with job release
dates, delivery times and preemption penalties. Information Pro-
cessing Letters, 82(2):107–111, April 2002.

[LC04] Zhaohui Liu and T.C.Edwin Cheng. Minimizing total completion
time subject to job release dates and preemption penalties. Journal
of Scheduling, 7(4):313–327, 2004.

[Lee96] Chung-Yee Lee. Machine scheduling with an availability constraint.
Journal of Global Optimization, 9(3):395–416, December 1996.

[Lee99] Chung-Yee Lee. Two-machine flowshop scheduling with availability
constraints. European Journal of Operational Research, 114(2):420–
429, April 1999.

[LM89] E. L. Lawler and C. U. Martel. Preemptive scheduling of two uniform
machines to minimize the number of late jobs. Operations Research,
37(2):314–318, March 1989.

[LW07] Quentin Louveaux and Laurence Wolsey. Lifting, superadditivity,
mixed integer rounding and single node flow sets revisited. Annals
of Operations Research, 153(1):47–77, 2007.

25

[MB07] Rym M’Hallah and R.L. Bulfin. Minimizing the weighted number of
tardy jobs on a single machine with release dates. European Journal
of Operational Research, 176(2):727–744, January 2007.

[MCZ10] Ying Ma, Chengbin Chu, and Chunrong Zuo. A survey of scheduling
with deterministic machine availability constraints. Computers &
Industrial Engineering, 58(2):199–211, March 2010.

[MKSC13] Racem Mellouli, Imed Kacem, Chérif Sadfi, and Chengbin Chu. La-
grangian relaxation and column generation-based lower bounds for
the pm, hj1||

∑
wici scheduling problem. Applied Mathematics and

Computation, 219(22):10783–10805, July 2013.

[Moo68] J. M. Moore. A n job one machine algorithm for minimizing the
number of late jobs. Management Science, 15:102–109, 1968.

[MSCK09] Racem Mellouli, Chérif Sadfi, Chengbin Chu, and Imed Kacem.
Identical parallel-machine scheduling under availability constraints
to minimize the sum of completion times. European Journal of Op-
erational Research, 197(3):1150–1165, September 2009.

[PPR03] Laurent Péridy, Eric Pinson, and David Rivreau. Using short-term
memory to minimize the weighted number of late jobs on a single
machine. European Journal of Operational Research, 148(3):591–
603, August 2003.

[Sad08] Ruslan Sadykov. A branch-and-check algorithm for minimizing the
weighted number of late jobs on a single machine with release dates.
European Journal of Operational Research, 189(3):1284–1304, Sep
2008.

[Sch00] Gunter Schmidt. Scheduling with limited machine availability. Euro-
pean Journal of Operational Research, 121(1):1–15, February 2000.

[SW06] Ruslan Sadykov and Laurence A. Wolsey. Integer programming
and constraint programming in solving a multimachine assignment
scheduling problem with deadlines and release dates. INFORMS
JOURNAL ON COMPUTING, 18(2):209–217, January 2006.

[TF12] Shunji Tanaka and Shuji Fujikuma. A dynamic-programming-based
exact algorithm for general single-machine scheduling with machine
idle time. Journal of Scheduling, 15(3):347–361, 2012.

[Wol77] L. A. Wolsey. Valid inequalities and superadditivity for 0-1 integer
programs. Mathematics of Operations Research, 2(1):66–77, January
1977.

[ZOW14] Xueling Zhong, Jinwen Ou, and Guoqing Wang. Order acceptance
and scheduling with machine availability constraints. European
Journal of Operational Research, 232(3):435–441, February 2014.

26

Appendix A. Dynamic program for lifting with time windows

To solve the optimization problem LIFT1, we can use the following recursive
functions:

• F (w), w ∈ {0, . . . ,
∑u
i=1 ωi} is the earliest possible completion time of a

schedule composed of a set of jobs whose total weight is exactly w. If no
such set of jobs exists, then F (w) =∞.

• f(w, i), w ∈ {0, . . . ,
∑u
j=1 ωj}, i ∈ {1, . . . , u} is the earliest possible com-

pletion time of a schedule composed of a subset of jobs in {θ1, . . . , θi}
whose total weight is exactly w. If no such subset of jobs exists, then
f(w, i) =∞.

• f1(w, i) (resp. f0(w, i)), w ∈ {0, . . . ,
∑u
i=1 ωi}, i ∈ {1, . . . , u} is similar

to f(w, i), with the additional constraint that θi belongs (resp. does not
belong) to the subset of processed jobs.

• ct(w, i) denotes the earliest possible completion time of θi when it is pro-
cessed together with a subset of jobs in {θ1, . . . , θi−1} whose total weight
is w − ωi.

