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Abstract

This paper studies a single machine scheduling problem whose objective is
to minimize a regular step total cost function. Lower and upper bounds,
obtained from linear and Lagrangean relaxations of different Integer Linear
Programming formulations, are compared. A dedicated exact approach is
presented, based on a Lagrangean relaxation. It consists of finding a Con-
strained Shortest Path in a specific graph designed to embed a dominance
property. Filtering rules are developed for this approach in order to reduce
the size of the graph, and the problem is solved by successively removing
infeasible paths from the graph. Numerical experiments are conducted to
evaluate the lower and upper bounds. Moreover, the exact approach is com-
pared with a standard solver and a naive branch-and-bound algorithm.
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1. Introduction

Scheduling can be broadly defined as the process of allocating resources
and time intervals to tasks (or jobs) so that one or more criteria are opti-
mized. A number of objective functions have been investigated in the liter-
ature, most of them classified among bottleneck objectives or sum objectives
(Brucker, 2004). The former consist of the minimization of the maximum
evaluation of a criterion over all tasks, such as minimizing the Makespan
(Cmax) or the maximum lateness (Lmax). In the later, each task of the sched-
ule is assigned a cost depending on its completion time. The aim is then
to minimize the sum of the costs of all tasks. These problems comprise the
minimization of the total (weighted) tardiness (

∑
j wjTj), the minimization

of the (weighted) number of tardy jobs (
∑

j wjUj) or the minimization of
earliness and tardiness penalties (

∑
j αjEj + βjTj).

In this paper, we are interested in a problem which generalizes the min-
imization of the weighted number of tardy jobs. Let us recall that, in the
classical

∑
j wjUj problem, each job has a due date dj and, if a job j is com-

pleted after dj, a cost wj is incurred that is independent of the completion
time of job j. The cost wj represents for example the loss of a customer
order or good-will, raw materials being perished, financial penalties . . . In
this paper, we assume that each job has a set of due dates and a set of
associated increasing costs. It allows the modeling of the same real-life phe-
nomena while introducing a gradation on the importance of being late. This
is for instance necessary when multiple discrete deadlines can be proposed
to the customers with different preferences. Stepwise tardiness costs arise in
various applications: railroad scheduling (Sahin, 2006), truckload, expedited
ground, airfreight forwarding (Curry and Peters, 2005) or when consider-
ing transshipment fees which increase along with job completion times in
scheduling problems (Yang, 2009). Another practical application in the con-
text of semiconductor manufacturing that originally motivated this research
is described in (Detienne et al., 2009). Lots of different product types are
manufactured with a given production schedule, and the goal is to schedule
some of these lots on one or several measurement machines to minimize the
risks. In this case, the risk wj corresponds to the number of lots of the same
product type that will be started if the measurement of a lot is completed
after a due date dj, and thus may be lost if a quality problem is found.
Each lot to be measured has thus a set of due date and associated risks,
corresponding to the start times of the lots of the same product type in the
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production schedule.
This paper focuses on the single-machine case of the problem with regu-

lar cost functions, which is described in Section 1.1, and aims at comparing
the effectiveness of different approximate and exact methods. Related work
found in the literature is discussed in Section 1.2. Integer Linear Program-
ming (ILP) formulations are presented in Section 1.3, and Section 1.4 studies
the complexity of the problem. Sections 2.1 and 2.2 respectively propose La-
grangean lower and upper bounds. An exact method is described in Section
3. Numerical results on the Lagrangean heuristics and the exact approach
are reported and discussed in Section 4. Some conclusions and perspectives
are given in Section 5.

1.1. Problem formulation

Our problem consists in scheduling a set of jobs on a single machine,
which can handle at most one job at a time. The jobs and the machine are
not subject to availability constraints, and the objective is to minimize a
regular step cost function of the job completion times. Formally, an instance
of our problem is determined by:

• a set J of jobs. For each job j ∈ J :

• a processing time pj,

• an ordered set Kj = (d1
j , . . . , d

sj
j ) of sj jump points,

• and an ordered set Γj = (γ1
j , . . . , γ

sj
j ) of costs, that describe the cost

function of job j, such that γ1
j < γ2

j < · · · < γ
sj
j , j ∈ J .

A cost γlj is incurred if job j completes at time t such that dlj < t ≤ dl+1
j ,

l ∈ {1, . . . , sj − 1}. A cost γ
sj
j is incurred if t > d

sj
j . Without loss of

generality, we assume that no cost is incurred if t ≤ d1
j . If necessary, data

can be modified by adding a constant term to the objective function and
adapting the costs consequently. Our study considers the case of regular cost
functions, i.e. γ1

i < γ2
i < · · · < γ

sj
j , j ∈ J . Let η =

∑
sj denote the total

number of jump points, and D = ∪j∈JKj denote the set of distinct jump
points. Note that |D| ≤ η since several jump points of different jobs might
be equal.

The problem is to assign a starting time to each job, such that the cost
of the schedule is minimum. Jobs are scheduled without preemption, and
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all data is integer. This problem can be denoted, in the standard three field
notation (Graham et al., 1979), by 1||

∑
f̄j(Cj) where f̄j is a non-decreasing

step function.

1.2. State of the art

To our knowledge, only a few papers about machine scheduling deal ex-
plicitly with a regular step cost function (with the exception of the criterion∑

j wjUj). (Yang, 2009) calls this problem the multiple due dates problem
and focuses on the special case where all jobs have the same set of jump
points. The author designs a branch-and-bound algorithm which solves in-
stances with up to 100 jobs and 3 common jump points optimally. We show
in Section 1.4 that this special case in NP-hard in the ordinary sense. (Tseng
et al., 2010) call the objective function total stepwise tardiness. The authors
develop a Variable Neighborhood Search and apply it to 50−job instances
with 3, 4 and 5 jump points to obtain near-optimal feasible solutions. One of
the contributions of this paper is a dedicated exact approach outperforming
these computational results.

(Detienne et al., 2009) study a more general case on parallel unrelated
machine with job release dates. The authors exhibit a set of dominant so-
lutions for R|rj|

∑
f̄j(Cj), and design an Integer Linear Programming (ILP)

formulation based on this dominance. For the problem R||
∑
f̄j(Cj), they

present another set of dominant solutions and an associated ILP formulation.
Our current work relies on this formulation, which is recalled in Section 1.3.
(Detienne et al., 2009) also evaluate the pertinence of the ILP models through
the direct application of a Mixed Integer Programming solver.

The problem 1||
∑
f̄j(Cj) is trivially a generalization of 1||

∑
Uj. The lat-

ter problem is polynomial and can be solved in O(n log(n)) (Moore, 1968).
When jobs have different weights, the problem, denoted 1||

∑
wjUj, is NP-

hard, even when due dates are equal (Karp, 1972). When release dates
are introduced, the problem 1|rj|

∑
Uj is strongly NP-hard (Lenstra et al.,

1977). (Baptiste et al., 2008) present an ILP formulation for the problem
1|d̄j|

∑
wjUj, in which each job must be scheduled before its deadline such

that the weighted number of tardy jobs is minimized. Based on their for-
mulation, the authors develop an exact method that can solve instances of
1|d̄j|

∑
wjUj with up to 30000 jobs and instances of 1||

∑
wjUj with up to

50000 jobs. Proposition 5 in Section 1.4 shows that 1|sj = 2|
∑
f̄j(Cj) (all

jobs have two unequal jump points) is at least as hard as 1|d̄j|
∑
wjUj. Un-

fortunately, this paper is, to our knowledge, the latest work on this problem,
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and it is not clear for the authors whether this problem is NP-hard in the
ordinary sense or strong sense.

Most of the work described in this paper relies on a Lagrangean relaxation
of the number of occurrences of each job in an Integer Linear Programming
formulation. This approach has been used several times in the literature for
total cost scheduling problems, mainly starting from a time-indexed strat-
egy, in various solving strategies. It is used in (Abdul-Razaq and Potts,
1988) and (Peridy et al., 2003) in a branch-and-bound approach. (Sourd,
2009) strengthens the relaxation by adding valid inequalities to develop a
branch-and-bound approach. (Ibaraki and Nakamura, 1994) propose a Suc-
cessive Sublimation Dynamic Programming algorithm. An obvious drawback
of the relaxation is that there is no limitation to the number of times a job
will appear in the pseudo-schedules representing optimal solutions of the La-
grangean subproblem, which can be composed of many occurrences of a single
job and lead to poor lower bounds. In order to reduce this disadvantage and
obtain a better bound, (Abdul-Razaq and Potts, 1988) and (Peridy et al.,
2003) use the concept of short-term memory to prevent two occurrences of
the same job to be processed consecutively in the subproblem, and (Peridy
et al., 2003) extend the concept to any partial sequence of a fixed number
of jobs. Their method is limited by the time and space complexity of the
algorithm, which forbids its practical application to partial sequences of more
than three jobs. The same concept is used by (Tanaka et al., 2009) to improve
the approach of (Ibaraki and Nakamura, 1994), as well as other dominances
on sequences of four jobs. Our approach differs from these previous works by
using a strong formulation for our problem, in which the number of occur-
rences of each job in the solution of the Lagrangean subproblem is bounded
by its number of jump points plus one, and such that they can appear only at
specific positions. This yields very good lower bounds allowing the use of an
alternative solving procedure described in Section 3. It consists of searching
for a shortest feasible path in a graph embedding this dominance property,
by successively removing infeasible shortest paths. We adapt and extend a
basic filtering rule similar to the ones used in (Sourd, 2009) or (Tanaka et al.,
2009) to reduce the size of the graph.

