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Abstract

Minimizing the weighted number of tardy jobs on one machine is a classical and intensively studied scheduling
problem. In this paper, we develop a two-stage robust approach, where exact weights are known after
accepting to perform the jobs, and before sequencing them on the machine. This assumption allows diverse
recourse decisions to be taken in order to better adapt one’s mid-term plan.

The contribution of this paper is twofold: first, we introduce a new scheduling problem and model it as
a min-max-min optimization problem with mixed-integer recourse by extending existing models proposed
for the deterministic case. Second, we take advantage of the special structure of the problem to propose
two solution approaches based on results from the recent robust optimization literature: namely the finite
adaptability (Bertsimas and Caramanis, 2010) and a convexification-based approach (Arslan and Detienne,
2022). We also study the additional cost of the solutions if the sequence of jobs has to be decided before
the uncertainty is revealed. Computational experiments are reported to analyze the effectiveness of our
approaches.

Keywords: One-machine scheduling, robust optimization, two-stage optimization, mixed-integer recourse,
exact approach, integer programming

Historically, scheduling optimization problems have been solved in a deterministic fashion assuming that
every input data were perfectly known at decision time. These problems have been, and still are, extensively
studied in the literature. For an overview of the broad scheduling literature, the reader may refer to [21],
which introduced the widely used notation for scheduling problems, and to [30], which covers important
theoretical models and significant scheduling problems occurring in the real world.

More recently, researchers have started to focus on scheduling problems where the input data are no
longer considered to be known in advance. Rather, input data are often considered to be random variables
for which one knows a probability distribution (e.g., stochastic scheduling) or a support of its density function
(e.g., robust scheduling). While the first situation yields solutions that are good in average (i.e., leading to
an optimal expected objective value), the second approach gives solutions that are never too bad (worst-case
objective value). In the static framework, one has to choose the value of all decision variables before the
realization of the random variable is revealed, whereas two-stage models ask the decider to fix only a part
of the solution before knowing the uncertain parameters, at the first stage. At the second stage, he is given
the opportunity to react after the revelation of the true input data, by determining recourse decisions.

A number of approaches have been proposed in the literature to deal with two-stage robust optimization
problems. Exact solution approaches mainly focus on problems with continuous recourse decisions and are
based on mixed-integer programming large-scale reformulations and dynamic generation of the obtained
formulation (see for example [4, 9, 24, 39]). Due to the discrete nature of scheduling problems, the natural
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mathematical models involve mixed-integer variables in both the first and second stages, which invalidates
many solution algorithms. In [3], the authors propose a general framework for solving exactly two-stage
mixed-integer robust problems with interdiction binary linking constraints (i.e., constraints of the form y ≤ x
where both y and x are binary, x denotes the first-stage decision variable and y the recourse decision variable).
Most of the other suitable methods are approximate in the sense that they restrict the set of possible recourse
decisions. The decision rules-based approaches (see e.g. [8]) restrain the second-stage variables to simple
functions of the random parameters. In [7], the authors present another type of conservative approximation,
known as finite adaptability or K-adaptability, which implies limiting the number of recourse actions in the
second stage. Those possible recourse policies are determined at the first stage, and second stage only selects
the best action to implement in reaction to the uncertain parameters revealed.

Regarding robust scheduling approaches, [2] and [38] present different complexity results for single ma-
chine problems. They show that even simple scheduling problems becomeNP-hard as soon as the uncertainty
set contains more than one scenario. In [13], the authors provide approximation algorithms for the problem
of minimizing the weighted and unweighted sum of completion times on a single machine where the pro-
cessing time of the tasks are uncertain. Problems with stochastic breakdowns on one machine (resp. two
machines) are studied in [12] (resp. [1]). Affine decision rules are proposed for two-stage robust batch process
scheduling under polyhedral uncertainty in [26], based on continuous-time models oriented towards chem-
istry applications. In [35], a variant of 1||

∑
Uj with uncertain processing times is studied. Given a discrete

scenario-based uncertainty set, one has to determine an initial sequence of jobs that is feasible for nominal
processing times. At second stage, once the scenario of actual processing times is revealed, the sequence can
be adapted by rejecting some jobs. The objective is to minimize the expected cost of the repaired solution.
The authors propose a dynamic programming, a branch-and-bound and a branch-and-price algorithms to
solve the problem exactly.