These functions are linked with the help of the following relations:

F (w) = f(w, u) w ∈ {0, . . . ,
∑u
i=1 ωi}

f(w, 0) =

{
0 if w = 0
∞ otherwise

w ∈ {0, . . . ,
∑u
j=1 ωj}

f(w, i) =

{
min

(
f0(w, i), f1(w, i)

)
if θi /∈ Φ

f1(w, i) if θi ∈ Φ
w ∈ {0, . . . ,

∑u
j=1 ωj}, i ∈ {1, . . . , u}

f0(w, i) = f(w, i− 1) w ∈ {0, . . . ,
∑u
j=1 ωj}, i ∈ {1, . . . , u}

f1(w, i) =

{
ct(w, i) if ct(w, i) ≤ d̄i
∞ otherwise

w ∈ {0, . . . ,
∑u
j=1 ωj}, i ∈ {1, . . . , u}

ct(w, i) =

{
max

(
ri, f(w − ωi, i− 1)

)
+ pi

∞
w ∈ {ωi, . . . ,

∑u
j=1 ωj}, i ∈ {1, . . . , u}

w ∈ {0, . . . , ωi − 1}, i ∈ {1, . . . , u}
(A.1)

Finally, the optimal value of the lifting problem is z = max{w|F (w) 6= ∞}.
The dynamic program counts u(

∑u
i=1 ωi+1) states, each of which requires O(1)

operation to compute the corresponding optimal value. Therefore, the optimal
value z can be computed in O(u

∑u
i=1 ωi). Because it is relatively lengthy, we

provide the proof of validity for these equations as supplementary material.

Appendix B. Dynamic program for lifting with time windows, groups
of jobs, and dominance of actual occurrences over vir-
tual occurrences

To solve LIFT2, we use recursive functions, which we define with the help
of the following notations: A = {0, 1}u, B = {0, 1}χ, W̄ =

∑u
i=1 ωu, W =

27

{0, . . . , W̄}, U = {1, . . . , u}. For ease of reading, when the domain of 4-tuple
(w, i,Π,Λ) is not specified, we assume that i ∈ U , w ∈W , Π ∈ A, and Λ ∈ B.

f(w, 0,Π,Λ) =

{
0 if w = 0,Π = 0,Λ = 0
∞ otherwise

f(w, i,Π,Λ) =

 f1(w, i,Π,Λ) if λi = 0
f2(w, i,Π,Λ) if λi > 0
f3(w, i,Π,Λ) if λi < 0

f1(w, i,Π,Λ) =

{
f4(w, i,Π,Λ) if gi 6= ∅
f5(w, i,Π,Λ) if gi = ∅

f2(w, i,Π,Λ) =

 ∞ if Λλi = 1
f8(w, i,Π,Λ) if (Λλi

= 0) ∧ (gi 6= ∅)
f9(w, i,Π,Λ) if (Λλi

= 0) ∧ (gi = ∅)