1.3. Integer Linear Programming models

This section provides two Binary Linear Programming models of the prob-
lem 1||

∑
f̄j(Cj).
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1.3.1. Time-indexed formulation

The problem can be written in the classical time-indexed formulation
(Sousa and Wolsey, 1992). Note that this generic model cannot be used di-
rectly in practice because of the large number of variables it involves. Indeed,
standard MILP solvers are not able to solve most programs corresponding to
30-job instances.

Let P =
∑

j∈J pj denote the total processing time of all jobs. Let us
denote cjt the cost of completing job j ∈ J at time instant t ∈ T , with
T = {0, . . . , P} the scheduling horizon. According to the previous notations,
we have cjt = γkj , with k such that dk−1

j < t ≤ dkj . Let us introduce the set
of decision variables (xjt)j∈J,t∈T , such that xjt is equal to 1 iff j completes
at t, 0 otherwise. This allows us to write a time-indexed formulation of the
problem:

(TI) : min
∑
j∈J

P∑
t=pj

cjtxjt (1)

s.t.
P∑

t=pj

xjt = 1 j ∈ J (2)

∑
j∈J

t+pj∑
θ=max(t+1,pj)

xjθ ≤ 1 t ∈ T (3)

xjt ∈ {0, 1} j ∈ J, t ∈ {pj, . . . , P} (4)

In this model, Constraints (2) ensure that each job has exactly one com-
pletion time, and thus is processed exactly once, and Constraints (3) that no
more than one job is executed at a time. Indeed,

∑t+pj
θ=max(t+1,pj)

xjθ is equal

to one if and only if job j is processed during time instant t.

1.3.2. Dominant order formulation

The model described in this section, which is the base of our approach, has
been proposed by (Detienne et al., 2009) for the unrelated parallel machine
variation of the problem. The ILP formulation relies on the following well-
known result (see e.g. (Jackson, 1955)). Let us consider the problem of
scheduling a set of jobs I with no release dates on a single processor and
without preemption, such that each job j ∈ I completes before its deadline
d̄j.
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Proposition 1. If there exists at least one feasible schedule in which each
job completes before its deadline, then the schedules where jobs are sequenced
according to a non-decreasing order of their deadlines are feasible.

This leads to the following characterization of feasible solutions.

Proposition 2. Let σ be the permutation of I corresponding to a non-
decreasing order of the deadlines. There exists at least one feasible solution
iff:

j∑
r=1

pσ(r) ≤ d̄σ(j) j ∈ I

The problem 1||
∑

j f̄j(Cj) can clearly be seen as the problem of finding
a minimum cost assignment of deadlines, corresponding to the jump points,
where the cost functions change, such that there exists at least one feasible
schedule meeting the deadlines. Using Proposition 2 for characterizing the
set of feasible schedules leads to the following ILP model, based on the notion
of occurrences of jobs. Each jump point dlj, j ∈ J , l ∈ Ki, is linked with a
possible occurrence k of job j subject to a deadline dk and whose execution
cost is γk = γlj, corresponding to the execution of j before dk = dlj. Hence, η
(which is equal to

∑
sj) is the total number of occurrences, and we assume

that occurrences are indexed according to a non-decreasing order of their
deadlines, i.e. d1 ≤ d2 ≤ · · · ≤ dη. Let σ(k), k ∈ {1, . . . , η} denote the job
corresponding to the kth occurrence. Finally, K̄j = {k ∈ {1, . . . , η}|σ(k) =
j}, j ∈ J , is the set of indices of the occurrences linked with job j. We can
now rewrite the problem as:

(DOF ) : min
∑

k∈{1,...,η}

γk · uk (5)

s.t.
∑
k∈K̄j

uk = 1 j ∈ J (6)

k∑
l=1

pσ(l) · ul ≤ dk k ∈ {1, . . . , η} (7)

uk ∈ {0, 1} k ∈ {1, . . . , η} (8)

In this model, decision variable uk is equal to 1 if and only if occurrence k
is processed. Constraints (6) ensure that exactly one occurrence of each job
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is processed, and Constraints (7) ensure that this selection of occurrences can
lead to a feasible schedule, related to Proposition 2. This model can be seen
as a generalization of a model used in the literature for the minimization of
the weighted number of tardy jobs on a single machine (Lawler and Moore,
1969) or parallel machines (M’Hallah and Bulfin, 2005).

It is worth noting that ties on deadlines can be broken in an arbitrary
way. In this case, Constraint (7) associated with the occurrence of highest
rank trivially dominates the constraints associated with occurrences with
the same deadline, which can thus be removed from the model. It follows
that the number of Constraints (7) is equal to the number of distinct jump
points. Let us recall that D denotes the set of distinct jump points. Hence,
Constraints (7) can be replaced by:∑

l∈{1,...,η},dl≤d

pσ(l) · ul ≤ d d ∈ D (9)

Besides, one can recognize a Multichoice Multidimensional Knapsack Prob-
lem in formulation (DOF ): each group of items corresponds to a job, each
item to an occurrence of job, and there is one resource constraint for each
distinct deadline.

1.4. Complexity results

This section provides some complexity results on 1||
∑
f̄j(Cj).

Proposition 3. The problem 1||
∑
f̄j(Cj) is NP-hard in the strong sense.

Proof. Consider the special case of 1||
∑
f̄j(Cj) in which each job j has a first

jump point d1
j and qj =

∑
i∈J pi−d1

j other jump points such that dkj = dk−1
j +1,

k = 2, . . . , qj such that γkj = γk−1
j +vj, k = 2, . . . , qj and vj ∈ N. This instance

defines an instance of 1||
∑
wjTj with due dates dj = d1

j and weights wj = vj,
j ∈ J . Thus, the problem 1||

∑
wjTj, which is NP-hard in the strong sense

(Lawler, 1977), is a special case of 1||
∑
f̄j(Cj), which is also NP-hard in the

strong sense.

Proposition 4 focuses on the case where a fixed number α ∈ N of distinct
jump points is considered.

Proposition 4. The problem 1
∣∣|D| = α

∣∣∑ f̄j(Cj) is NP-hard in the ordinary
sense.
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Proof. The special case α = 1 is a classical 0 − 1-knapsack problem. Thus,
1
∣∣|D| = α

∣∣∑ f̄j(Cj) is NP-hard.
Moreover, the Multichoice Knapsack Problem can be solved by a Dynamic

Programming procedure running in O(ab), with a the number of items in-
volved and b the right-hand-side of the resource constraint (Dudzinski and
Walukiewicz, 1987). A straightforward adaptation of this algorithm solves
the Multichoice Multidimension Knapsack Problem in a O(aBm), with B the
maximum value of right-hand-sides of resource constraints, and m the num-
ber of resource constraints. The direct application of this procedure to the
formulation (DOF ) leads to an O(nαPα) pseudo-polynomial algorithm to
solve 1

∣∣|D| = α
∣∣∑ f̄j(Cj) optimally. Thus, 1

∣∣|D| = α
∣∣∑ f̄j(Cj) is NP-hard

in the ordinary sense.

Proposition 5. The problem in which each job has two distinct jump points
(1|sj = 2|

∑
f̄j(Cj)) is at least as hard as 1|d̄j|

∑
wjUj.

Proof. The proof goes by showing that there is a polynomial transformation
from 1|d̄j|

∑
wjUj to 1|sj = 2|

∑
f̄j(Cj). Let Ω be an instance of the decision

problem associated with 1|d̄j|
∑
wjUj, characterized by an integer Z, a set

of jobs J and, for all j ∈ J , a processing time pj, a deadline d̄j, a due date dj
and a weight wj. The question is: Is there a feasible schedule with objective
value less than or equal to Z?

Let us build an instance Ω′ of the decision problem associated with 1|sj =
2|
∑
f̄j(Cj), composed of Z, a set of jobs J ′ with one job j′ for each job j ∈ J ,

and, for each j′ ∈ J ′, a processing time pj′ = pj and two jump points:

• d1
j′ = dj, whose associated cost is γ1

j′ = wj,

• and d2
j′ = d̄j, whose associated cost is γ2

j′ = max(
∑

i∈J wi, Z) + 1.