In this manuscript, we introduce a new scheduling problem as an extension of the well known 1|rj |
∑
wjUj

problem where the weighted sum of tardy jobs has to be minimized. In our problem, the jobs are subject
to failures, which lead to additional costs. Once the uncertain parameters are revealed (i.e. the weights of
the jobs), the decision maker is allowed to take discrete recourse actions: determining the sequence of jobs,
outsourcing or spending more time on the jobs to fix them. We address this problem with a robust approach.

This problem has several practical applications. Consider the following example, which arises in the
astronomical field when one needs to allocate observatory time. At planning time, a number of sessions have
to be reserved for observation purposes, yet, many factors which can alter the quality of the observation
are not known, e.g., weather, air quality (see e.g. [19, 36]). As a result, it may happen that the sessions
lead to lower quality observations, which can be fixed by increasing the time allocated to it, or outsourcing
it to another facility. The costs involved in such situations are typically high, therefore, a worst-case-type
optimization approach is appropriate.

From an operational point of view, rescheduling jobs might be difficult or costly, and decision-makers
may favour recourse solutions where the modifications are easier to handle. In this case, one may seek
solutions involving minor modifications to the original plan (see e.g., [6]). The advantages of such solutions
are well understood: they reduce the operational costs, reduce the possibility of error in the process, and are
generally better accepted by the operators. We therefore propose an alternative version of the scheduling
problem where the sequence of jobs cannot be modified after the uncertainty is revealed.

We thus consider two hard scheduling problems with integer recourse, which were never studied before.
In general, solving a robust combinatorial problem with integer recourse is a ΣP

2 -hard problem (see e.g. [14]),
which induces that even verifying that a first-stage solution is feasible (for any realization of the uncertain
parameter) is an NP-hard problem. In deterministic optimization problem, most classical scheduling prob-
lems obviously belong to NP, so the main question is generally whether the problem belongs to P or if
is at least as hard as any problem in NP. This is different in robust optimization, where the question of
whether a problem belongs to the NP class is crucial from both theoretical and practical points of view. For
example, if the problem does not belong to NP, the problem cannot be modelled as a Mixed-Integer Linear
Program (MILP) of polynomial size (unless NP = P). In this paper, we show that our specific scheduling
problems belong to the subclass of robust problems identified by [3], and, thus, are NP-complete.

We show that the two new scheduling problems can be reformulated in such a way that recent works
on robust optimization can be instantiated to reformulate this problem exactly [3] or heuristically [22] by
deterministic (exponentially large) MILP models. In both cases, our work consists in finding non-trivial
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efficient reformulations that lead to models satisfying the technical conditions imposed by the two general
frameworks. The computational experiments confirm that the practical difficulty of both problems is consid-
erable: even with state-of-the art methodologies, some instances with 25 jobs remain open after one hour of
computing time. We also show a surprising result: forbidding to modify the order of the jobs in the second
stage increases the cost of the solution only marginally.

Among the work mentioned above, only [35] proposes exact solving approaches. The problem that we
study is different in the following ways. First, we include release dates constraints and different weights for
the jobs. Second, we extend the set of possible recourse actions by adding, to the possibility of keeping or
rejecting a job at the second stage, the option of repairing it at the expense of an extra processing time.
Third, the uncertainty is modeled in [35] by a finite set of discrete scenarios that affects the processing times
only, while we consider a polyhedral uncertainty set defining the objective function. Both papers aim at
optimizing the worst-case cost, added to average cost in [35]. In terms of methodology, although the two
works use branch-and-price algorithms, the reformulations used are totally different. The work in [35] is
based on a classical deterministic equivalent formulation, where the recourse decisions for each scenario are
modeled using one set of variables and constraints, whereas the current work is based on a robust two-stage
programming formulation, which is rewritten as a static robust program of very large size.

In Section 1, we recall some useful results on the deterministic 1|rj |
∑
wjUj , which will be used in the

remainder of the paper. In Section 2, we formally describe a first robust version of this problem, before
proposing solution methods in Section 3. Section 4 is devoted to the problem version where the order of the
jobs cannot be changed at the second stage. We report our computational experiments in Section 5 before
concluding.