f3(w, i,Π,Λ) =

{
f12(w, i,Π,Λ) if gi 6= ∅
f13(w, i,Π,Λ) if gi = ∅

f4(w, i,Π,Λ) =

{
f6(w, i,Π,Λ) if θi ∈ Φ
min(f6(w, i,Π,Λ), f(w, i− 1,Π,Λ)) if θi /∈ Φ

f5(w, i,Π,Λ) =

{
f7(w, i,Π,Λ) if θi ∈ Φ
min(f7(w, i,Π,Λ), f(w, i− 1,Π,Λ)) if θi /∈ Φ

f6(w, i,Π,Λ) =

{
c6(w, i,Π,Λ) if Πi = 1 ∧ c6(w, i,Π,Λ) ≤ d̄i
∞ if Πi = 0 ∨ c6(w, i,Π,Λ) > d̄i

c6(w, i,Π,Λ) =

 max(ri, f(w − ωi, i− 1,Π′,Λ)) + pi if w ≥ ωi,with Π′i = 0,
Π′k = Πk, k 6= i

∞ if w < ωi

f7(w, i,Π,Λ) =

{
c7(w, i,Π,Λ) if c7(w, i,Π,Λ) ≤ d̄i
∞ if c7(w, i,Π,Λ) > d̄i

c7(w, i,Π,Λ) =

{
max(ri, f(w − ωi, i− 1,Π,Λ)) + pi if w ≥ ωi
∞ if w < ωi

f8(w, i,Π,Λ) =

{
f10(w, i,Π,Λ) if θi ∈ Φ
min(f10(w, i,Π,Λ), f(w, i− 1,Π,Λ)) if θi /∈ Φ

f9(w, i,Π,Λ) =

{
f11(w, i,Π,Λ) if θi ∈ Φ
min(f11(w, i,Π,Λ), f(w, i− 1,Π,Λ)) if θi /∈ Φ

f10(w, i,Π,Λ) = min(f6(w, i,Π,Λ), f6(w, i,Π,Λ′)) with Λ′λi
= 1,Λ′λ = Λλ, λ 6= λi

f11(w, i,Π,Λ) = min(f7(w, i,Π,Λ), f7(w, i,Π,Λ′)) with Λ′λi
= 1,Λ′λ = Λλ, λ 6= λi

f12(w, i,Π,Λ) =

f(w, i− 1,Π,Λ) if Λλi
= 0 ∧ θi /∈ Φ

∞ if Λλi
= 0 ∧ θi ∈ Φ

min{f(w, i− 1,Π,Λ),

f6(w, i,Π,Λ),

f6(w, i,Π,Λ′)}
if Λλi

= 1with Λ′λi
= 0,Λ′λ = Λλ, λ 6= λi

f13(w, i,Π,Λ) =

f(w, i− 1,Π,Λ) if Λλi
= 0 ∧ θi /∈ Φ

∞ if Λλi
= 0 ∧ θi ∈ Φ

min{f(w, i− 1,Π,Λ),

f8(w, i,Π,Λ),

f8(w, i,Π,Λ′)}
if Λλi

= 1with Λ′λi
= 0,Λ′λ = Λλ, λ 6= λi

(B.1)

28

Finally, the optimal value of the lifting problem LIFT2 is z = max{w|f(w, u,Π,0) 6=
∞, w ∈W,Π ∈ A}. Indeed, by definition of S(w, u,Π,0), max{f(w, u,Π,0)|Π ∈
A} is the minimum possible completion of a feasible schedule composed of jobs
in Θ and of weight w. Each function in (B.1) is calculated in O(1) operations.
Therefore, the time complexity of a straightforward dynamic programming al-
gorithm is equal to the overall number of states, i.e. O(W̄ · u · 2|π|+χ). The
proof of validity for these equations is available as supplementary material.

29

M
et
h
o
d

M
o
d
el

(B
)

(B
)+

(S
L
C
C
)
L
I
F
T
1

(B
)+

(S
L
C
C
)
L
I
F
T
2
χ
=

0

P
ro
b
le
m

ty
p
e

#
u
n
so
lv
ed

A
v
g
.
ti
m
e

A
v
g
.
L
R

#
u
n
so
lv
ed

A
v
g
.
ti
m
e

A
v
g
.
ro
o
t

#
u
n
so
lv
ed

A
v
g
.
ti
m
e

A
v
g
.
ro
o
t

#
jo
b
s

#
so
lv
ed

b
y
a
ll

1
h
.

(s
ec
.)

g
a
p

1
h
.

(s
ec
.)

g
a
p

1
h
.

(s
ec
.)