Note that it is straightforward to derive a solution from Ω to Ω′ by scheduling
the corresponding jobs in the same order, and such that the completion times
of the linked jobs are equal. Thus, if the answer to Ω is YES, it is easy to
verify that we can derive a feasible schedule to Ω′ from any feasible schedule
of Ω, so that the answer to Ω′ is YES. Suppose that the answer to Ω′ is YES.
Then, consider a feasible schedule of Ω′. For all j′ ∈ J ′, j′ completes before or
at time instant d2

j′ = d̄j since γ2
j′ > Z. So, one can derive a feasible schedule

for Ω that has trivially the same cost, and the answer to Ω is YES.
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2. Lagrangean bounds

This section describes a lower bound and an upper bound, both based on
a Lagrangean relaxation.

2.1. Lower bound by Lagrangean relaxation

This section presents a lower bound derived from a Lagrangean relaxation
of the (DOF ) model. Let us consider the model made of Constraints (5), (6),
(9) and (8), and let us add the following valid equality in order to strengthen
the relaxation:

η∑
k=1

pσ(k) · uk = P (10)

This simply specifies that the total processing time in the schedule must be
equal to the total processing time of the jobs. Let π = (π1, . . . , πn) denote
Lagrangean multipliers associated with the n Constraints (6), and let us price
out these constraints to get the dual function below:

L(π) = min

η∑
k=1

(γk + πσ(k)) · uk −
∑
j∈J

πj (11)

s.t. (9) and (8) and (10) (12)

It follows that the dual problem [DP ] consists in finding a vector of
Lagrangean multipliers π maximizing L(π):

[DP ] = max
π∈Rn

L(π)

The resulting value provides a lower bound for (DOF ). The Lagrangean
sub-problem can be interpreted as the problem of finding a timed sequence
of correctly ordered occurrences respecting the disjunctive constraint, whose
total duration is P and of minimum Lagrangean cost.

Let γ̃k = γk + πσ(k) denote the Lagrangean cost of the variable uk. This
subproblem can be solved using the following Dynamic Programming equa-
tions:

f(0, 0) = 0

f(k, t) = min

{
f(k − 1, t)
f(k − 1, t− pσ(k)) + γ̃k

k ∈ {1, . . . , η}, t ∈ {0, . . . , dk}

f(k, t) = ∞ otherwise.
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In these recurrence equations, f(k, t), k ∈ {1, . . . , η}, t ∈ N, denotes the
minimum possible Lagrangean cost of a sequence composed of a subset of
the k first occurrences in the EDD order, of length t. The first relation
states initial conditions: If no occurrence is processed at the beginning of
the horizon, the cost is null. The second equation decomposes into two
alternatives:

• Either occurrence k is processed and completes at time t, and the par-
tial optimal cost is equal to the optimal cost of a schedule composed of
a subset of the first k − 1 occurrences completing just before k starts,
plus the cost of processing k,

• Or k is not processed or does not complete at time t, and the partial
optimal cost is equal to the optimal cost of a schedule completing at t
and composed of a subset of the first k − 1 occurrences.

The last relation corresponds to infeasible states. The optimal value is ob-
tained by calculating f(η, P ), which can be done using a straightforward
O(ηP )-time procedure. The Lagrangean lower bound can be maximized us-
ing a sub-gradient procedure (see e.g. Held et al., 1974).

2.2. Upper bound by Lagrangean heuristic

The heuristic provides an upper bound of the optimum of our problem,
by deriving a feasible solution from a solution of the Lagrangean subprob-
lem. The idea is, first, to randomly (uniformly) select one occurrence per
job scheduled in the Lagrangean solution. Then, the jobs that are not in
the Lagrangean solution are inserted, one by one, in a greedy way, at the
position leading to the partial schedule of smallest cost. The insertion order
is randomly determined.

This procedure takes advantage of the fact that the best insertion position
of a job into a sequence of q jobs can be found in O(q)-time, although an
isolated evaluation of the cost of a solution can only be done in O(q)-time.
Indeed, as there are no availability constraints on the machine or jobs and the
cost function is regular, solutions without idle times are dominant. Focusing
on this set of solutions, the cost difference incurred when interchanging two
adjacent jobs j1 and j2, j1 initially starting at t0, is given by cj2,t0+pj2 +
cj1,t0+pj2+pj1 − (cj1,t0+pj1 + cj2,t0+pj1+pj2). Thus, one can first append the job
to be inserted to the sequence and evaluate the cost of the new sequence in
O(1)-time complexity. Then, the job is interchanged with the preceding job
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in the sequence and the cost of the new sequence is incrementally evaluated
in O(1)-time complexity. The operation is repeated until the beginning of
the sequence, leading to an overall complexity of O(q). The counterpart for
this time complexity is the necessity to have a O(1)-time access to the cost
cjt of completing a job j at time instant t, which requires an O(nP )-space
storage. As the procedure is very fast, it can be used many times, providing
different schedules.

The best sequence obtained is then improved using a simple local search
algorithm. The neighborhood explored consists in extracting and re-inserting
one job at another position in the sequence. Note that scanning the whole
neighborhood is made by a O(n2)-time procedure, by applying the same trick
as in the heuristic in order to reduce the complexity of the search.

3. Exact method

As stated in the literature review (Section 1.2), several papers deal with a
graph representation of scheduling problems and filtering rules on this graph.
To our knowledge, the best solving approaches are branch-and-bound meth-
ods (e.g., Sourd, 2009) or Successive Sublimation Dynamic Programming
(Ibaraki and Nakamura, 1994; Tanaka et al., 2009).

As shown in the numerical experimental of Section 4.3, the quality of
the Lagrangean bounds led us to develop an exact method. The idea is to
correct the nearly feasible Lagrangean solution to obtain an optimal solution.
The principle is, thus, to work with the graph representation of the Dynamic
Program presented in Section 2.1, and to look for a feasible shortest path in
this graph – corresponding to a feasible schedule – by successively removing
infeasible shortest paths, i.e. infeasible schedules.

3.1. Occurrence/Time-indexed Graph

Let us consider an instance of 1||f̄(Cj) and its ordered set of job oc-
currences, and let us build the associated Occurrence/Time-indexed Graph
G = (X,E, c, ρ, ω), where:

• X is the set of vertices,

• E is the set of edges,

• ce is the cost associated to edge e,
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• ρe is the subset of occurrences associated to edge e,

• ωe is the subset of jobs associated to edge e.

Moreover, given any vector of Lagrangean multipliers π, we define c̃e ∈ R as
the Lagrangean cost associated edge e.

The idea is to map the set of possible pseudo-schedules into the set of
paths in the graph G, whose costs are equal to the costs of the pseudo-
schedules, and to map the set of schedules into the set of feasible paths in
G subject to additional constraints on the jobs associated to edges. Let us
formally define the structure of G. It is a layered graph in which each node
xk,t represents a decision point, i.e. the possibility to start or skip occurrence
k at time t. Each occurrence is associated with the nodes of one layer, and
an additional fictive node x∗ represents the end of the schedule:

X =

 ⋃
k∈{1,...,η}

Xk

 ∪ {x∗},
Xk =

{
xk,t|t ∈ {0, . . . , dk}

}
, k ∈ {1, . . . , η}.

An edge e = (xk,t, xk′,t′) represents the processing of ρe, a subset of the oc-
currences between occurrences k (included) and k′ (not included), at starting
time t, such that the machine is available for the occurrence k′ at time t′.
Recall (see Section 1.3.2) that σ(k) denotes the job corresponding to the kth

occurrence, with k ∈ {1, . . . , η} and where η =
∑
sj is the total number of

occurrences.
Basically, if we consider a singleton {k} of occurrences, the first alter-

native is that k is not processed at t so that the machine is available for
processing k + 1 at time instant t:

E0 =
{

(xk,t, xk+1,t) |k ∈ {1, . . . , η − 1}, t ∈ {0, . . . , dk}
}
∪ {(xη,P , x∗)} .

We have, for e ∈ E0, ρe = ∅ and the cost for these edges is null (ce = 0,
c̃e = 0). The second alternative is that k is processed at t so that the
machine is not available for occurrence k + 1 until time instant t+ pσ(k):

E1 =

{(
xk,t, xk+1,t+pσ(k)

)
|k ∈ {1, . . . , η − 1},

t ∈
{

0, . . . ,max
(
dk, dk+1 − pσ(k)

)}}
∪
{

(xη,P−pσ(η) , x∗)
}
.
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In this case, we have, for e = (xk,t, xk′,t′) ∈ E1, ce = γk, c̃e = γ̃k and ρe = {k}.
Finally, we have E = E0 ∪ E1 and ωe = {σ(k)|k ∈ ρe}, e ∈ E.

This basic graph is meant to be reduced by the rules described below, in
order to improve the efficiency of computing optimal pseudo-schedules and
schedules. Let us introduce the following definitions, which are used in the
sequel.

Definition 1. An admissible edge e ∈ E is an edge that includes at most
one occurrence of each job, i.e. σ(k) 6= σ(l), k ∈ ρe, l ∈ ρe, k 6= l.

Any feasible schedule corresponds to a path that contains only admissible
edges, and non-admissible edges can be removed from the graph.

Definition 2. An admissible path (e1, . . . , er) of edges ei in G is a path such
that:

• e1 = (x1,0, xk,t), i.e. the path starts from the node corresponding to the
first occurrence at time instant 0,

• er = (xk′,t′ , x∗), i.e. the path ends at the fictive node representing the
end of the schedule,

• ωei ∩ ωel = ∅, i ∈ {1, . . . , r}, l ∈ {1, . . . , r}, i 6= l (i.e. there is no job
that appears twice in the corresponding pseudo-schedule),

• ∪l∈{1,...,r}ωel = J (i.e. each job is in the corresponding pseudo-schedule).

3.2. Non Lagrangean relaxation based rules for reducing the size of the graph

These rules are meant to be applied on the graph G described above,
as well as on an already modified graph obtained from G. For the sake
of conciseness, we do not give formal proofs for the time complexity of the
filtering procedures.

A non-ramified path (e1, . . . , er) can trivially be replaced by a single edge
ε, such that ωε =

⋃r
l=1 ωel , cε =

∑r
l=1 cel and c̃ε =

∑r
l=1 c̃el . Note that a path

(e1, . . . , er) is called non-ramified if ei−1 and ei+1 are the only edges connected
to edge ei, ∀i = 2, . . . , r − 1. Merging non-ramified paths allows subsequent
operations on G to be performed faster, since the number of edges is reduced.
Besides, a non-ramified path that contains edges including more than once a
given job can be removed, since it would correspond to a non-admissible edge.
From an implementation point of view, merging all non-ramified paths takes
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O(n|E|) operations, for scanning all edges and checking the admissibility of
a new edge.

The first rule benefits from the fact that all edges corresponding to a
subset of occurrences associated with one job may have been removed from
the graph. As any admissible path must contain at least one edge of the
remaining subset of edges including a job j, any edge starting ”before” all
remaining occurrences and ending ”after” them, while not including j, cannot
be part of an admissible path and can be removed from the graph. Let us
introduce the following notations, used in Propositions 6 and 7. Let j ∈ J ,
and define O(j) = {k ∈ {1, . . . , η} | ∃ xk′,t′ ∈ X, ((xk,t, xk′,t′) ∈ E) ∧ (j ∈
ω(xk,t,xk′,t′ )

)}, the set of occurrences still possible for j, o−(j) = arg min{k ∈
O(j)} and o+(j) = arg max{k ∈ O(j)} the occurrences still possible for j of
lower rank and higher rank respectively.

Proposition 6. Let e = (xk,t, xk′,t′) ∈ E. If for some job j /∈ ωe, k ≤ o−(j),
and k′ > o+(j), then e cannot be part of an admissible path.

Proof. Straightforward: In any path passing through e, j cannot be before
e, after e, or by e.

The rules below apply on the parts of the graph where a path passing
through a given node necessarily passes through a given arc.

Proposition 7. Let k′ ∈ {1, . . . , η} such that, for some job j, k′ > o+(j),
and xk′,t′ ∈ Xk′ such that {(xk′,t′ , xk′′,t′′) ∈ E} = {e}, i.e. only one edge e
starts from xk′,t′. Any edge f = (xk,t, xk′,t′) ∈ E such that j /∈ ωe ∪ ωf , and
k ≤ o−(j) cannot be part of an admissible path.

Proof. Any path passing through f also passes through e. Thus, in such a
path, j cannot be before e, by e, by f or after f .

Proposition 8. Let xk,t ∈ X such that {(xk,t, xk′,t′) ∈ E} = {e}, i.e. only
one edge e starts from node xk,t. Any edge f = (xk′′,t′′ , xk,t) ∈ E ending at
node xk,t such that ωe ∩ ωf 6= ∅ cannot be part of an admissible path.

Proof. Straightforward: Any path passing through f also passes through e,
and includes at least one job more than once.

The preceding propositions can also be written for the symmetric case,
i.e. when the inner degree of a given node is equal to one, and can be
implemented in O(n|E|) time.
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The following rule simply compares the length of longest possible paths
passing through a given edge with a known lower bound of the length of an
optimal admissible path. If the longest path is shorter than the lower bound,
the node (resp. arc) cannot be part of an admissible shortest path, and can
be removed from the graph.

Proposition 9. For all xk,t ∈ X, let l−max(xk,t) (resp. l+max(xk,t)) be the length
of a longest path from node x1,0 to node xk,t (resp. from node xk,t to node
x∗), and LB a lower bound of the length of a shortest admissible path. Let
e = (xk,t, xk′,t′) ∈ E.
If l−max(xk,t) + γe + l+max(xk′,t′) < LB, then e cannot be part of a shortest
admissible path.

Proof. l−max(xk,t) + γe + l+max(xk′,t′) is the length of a longest path passing
through e. Since there is no path passing through e and of length larger than
LB, and the length of any admissible path is larger than or equal to LB, no
shortest admissible paths pass through e.

Computing all the values l−max(xk,t), xk,t ∈ X, can be performed using
Bellman’s shortest path algorithm, in O(|E|) time. The values l+max(xk,t)
can be computed using a symmetric method. Finally, scanning the edges
takes O(|E|) operations, leading to an overall time complexity of O(|E|) for
detecting removable edges using this proposition.

3.3. Lagrangean relaxation based rules to reduce the size of the graph

These rules are based on the Lagrangean bound presented in Section 2.1.
Let us recall the expression of the Lagrangean sub-problem:

L(π) = min

η∑
k=1

(γk + πj(k)) · uk −
∑
j∈J

πj

s.t. (9) and (8) and (10).

As
∑

j∈J πj is constant relatively to variables (uk)k∈K , computing L(π)
consists in finding a shortest path in the layered graph G from x1,0 to x∗,
applying costs c̃ on the arcs. Formally, we can write:

L(π) = d−(x∗)−
∑
j∈J

πj ∀π ∈ Rn,
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where d−(xk,t), xk,t ∈ X, denotes the cost of a shortest path in G from x1,0

to xk,t, relatively to the Lagrangean costs c̃.
In the sequel, a “shortest path” in G refers to a shortest path relative

to the Lagrangian costs c̃, and we assume that a vector π of Lagrangean
multipliers is known, as well as an upper bound UB of the optimum of the
problem. Proposition 10 is similar to the filtering rules used in (Sourd, 2009)
and (Tanaka et al., 2009) in our specific graph.

Proposition 10. Let us define the following notations:

• d−(xk,t), xk,t ∈ X, is the cost of a shortest path in G from x1,0 to xk,t,
relatively to the Lagrangian costs c̃,

• d+(xk,t), xk,t ∈ X, is the cost of a shortest path in G from xk,t to x∗,
relatively to the Lagrangian costs c̃,

• e = (xk,t, xk′,t′) ∈ E is a given edge in G.

If d−(xk,t)+c̃e+d
+(xk′,t′) > UB+

∑
j∈J πj, then e cannot be part of a shortest

admissible path.

Proof. d−(xk,t) + c̃e + d+(xk′,t′) is the cost of a shortest path passing through
e, and UB +

∑
j∈J πj is an upper bound of the cost of a shortest admissible

path in G. Hence, the result holds.

This rule can be applied to remove unnecessary arcs, using an O(|E|)
algorithm. Indeed, computing d−(xk,t), xk,t ∈ X, (resp. d+(xk,t), xk,t ∈ X)
takes O(|E|) operations using Bellman’s algorithm. Once these values are
known, scanning every edge in the graph takes O(|E|) operations. This
proposition can be extended to the propositions below.

Proposition 11. Let us define the following notations:

• j ∈ J is a given job,

• d−¬j(xk,t), xk,t ∈ X, is the cost of a shortest path (e1, . . . , er) in G from
x1,0 to xk,t, relatively to the Lagrangian costs c̃, and which does not
include job j ({e ∈ (e1, . . . , er) s.t. j ∈ ωe} = ∅),

• d+
¬j(xk,t), xk,t ∈ X, is the cost of a shortest path (e1, . . . , er) in G from
xk,t to x∗, relatively to the Lagrangian costs c̃, and which does not
include job j ({e ∈ (e1, . . . , er) s.t. j ∈ ωe} = ∅),
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• e = (xk,t, xk′,t′) ∈ E is a given edge in G, which includes job j (j ∈ ωe).

If d−¬j(xk,t) + c̃e + d+¬j(xk′,t′) > UB +
∑

j∈J πj, then e cannot be part of a
shortest admissible path.

Proof. Any admissible path must pass exactly once through an edge including
j. So, any admissible path passing through e has to be composed only of
edges which do not include j. d−¬j(xk,t) + c̃e + d+

¬j(xk′,t′) is the minimum cost
of such an admissible path. As UB +

∑
j∈J πj is an upper bound of the cost

of a shortest admissible path, the result holds.