g
a
p

1
|r

i
|∑ w

i
U

i

2
5
0

2
0

2
3
3
6
.7

6
.4
8
%

0
1
7
2
8
.5

4
.7
8
%

0
5
2
3
.6

2
.3
9
%

3
0
0

0
1

a
7
.1
7
%

1
a

5
.2
9
%

0
a

3
.2
4
%

3
5
0

1
1

1
4
9
4
.6

2
.4
9
%

1
7
6
6
.5

2
.0
6
%

0
5
9
8
.8

1
.3
9
%

4
0
0

2
5

1
4
9
3
.3

2
.2
8
%

4
1
7
6
8
.9

1
.7
9
%

1
1
2
4
0
.9

1
.3
1
%

4
5
0

1
3

3
2
1
2
.1

1
.8
5
%

2
6
0
7
.0

1
.4
1
%

2
9
8
6
.4

1
.1
3
%

5
0
0

2
5

1
6
9
1
.1

1
.7
4
%

3
1
0
4
2
.2

1
.4
2
%

4
1
2
6
6
.4

1
.2
1
%

1
|r

i
,n
r
−
a
|∑ w

i
U

i

3
0
0

2
5

2
4
0
0
.4

3
.0
0
%

5
4
9
9
.7

2
.3
7
%

2
8
0
8
.4

1
.7
2
%

4
0
0

4
1
0

1
8
8
5
.9

2
.0
5
%

1
0

2
7
6
5
.5

1
.5
8
%

1
1
4
6
5
.7

1
.1
3
%

5
0
0

1
1

2
1

1
9
6
2
.9

1
.4
3
%

2
1

9
1
2
.6

1
.1
2
%

1
0

9
5
4
.7

0
.9
3
%

1
|r

i
,S
T
s
i
|∑ w

i
U

i

2
0
0

3
5

1
3
0
2
.7

0
.7
0
%

0
2
3
.3

0
.6
8
%

0
3
4
.3

0
.6
8
%

3
0
0

1
1

1
1

2
4
1
6
.9

2
.8
2
%

6
1
4
3
3
.4

2
.1
6
%

2
7
2
5
.0

1
.4
8
%

4
0
0

2
1

2
7

1
8
8
2
.0

1
.9
5
%

1
7

1
5
6
7
.2

1
.5
4
%

9
8
6
4
.4

1
.1
4
%

5
0
0

1
6

5
5

1
9
5
4
.8

1
.3
4
%

3
6

1
8
7
9
.8

1
.0
9
%

2
3

1
1
8
6
.3

0
.9
1
%

M
et
h
o
d

(B
)+

(S
L
C
C
)
L
I
F
T
2
χ
=

1
(B

)+
(S
L
C
C
)
L
I
F
T
2
χ
=

2

P
ro
b
le
m

ty
p
e

#
u
n
so
lv
ed

A
v
g
.
ti
m
e

A
v
g
.
ro
o
t

#
u
n
so
lv
ed

A
v
g
.
ti
m
e

A
v
g
.
ro
o
t

#
jo
b
s

#
so
lv
ed

b
y
a
ll

1
h
.

(s
ec
.)

g
a
p

1
h
.

(s
ec
.)

g
a
p

1
|r

i
|∑ w

i
U

i

2
5
0

2
0

5
8
6
.6

2
.3
9
%

0
7
2
0
.7

2
.3
3
%

3
0
0

0
0

a
3
.1
7
%

0
a

3
.1
8
%

3
5
0

1
0

7
4
8
.7

1
.4
3
%

0
6
6
1
.8

1
.4
6
%

4
0
0

2
2

2
1
5
4
.1

1
.3
0
%

2
1
0
8
5
.7

1
.3
2
%

4
5
0

1
2

1
1
8
9
.1

1
.0
9
%

2
1
5
6
3
.0

1
.1
5
%

5
0
0

2
3

1
0
6
4
.4

1
.2
1
%

3
1
3
5
1
.2

1
.1
9
%

1
|r

i
,n
r
−
a
|∑ w

i
U

i

3
0
0

2
1

1
4
8
8
.6

1
.7
3
%

1
5
1
0
.7

1
.7
4
%

4
0
0

4
0

1
7
7
1
.9

1
.1
4
%

0
1
5
0
4
.0

1
.1
4
%

5
0
0

1
1

7
9
4
2
.8

0
.9
3
%

1
1

8
7
9
.5

0
.9
4
%

1
|r

i
,S
T
s
i
|∑ w

i
U

i

2
0
0

3
1

3
2
.0

0
.7
1
%

1
2
2
.1

0
.6
8
%

3
0
0

1
1

2
6
7
3
.1

1
.4
8
%

3
7
0
6
.9

1
.4
7
%

4
0
0

2
1

1
1

1
2
0
0
.9

1
.1
4
%

9
1
0
4
9
.3

1
.1
5
%

5
0
0

1
6

2
5

1
0
3
7
.0

0
.9
1
%

2
9

1
1
1
8
.0

0
.9
2
%

T
a
b
le

B
.2
:
R
es
u
lt
s
o
b
ta
in
ed

u
si
n
g
(S

L
C
C
)
o
n
in
st
a
n
ce
s
le
ft

o
p
en

u
si
n
g
M
o
d
el

(B
)
w
it
h
in

1
0
0
0
se
c.

A
v
er
a
g
e
ti
m
es

a
n
d
n
u
m
b
er
s
o
f
n
o
d
es

a
re

ca
lc
u
la
te
d

o
n
in
st
a
n
ce
s
th

a
t
a
re

so
lv
ed

b
y
a
ll
m
et
h
o
d
s
in

th
e
ta
b
le
.
T
h
e
n
u
m
b
er

o
f
th

es
e
in
st
a
n
ce
s
is

re
p
o
rt
ed

in
th

e
co

lu
m
n
”
#

so
lv
ed

b
y
a
ll
”
fo
r
ea

ch
p
ro
b
le
m

ty
p
e
a
n
d
ea

ch
n
u
m
b
er

o
f
jo
b
s.

a
M
o
d
el

(B
)
a
lo
n
e
ca

n
n
o
t
so
lv
e
th

is
in
st
a
n
ce

in
1
0
0
0
se
c.
,
n
o
r
in

o
n
e
h
o
u
r.

30