Proposition 12. Let us define the following notations:

• j ∈ J is a given job,

• d−j (xk,t), xk,t ∈ X, is the cost of a shortest path (e1, . . . , er) in G from
x1,0 to xk,t, relatively to the Lagrangian costs c̃, and which includes job
j exactly once (|{e ∈ (e1, . . . , er) s.t. j ∈ ωe}| = 1),

• d+
j (xk,t), xk,t ∈ X, is the cost of a shortest path (e1, . . . , er) in G from
xk,t to x∗, relatively to the Lagrangian costs c̃, and which includes job
j exactly once (|{e ∈ (e1, . . . , er) s.t. j ∈ ωe}| = 1),

• e = (xk,t, xk′,t′) ∈ E is a given edge in G, which does not include job j
(j /∈ ωe),

• UB is a known upper bound of Opt(QTS1),

• π ∈ Rn is a vector of Lagrangian multipliers.

If min(d−¬j(xk,t) + c̃e + d+
j (xk′,t′), d

−
j (xk,t) + c̃e + d+

¬j(xk′,t′)) > UB +
∑

j∈J πj,
then e cannot be part of a shortest admissible path.

Proof. Any admissible path must pass exactly once through an edge including
j. So, for any admissible path passing through e, two cases can occur:

• j is before e, and d−j (xk,t) + c̃e + d+
¬j(xk′,t′) is a lower bound of the cost

of such an admissible path,

• Or j is after e, and d−¬j(xk,t) + c̃e + d+
j (xk′,t′) is a lower bound of the

cost of such an admissible path.
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As UB+
∑

j∈J πj is an upper bound of the cost of a shortest admissible path,
the result holds.

In order to apply Propositions 11 and 12, one needs to determine the
values d−j (xk,t), d

+
j (xk,t), d

−
¬j(xk,t) and d+

¬j(xk,t), for j ∈ J and xk,t ∈ X. For
a given job j, this can be achieved in two passes (forward and backward) of
a labeling procedure which applies the following recurrence equations:



d−¬j(x1,0) = 0
d−¬j(xk,t) = min(xk′,t′ ,xk,t)∈E,j /∈ω(xk′,t′ ,xk,t)

(d−¬j(xk′,t′) + c̃xk′,t′ ,xk,t)

k ∈ {1, . . . , η}, t ∈ {0, . . . , dk}
d−j (x1,0) = ∞

d−j (xk,t) = min

{
min(xk′,t′ ,xk,t)∈E,j /∈ω(xk′,t′ ,xk,t)

(d−j (xk′,t′) + c̃xk′,t′ ,xk,t)

min(xk′,t′ ,xk,t)∈E,j∈ω(xk′,t′ ,xk,t)
(d−¬j(xk′,t′) + c̃xk′,t′ ,xk,t)

k ∈ {1, . . . , η}, t ∈ {0, . . . , dk}
d+
¬j(x∗) = 0

d+
¬j(xk,t) = min(xk,t,xk′,t′ )∈E,j /∈ω(xk,t,xk′,t′ )

(d+
¬j(xk′,t′) + c̃xk,t,xk′,t′ )

k ∈ {1, . . . , η}, t ∈ {0, . . . , dk}
d+
j (x∗) = ∞

d+
j (xk,t) = min

{
min(xk,t,xk′,t′ )∈E,j /∈ω(xk,t,xk′,t′ )

(d+
j (xk′,t′) + c̃xk,t,xk′,t′ )}

min(xk,t,xk′,t′ )∈E,j∈ω(xk,t,xk′,t′ )
(d+
¬j(xk′,t′) + c̃xk,t,xk′,t′ )

k ∈ {1, . . . , η}, t ∈ {0, . . . , dk}

Thus, computing all the shortest distances takes O(n|E|)) operations.
Scanning the edges takes O(n|E|)) additional operations, which leads to an
overall time complexity ofO(n|E|)) for applying Propositions 11 and 12. One
can note that Propositions 11 and 12 used together dominate Propositions 6,
7 and 8: For any node xk,t for which one of these propositions is active, either
Proposition 11 or Proposition 12 allows all in-going or out-going edges of xk,t
to be removed since the corresponding shortest distance is infinite. Moreover,
this dominance is strict. The dominated propositions are still useful because
their lower complexity allows them to be used more frequently in our method.
The idea in Propositions 11 and 12 can be extended to deal with pairs of
jobs. However, preliminary experiments indicate that the computational time
required by this procedure (time complexity of O(n2|E|)) makes it difficult
to use.
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3.4. Infeasible Path Removing approach

Algorithm 1 Main exact solving procedure

1: Compute initial Lagrangean multipliers π and an upper bound
2: Build the initial graph G0 ; i← 0
3: repeat
4: Update π and perform graph filtering on Gi → Gi+1

5: i← i+ 1
6: repeat
7: Find a shortest path µi in Gi and compute a heuristic solution
8: if µi is not feasible then
9: Remove µi from Gi → Gi+1

10: i← i+ 1
11: end if
12: until µi is feasible or MaxIter iterations have been performed
13: until µi is feasible

Algorithm 1 summarizes the main procedure of our exact method. It
consists in successively filtering the graph and removing infeasible paths, until
an optimal feasible path is found. Filtering allows reducing the computing
time of subsequent operations and reducing the number of paths to remove
until finding a feasible one. Removing infeasible paths also allows the lower
bound to be improved each time a shortest path is calculated and, thus,
makes filtering rules more efficient.

The Lagrangean multipliers π and an upper bound are first initialized
using the Lagrangean bounding procedure described in Section 2. From π,
a set of useless dynamic programming states is determined using a simple
adaptation of Proposition 10. This phase allows building an already reduced
graph, and is necessary to limit memory consumption on large instances.
An iteration of the procedure begins by updating π using a modified sub-
gradient procedure (Line 4). As in the initializing phase, an upper bound is
derived at each iteration, and possibly improved. Moreover, Proposition 10
is applied at each iteration.

Every 30 iterations of the sub-gradient procedure, Propositions 6, 7 and
8 are also applied, while Propositions 11 and 12 are used every 60 iterations.
Although both are very effective, their computing times prevent a more fre-
quent use. Proposition 9 is triggered each time the best lower bound exceeds
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a new integer value. In our implementation, preliminary numerical studies
led us to empirically choose MaxIter = 200.

Then, the procedure proceeds with the path removing phase (Line 7).
At each step, a path from node x1,0 to x∗ is calculated using Bellman’s algo-
rithm. Its feasibility is then checked. If it is feasible, then the current path
corresponds to an optimal schedule. Indeed, since the relaxed constraints are
all equality constraints, the Lagrangean and normal costs of the path are,
in this case, equal. It follows that this value is both an upper bound and a
lower bound of the optimum value of the objective function.

If the current path is not feasible, we first determine a maximal set of
disjoint infeasible sub-paths, as described in Algorithm 2.

The procedure first determines a set of infeasible sub-paths (Lines 2–11),
by identifying all pairs of edges of the path representing a same job. Each
pair of edges clearly delimits an infeasible sub-path. By construction, the
set of sub-paths is restricted to the ones containing at most two occurrences
of the same job. We then proceed to the selection of a maximal subset of
disjoint sub-paths using a dynamic programming algorithm (Lines 12-20).
Note that this algorithm can be easily adapted to deal with weights on the
sub-paths. However, we empirically chose not to weight sub-paths. Finally,
the edges delimiting the sub-paths are identified using the classical backward
procedure of a dynamic programming algorithm (Lines 21-26).

Each selected infeasible sub-path is then removed from the graph as de-
scribed in Algorithm 3. This procedure roughly consists in removing the first
edge of the sub-path (Line 14). In order to keep the possibility of alternate
paths going through this edge but not through the whole sub-path being re-
moved, each other sub-path in the graph which initially starts from the edge
is replaced by one edge (Lines 3− 13). The paths that are replaced are part
of the sub-graph composed of the levels only crossed by the sub-path being
removed. Moreover, the admissibility of each created edge is checked (Line
6).

4. Numerical results

4.1. Instance generation

All methods presented in this paper are evaluated on a test bed composed
of randomly generated instances. We focus on instances with only a small
number of jump points per job. This choice is motivated by the fact that
the more jump points, the more the problem is close to the general total
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Algorithm 2 Identification of infeasible disjoint sub-paths

1: Let (xk1,t1, . . . , xkr,tr, xkr+1,tr+1) be an infeasible path, with xk1,t1 = x1,0

and xkr+1,tr+1 = x∗
2: ∀j ∈ J , lastProcessedOccurrence[j]← ∅
3: I ← ∅
4: for z from 1 to r do
5: for all j ∈ ω(xkz,tz ,xkz+1,tz+1) do
6: if lastProcessedOccurrence[j] 6= ∅ then
7: I ← I ∪ (lastProcessedOccurrence[j], kz)
8: end if
9: lastProcessedOccurrence[j]← kz

10: end for
11: end for
12: ∀z ∈ {1, . . . , r}, F [z]← 1 ; pred[z]← ∅
13: for z from r − 1 to 1 do
14: Let (i−z , i

+
z )← Iz

15: for y from z + 1 to r do
16: if F [z] < F [y] + 1 and i−y > i+z then
17: F [z]← F [y] + 1 ; pred[z]← y
18: end if
19: end for
20: end for
21: z∗ = arg max{F [z], z ∈ {1, . . . , r}}
22: optimalSubSet← ∅
23: while z∗ 6= ∅ do
24: optimalSubSet← optimalSubSet ∪ Iz∗
25: z∗ ← pred[z∗]
26: end while
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Algorithm 3 Removing a sub-path from the graph

1: Let (xk1,t1, . . . , xkr,tr) denote the sub-path to be removed
2: J ′ ← ∅
3: for z from 2 to r do
4: J ′ ← J ′ ∪ ω(xkz−1,tz−1,xkz,tz)

5: for all (xkz,tz, xk′,t′) ∈ E do
6: if J ′ ∩ ω(xkz,tz ,xk′,t′ )

= ∅ then
7: E ← E ∪ (xk1,t1, xk′,t′)
8: with ω(xk1,t1,xk′,t′ )

= J ′ ∪ ω(xkz,tz ,xk′,t′ )
,

9: ρ(xk1,t1,xk′,t′ )
= (
⋃z−1
y=1 ρ(xky,ty ,xky+1,ty+1)) ∪ ρ(xkz,tz ,xk′,t′ )

10: c(xk1,t1,xk′,t′ )
= (
∑z−1

y=1 c(xky,ty ,xky+1,ty+1)) + c(xkz,tz ,xk′,t′ )

11: end if
12: end for
13: end for
14: E ← E − (xk1,t1, xk2,t2)

cost scheduling problem, and the stepwise structure vanishes. Our generator
takes as inputs n, the number of jobs, and K, the number of jump points per
job. For each job j, a processing time pj is drawn from a uniform distribu-
tion {1, . . . , 100}, and K jump points are drawn from a uniform distribution
{pj, . . . ,

∑
i pi}. For each jump point of each job, a cost increase is drawn

from a uniform distribution {1, . . . , 100}. For each combination of the pa-
rameters n ∈ {10, 20, 30, 50, 100, 200, 300, 400, 500} and K ∈ {2, 3, 4, 9}, 10
instances are generated, leading to a total of 360 instances. All tests are
performed on a laptop PC with a 2.5 GHz Intel Core2-Duo processor and 3.5
GB RAM, running Windows XP Pro.

4.2. Lagrangian relaxation

The results reported in this section are obtained by running the sub-
gradient procedure described in Section 2.1. At each iteration of the algo-
rithm, except in the 100 first iterations to save computing time, the heuristic
is ran a given number of times which is reported in the tables below as the
parameter runs. The best solution of these runs is compared to the best
upper bound obtained by the heuristic so far. When it is better, the local
search method is used to improve the solution.

Tables 1 and 2 compare the quality and computing time of our Lagrangean
lower bound ((DOF ) Lag.) with the linear relaxations of the (DOF ) ((DOF )
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(DOF ) Lag. (DOF ) Linear (TI) Linear
n Gap Time (sec) Gap Time (sec) Gap Time (sec)

10 0.07% 0.0 34.51% 0.0 12.91% 0.2
20 0.31% 0.2 14.58% 0.0 7.29% 2.9
30 0.34% 0.5 10.80% 0.0 6.09% 9.4
50 0.27% 2.1 6.04% 0.0 3.82% 77.9

100 0.17% 9.4 2.84% 0.1 ∗ ∗

200 0.11% 43.4 1.50% 0.4 ∗ ∗

300 0.15% 98.3 0.95% 1.0 ∗ ∗

400 0.18% 183.2 0.81% 2.0 ∗ ∗

500 0.22% 288.7 0.72% 3.3 ∗ ∗

Mean 0.20% 69.9 8.08% 0.8 7.53% 22.6
∗ The solver went out of memory for all these instances.

Table 1: Computing times and average gaps between lower bounds and best known upper
bounds, according to parameter n.

(DOF ) Lag. (DOF ) Linear (TI) Linear
K Gap Time (sec) Gap Time (sec) Gap Time (sec)
2 0.04% 30.9 9.72% 20.1 9.01%+ 0.1+

3 0.15% 53.3 8.90% 23.9 8.44%+ 0.2+

4 0.26% 68.1 7.84% 22.7 8.58%+ 0.4+

9 0.36% 127.3 3.65% 23.8 6.30%+ 2.4+

Mean 0.20% 69.9 7.53% 22.6 8.08%+ 0.8+

+ The solver went out of memory for instances with more than 50 jobs.

Table 2: Computing times and average gaps between lower bounds and best known upper
bounds, according to parameter K.

Linear) and the (TI) ((TI) linear) formulations. The gap value reported for
a relaxation value V is equal to (Best upper bound − V )/V . The upper
bound used is the optimal value if it is known, or the best upper bound
obtained by any method used in the paper. The quality of the Lagrangean
bound is excellent and dominates the bound obtained by the time-indexed
formulation, which is known to provide good bounds for total cost problems
but is limited by memory requirements. As expected, the computing time
of (DOF ) Lag. becomes prohibitive when the number of jobs is too large.
In our experiments, the number of iterations of the sub-gradient procedure
never exceeds 600. Although the computing time of the linear relaxation
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runs
n 2 5 10 50 100 200

10 0.07% 0.07% 0.07% 0.07% 0.07% 0.07%
20 0.46% 0.49% 0.44% 0.43% 0.39% 0.37%
30 0.65% 0.50% 0.49% 0.45% 0.44% 0.44%
50 0.70% 0.59% 0.49% 0.45% 0.42% 0.42%

100 0.63% 0.59% 0.50% 0.39% 0.39% 0.33%
200 0.60% 0.48% 0.43% 0.32% 0.28% 0.24%
300 0.65% 0.54% 0.48% 0.38% 0.34% 0.32%
400 0.55% 0.44% 0.41% 0.32% 0.30% 0.27%
500 0.54% 0.47% 0.42% 0.35% 0.31% 0.29%

Mean Heur. 0.54% 0.46% 0.42% 0.35% 0.33% 0.30%
Mean Heur+LS 0.46% 0.41% 0.37% 0.31% 0.29% 0.27%

Table 3: Gaps between Lagrangean upper and lower bounds, according to parameter n.

of (DOF ) remains very small even for the largest instances, its relative gap
decreases when the number of jobs increases. The same phenomenon applies
for (TI) Linear, and also when the number of jump points increases. It can
be explained by the fact that the value of the objective function increases
with these parameters, and that the gap induced by the continuous relaxation
becomes relatively smaller (but still large in absolute values). It is interesting
to note that this does not apply to our Lagrangean relaxation, which keeps
a large part of the problem integer.

Table 3 reports gaps between the Lagrangean heuristic and the Lagrangean
relaxation. The gaps are very small and the use of the local search allows
reducing them even more (cf. Line Mean Heur.+LS ). Preliminary results
indicate that the results do not improve significantly over 200 runs of the
heuristic at each iteration of the sub-gradient. The total computing time
required by the heuristic during the sub-gradient procedure is reported in
Table 4. The total computing time of the local search procedure for 500-job
instances is 0.8 seconds on average.

4.3. Exact method

This section analyses the number of instances optimally solved by two
approaches: A mathematical programming solver and the Infeasible Path
Removing approach using the set of propositions of Section 3.
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runs
n 2 5 10 50 100 200

10 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.1 0.2 0.3
30 0.0 0.0 0.0 0.1 0.3 0.5
50 0.0 0.0 0.1 0.4 0.7 1.3

100 0.0 0.1 0.2 1.1 2.3 4.2
200 0.2 0.4 0.9 3.8 8.2 14.7
300 0.4 0.9 1.6 7.7 16.5 29.8
400 0.7 1.5 3.0 13.3 28.8 51.1
500 1.1 2.4 4.4 23.1 45.2 81.9

Mean 0.3 0.6 1.1 5.5 11.4 20.4

Table 4: Total computing time (sec.) required by the Lagrangean heuristic, according to
parameter n.

n

K 10 20 30 50 100 200 300 400 500 Total

2 10 10 10 10 10 10 10 10 10 90/90
3 10 10 10 10 10 10 10 9 8 87/90
4 10 10 10 10 10 10 8 0 0 68/90
9 10 10 10 10 6 0 0 0 0 46/90

Total 40/40 40/40 40/40 40/40 36/40 30/40 28/40 19/40 18/40 291/360

Table 5: Number of instances solved optimally by XPRESS-MP on model (DOF ) in 3600
seconds, according to parameters n and K.

n

K 10 20 30 50 100 200 300 400 500 Mean

2 0,0 0,0 0,0 0,0 0,4 2,0 4,5 12,6 21,2 4,5
3 0,0 0,0 0,1 0,5 2,4 31,2 425,5 538,4 1393,0 225,8
4 0,0 0,1 0,4 1,0 15,5 278,2 1265,3 195,1
9 0,1 0,7 7,2 33,2 1220,4 168,1

Mean 0,0 0,2 1,9 8,7 208,5 103,8 515,1 261,7 586,1 140,3

Table 6: Average computing time required by XPRESS-MP on formulation (DOF ), ac-
cording to parameters n and K. Values are calculated on instances solved by both methods.
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n

K 10 20 30 50 100 200 300 400 500 Total

2 10 10 10 10 10 10 10 10 10 90/90
3 10 10 10 10 10 10 10 10 10 90/90
4 10 10 10 10 10 10 10 9 8 87/90
9 10 10 10 10 10 8 3 0 0 61/90

Total 40/40 40/40 40/40 40/40 40/40 38/40 33/40 29/40 28/40 328/360

Table 7: Number of instances solved optimally by the Infeasible Path Removing approach
in 3600 seconds, according to parameters n and K.

n

K 10 20 30 50 100 200 300 400 500 Mean

2 0,0 0,0 0,1 0,4 2,6 18,3 40,9 80,1 146,3 32,1
3 0,0 0,1 0,2 1,3 5,9 34,6 125,9 183,2 572,0 91,9
4 0,0 0,2 0,5 2,4 10,7 39,8 306,9 44,7
9 0,0 0,6 1,5 4,8 28,4 5,2

Mean 0,0 0,2 0,6 2,2 10,1 30,9 147,3 128,9 335,5 48,5

Table 8: Average computing time required by the Infeasible Path Removing approach,
according to parameters n and K. Values are calculated on instances solved by both
methods.
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n

K 10 20 30 50 100 200 300 400 500 Total

2 10 10 10 9 3 0 0 0 0 42/90
3 10 10 10 10 1 0 0 0 0 41/90
4 10 10 10 9 1 0 0 0 0 40/90
9 10 10 10 10 4 0 0 0 0 44/90

Total 40/40 40/40 40/40 38/40 9/40 0/40 0/40 0/40 0/40 167/360

Table 9: Number of instances solved optimally by the SSDP method of (Tanaka et al.,
2009) in 3600 seconds, according to parameters n and K.

Tables 5, 6, 7 and 8 report the mathematical programming results with
a one-hour time limit, as well as the average computing time required for
instances solved optimally by both methods. In these experiments, the num-
ber of runs of the Lagrangean heuristic is empirically fixed to 50. These
tables show that our method can globally be favorably compared to the di-
rect application of the solver on the most appropriate (to our knowledge)
ILP formulation for the problem. However, it can be noticed that XPRESS-
MP performs well on instances with two jump points per job (K = 2). Our
method also outperforms the approaches proposed in (Tseng et al., 2010)
and (Yang, 2009).

We also report in Table 9 the results obtained with a one-hour time limit
with the SSDP method of (Tanaka et al., 2009), which is not dedicated to
our problem. The results are quite poor since no problem with 200 jobs are
solved optimally. We believe this is due to the high quality of our lower
bound, that comes up with solutions that are very close to be feasible.

A naive branch-and-bound method exploiting these bounds has also been
tested. It solves all instances with up to 300 jobs and 2 jump points, 100
jobs and 3 or 4 jump points, and 50 jobs and 9 jump points within a one-
hour time limit. For the sake of conciseness, we do not detail this method or
numerical results, and just report its performance for comparison.

In order to evaluate the pertinence of the different rules described in Sec-
tion 3, Tables 10 and 11 report the number of instances optimally solved
relatively to the set of Propositions implemented in the Infeasible Path Re-
moving method, while Tables 12 and 13 give the number of paths removed
from the graph before the procedure finds the optimal feasible path. The
adapted classical rule alone already gives better results than the mathe-
matical programming solver. Introducing the non Lagrangean filtering rules
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reduces the average number of iterations of the procedure and allows more
instances to be solved. The best results are obtained when using Proposi-
tions 11 and 12, which divide the number of paths to remove by up to 5 on
average for instances with 9 jump points.

5. Conclusion

A Lagrangean relaxation based bounding scheme is presented for the
problem 1||

∑
f̄i(Ci). The very good bounds obtained are used in a solving

procedure based on a specific dominance property of the problem and ex-
tensions of existing Lagrangean filtering rules. Numerical experiments show
that this approach can be favorably compared with a naive branch-and-bound
method, the direct use of a mathematical programming solver and with pre-
viously published approaches. A straightforward adaptation of the method
has been tested for the problem 1|ri|

∑
f̄i(Ci), based on the model described

by (Detienne et al., 2009). The method does not perform so well in the pres-
ence of release dates, since it cannot solve some 30 and 50-job instances: It
appears that the lower bound is sometimes hardly improved by the path re-
moving procedure. Further work on the approach could consist in designing
an adapted graph to this generalization or stronger bounds.

More generally, we believe that the study of scheduling problems with
step cost functions as objective is an interesting research topic, because these
functions bring a gradation to the binary late/on-time concept that is not
taken into account by classical objectives as, for example, total tardiness,
which supposes a linear increase of the cost.

Abdul-Razaq, T. S., Potts, C. N., 1988. Dynamic programming State-Space
relaxation for Single-Machine scheduling. The Journal of the Operational
Research Society 39 (2), 141–152.

n

Rules 10 20 30 50 100 200 300 400 500 Total

Prop. 10 40 40 40 40 40 36 29 26 23 314
Prop. 10, 6, 7, 8, 9 40 40 40 40 40 37 30 28 26 321

Prop. 10, 6, 7, 8, 9, 11, 12 40 40 40 40 40 38 33 29 28 328

Table 10: Number of instances optimally solved within 3600 seconds, according to filtering
rules and parameter n.
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K

Rules 2 3 4 9 Total

Prop. 10 90 87 80 57 314
Prop. 10, 6, 7, 8, 9 90 89 84 58 321

Prop. 10, 6, 7, 8, 9, 11, 12 90 90 87 61 328

Table 11: Number of instances optimally solved within 3600 seconds, according to filtering
rules and parameter K.

K

Rules 10 20 30 50 100

Prop. 10 0,2 9,9 35,5 78,8 445,5
Prop. 10, 6, 7, 8, 9 0,0 4,0 26,6 64,8 338,3

Prop. 10, 6, 7, 8, 9, 11, 12 0,0 2,5 21,6 49,8 163,5

K

Rules 200 300 400 500 Total

Prop. 10 2491,1 2016,8 1915,6 1621,7 821,9
Prop. 10, 6, 7, 8, 9 1518,1 1538,9 1613,8 1390,5 606,9

Prop. 10, 6, 7, 8, 9, 11, 12 461,4 567,8 649,1 748,2 244,1

Table 12: Average number of paths removed from the graph before finding the optimal
feasible path, according to parameter n. Values are computed on instances solved with
the three configurations only.

n

Rules 2 3 4 9 Total

Prop. 10 55,3 585,3 1263,3 1773,8 821,9
Prop. 10, 6, 7, 8, 9 46,6 462,1 1031,0 1117,4 606,9

Prop. 10, 6, 7, 8, 9, 11, 12 28,9 214,9 449,7 340,1 244,1

Table 13: Average number of paths removed from the graph before finding the optimal
feasible path, according to parameter K. Values are computed on instances solved with
the three configurations only.

30



Baptiste, P., Croce, F. D., Grosso, A., T’kindt, V., 2008. Sequencing a single
machine with due dates and deadlines: an ILP-based approach to solve
very large instances. Journal of Scheduling 13 (1), 39–47.

Brucker, P., 2004. Scheduling Algorithms. SpringerVerlag.

Curry, J., Peters, B., 2005. Rescheduling parallel machines with stepwise
increasing tardiness and machine assignment stability objectives. Interna-
tional Journal of Production Research 43, 3231–3246.

Detienne, B., Dauzère-Pérès, S., Yugma, C., 2009. Scheduling inspection
operations subject to a fixed production schedule. In: Proceedings of the
4th Multidisciplinary International Scheduling Conference MISTA 2009,
Dublin, Ireland.

Dudzinski, K., Walukiewicz, S., 1987. Exact methods for the knapsack prob-
lem and its generalizations. European Journal of Operational Research
28 (1), 3 – 21.

Graham, R. L., Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., 1979.
Optimization and approximation in deterministic sequencing and schedul-
ing: a survey. Annals of Discrete Mathematics 4, 287–326.

Held, M., Wolfe, P., Crowder, H., 1974. Validation of subgradient optimiza-
tion. Mathematical Programming 6, 62–88.

Ibaraki, T., Nakamura, Y., 1994. A dynamic programming method for single
machine scheduling. European Journal of Operational Research 76 (1),
72–82.

Jackson, J. R., 1955. Scheduling a production line to minimize maximum tar-
diness. Research Report 43, Management Science Research Project, Uni-
versity of California.

Karp, R. M., 1972. Reducibility among combinatorial problems. In: Miller,
R. E., Thatcher, J. W. (Eds.), Complexity of Computer Computations.
Plenum Press, pp. 85–103.

Lawler, E. L., 1977. A “pseudopolynomial” algorithm for sequencing jobs
to minimize total tardiness. Annals of Discrete Mathematics Volume 1,
331–342.

31

https://www.researchgate.net/publication/4942220_A_dynamic_programming_method_for_single_machine_scheduling?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/4942220_A_dynamic_programming_method_for_single_machine_scheduling?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/4942220_A_dynamic_programming_method_for_single_machine_scheduling?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/230595985_Optimization_and_Approximation_in_Deterministic_Sequencing_and_Scheduling_A_Survey?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/230595985_Optimization_and_Approximation_in_Deterministic_Sequencing_and_Scheduling_A_Survey?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/230595985_Optimization_and_Approximation_in_Deterministic_Sequencing_and_Scheduling_A_Survey?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/232385101_A_Pseudopolynomial_Algorithm_for_Sequencing_Jobs_to_Minimize_Total_Tardiness?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/232385101_A_Pseudopolynomial_Algorithm_for_Sequencing_Jobs_to_Minimize_Total_Tardiness?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/232385101_A_Pseudopolynomial_Algorithm_for_Sequencing_Jobs_to_Minimize_Total_Tardiness?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/225583621_Sequencing_a_single_machine_with_due_dates_and_deadlines_An_ILP-based_approach_to_solve_very_large_instances?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/225583621_Sequencing_a_single_machine_with_due_dates_and_deadlines_An_ILP-based_approach_to_solve_very_large_instances?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/225583621_Sequencing_a_single_machine_with_due_dates_and_deadlines_An_ILP-based_approach_to_solve_very_large_instances?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/233307088_Rescheduling_parallel_machines_with_stepwise_increasing_tardiness_and_machine_assignment_stability_objectives?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/233307088_Rescheduling_parallel_machines_with_stepwise_increasing_tardiness_and_machine_assignment_stability_objectives?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/233307088_Rescheduling_parallel_machines_with_stepwise_increasing_tardiness_and_machine_assignment_stability_objectives?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/221580898_Reducibility_Among_Combinatorial_Problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/221580898_Reducibility_Among_Combinatorial_Problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/221580898_Reducibility_Among_Combinatorial_Problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/223930538_Exact_Methods_for_the_Knapsack_Problem_and_its_Generalizations?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/223930538_Exact_Methods_for_the_Knapsack_Problem_and_its_Generalizations?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/223930538_Exact_Methods_for_the_Knapsack_Problem_and_its_Generalizations?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/238368470_Validation_of_Subgradient_Optimization_Math?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/238368470_Validation_of_Subgradient_Optimization_Math?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/225070872_Scheduling_Inspection_Operations_subject_to_a_Fixed_Production_Schedule?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/225070872_Scheduling_Inspection_Operations_subject_to_a_Fixed_Production_Schedule?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/225070872_Scheduling_Inspection_Operations_subject_to_a_Fixed_Production_Schedule?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/225070872_Scheduling_Inspection_Operations_subject_to_a_Fixed_Production_Schedule?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/235206137_Scheduling_a_Production_Line_To_Minimize_Maximum_Tardiness?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/235206137_Scheduling_a_Production_Line_To_Minimize_Maximum_Tardiness?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/235206137_Scheduling_a_Production_Line_To_Minimize_Maximum_Tardiness?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/270285518_Scheduling_Algorithms?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==


Lawler, E. L., Moore, J. M., 1969. A functional equation and its application to
resource allocation and sequencing problems. Management Science 16 (1),
77–84.

Lenstra, J., Kan, A. R., Brucker, P., 1977. Complexity of machine scheduling
problems. Annals of Discrete Mathematics 1 (1), 343–362.

M’Hallah, R., Bulfin, R. L., 2005. Minimizing the weighted number of tardy
jobs on parallel processors. European Journal of Operational Research
160 (2), 471 – 484, decision Support Systems in the Internet Age.

Moore, J. M., 1968. A n job one machine algorithm for minimizing the num-
ber of late jobs. Management Science 15, 102–109.

Peridy, L., Pinson, E., Rivreau, D., 2003. Using short-term memory to min-
imize the weighted number of late jobs on a single machine. European
Journal of Operational Research 148 (0), 591–603.

Sahin, G., 2006. New combinatorial approaches for solving railroad planning
and scheduling problems. Ph.D. thesis, University of Florida, USA.

Sourd, F., 2009. New exact algorithms for one-machine earliness-tardiness
scheduling. INFORMS J. on Computing 21 (1), 167–175.

Sousa, J. P., Wolsey, L. A., 1992. A time indexed formulation of non-
preemptive single machine scheduling problems. Mathematical Program-
ming 54 (1), 353–367.

Tanaka, S., Fujikuma, S., Araki, M., 2009. An exact algorithm for single-
machine scheduling without machine idle time. Journal of Scheduling
12 (6), 575–593.

Tseng, C.-T., Chou, Y.-C., Chen, W.-Y., October 2010. A variable neighbor-
hood search for the single machine total stepwise tardiness problem. In:
Proceedings of the 2010 International Conference on Engineering, Project
and Production Management. Pingtun, Taiwan, pp. 101–108.

Yang, H., 2009. Maximizing total profit of jobs with stepwise non-increasing
profit under multiple common due dates. In: Proceedings of the 20th An-
nual POMS conference. Orlando, Florida, pp. 1041–1050.

32

https://www.researchgate.net/publication/220366394_An_exact_algorithm_for_single-machine_scheduling_without_machine_idle_time?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/220366394_An_exact_algorithm_for_single-machine_scheduling_without_machine_idle_time?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/220366394_An_exact_algorithm_for_single-machine_scheduling_without_machine_idle_time?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/227443278_An_N_Job_One_Machine_Sequencing_Algorithm_for_Minimizing_the_Number_of_Late_Jobs?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/227443278_An_N_Job_One_Machine_Sequencing_Algorithm_for_Minimizing_the_Number_of_Late_Jobs?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/265493861_A_Variable_Neighborhood_Search_for_the_Single_Machine_Total_Stepwise_Tardiness_Problem?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/265493861_A_Variable_Neighborhood_Search_for_the_Single_Machine_Total_Stepwise_Tardiness_Problem?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/265493861_A_Variable_Neighborhood_Search_for_the_Single_Machine_Total_Stepwise_Tardiness_Problem?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/265493861_A_Variable_Neighborhood_Search_for_the_Single_Machine_Total_Stepwise_Tardiness_Problem?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/227443393_A_Functional_Equation_and_Its_Application_to_Resource_Allocation_and_Sequencing_Problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/227443393_A_Functional_Equation_and_Its_Application_to_Resource_Allocation_and_Sequencing_Problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/227443393_A_Functional_Equation_and_Its_Application_to_Resource_Allocation_and_Sequencing_Problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/222201807_Minimizing_the_weighted_number_of_tardy_jobs_on_parallel_processors?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/222201807_Minimizing_the_weighted_number_of_tardy_jobs_on_parallel_processors?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/222201807_Minimizing_the_weighted_number_of_tardy_jobs_on_parallel_processors?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/220590058_Time_indexed_formulation_of_non-preemptive_single_machine_scheduling_problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/220590058_Time_indexed_formulation_of_non-preemptive_single_machine_scheduling_problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/220590058_Time_indexed_formulation_of_non-preemptive_single_machine_scheduling_problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/242506265_Complexity_of_Machine_Scheduling_Problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/242506265_Complexity_of_Machine_Scheduling_Problems?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/4870851_Using_short-term_memory_to_minimize_the_weighted_number_of_late_jobs_on_a_single_machine?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/4870851_Using_short-term_memory_to_minimize_the_weighted_number_of_late_jobs_on_a_single_machine?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/4870851_Using_short-term_memory_to_minimize_the_weighted_number_of_late_jobs_on_a_single_machine?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/220669393_New_Exact_Algorithms_for_One-Machine_Earliness-Tardiness_Scheduling?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==
https://www.researchgate.net/publication/220669393_New_Exact_Algorithms_for_One-Machine_Earliness-Tardiness_Scheduling?el=1_x_8&enrichId=rgreq-0cc14304-bb25-4be5-8bbf-07f1e636c22d&enrichSource=Y292ZXJQYWdlOzIyOTQyMzI3NTtBUzoxMDI0MjkyNjk5NTQ1NjdAMTQwMTQzMjQ1MDI5MQ==