1. Minimizing the weighted number of tardy jobs: literature review

Minimizing the weighted number of tardy jobs on a single machine, denoted 1|rj |
∑
wjUj in the literature,

is a well known NP-hard scheduling problem (see [21]) and can be stated as follows.

Problem: 1|rj |
∑
wjUj (decision)

Input data: (V,J , (r, d, w, p)), where V is a positive value, J a set of jobs, each of which are charac-
terized by the following data: rj : a release date (i.e., the time before which the job cannot start); dj :
a due date (i.e., the time after which the job is considered tardy; wj : a weight (i.e., the fixed cost for
executing the job tardy) ; pj : a processing time (i.e., the time needed to execute the job).
Question: Is there a permutation σ of the tasks whose cost (i.e., the weighted number of tardy jobs)
is smaller than V ?

This problem has been extensively studied in the literature. In particular, [23] proposes a dominance
rule for cases with equal release dates known as the Earliest Deadline First rule. Heuristic approaches and
lower bounds are given in [15, 16] while exact approaches are given in [5, 27, 31, 32]. To our knowledge, the
best exact results are described in [17], where up to 500-job instances are solved in less than one hour.

Since it is of particular interest for our approaches, we formally recall a mixed integer linear programming
(MILP) formulation introduced in [17] for solving the 1|rj |

∑
wjUj problem. The approach is based on two

distinct decisions: (1) decide which jobs are to be executed tardy and (2) in what order will the on-time
jobs be executed. This is possible since late jobs can be postponed arbitrarily without incurring additional
costs. Moreover, we know [25] that if jobs have agreeable time windows (i.e., the tasks can be ordered in
such a way that i < j implies ri ≤ rj and di ≤ dj), then a feasible sequence of on-time jobs exists if and only
if the earliest due-date first rule yields a feasible solution. Therefore, an advantage of this approach is that
one is able to order the jobs a priori, which avoids the need for variables determining the sequence of the
jobs. The main idea of [17] is to reformulate 1|rj |

∑
wjUj into the selection of jobs on a single machine, so

that the dominance rule can be exploited, even if the initial instance does not have agreeable time windows.
Formally, for any pair of jobs i ∈ J and j ∈ J such that there are solutions where j is scheduled after i and
both jobs are on-time (i.e., ri + pi + pj ≤ dj) and that have non-agreeable time windows (i.e., ri < rj and

di > dj), a job occurrence k ∈ J̃ is created, which represents scheduling i before j. It has a hard deadline
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i ∈ J (pi, ri, di) Graphical representation

1 (4, 0, 8)
r1 d1

1

2 (2, 4, 7)
r2 d2

2

3 (4, 2, 9)
r3 d3

3

Original instance

k ∈ J̃ (pk, rk, d̄k) Graphical representation

2 (2, 4, 7)
r2 d2

2

4 (4, 0, 7)
r4 d̄4

4

1 (4, 0, 8)
r1 d1

1

3 (4, 2, 9)
r3 d3

3

Job-occurrence instance

Figure 1: An instance with three jobs, and the job-occurrence representation of the instance. Jobs 1 and
3 already have agreeable time windows, 2 and 3 have non agreeable time windows, but cannot both be
scheduled on-time. Since 1 and 2 have non agreeable time windows, a job occurrence numbered 4 representing
scheduling 1 before 2 is created. Occurrences are sorted according to Dominance rule 1.

d̄k = dj , and rk = ri, pk = pi, wk = 0. The original job i is also added to the set of job occurrences J̃ , with
a null weight, and a deadline d̄i = di. The hard deadline is imposed to ensure that if the job occurrence is
selected then it is scheduled on time. For every job j ∈ J , let Gj be the set gathering all job occurrences
related to j. At most one job occurrence in Gj can be selected in a solution, since all of them correspond
with the same original job j. Figure 1 gives a small example of an initial instance defined on jobs, and a
modified instance defined on job occurrences.

The following dominance rule extends the earliest deadline first rule to the general 1|rj |
∑
wjUj problem.

It states that when job occurrences are built as described above, the dominance rule applies (although some
pairs of time windows may not be agreeable).

Dominance rule 1 ([17]). There is at least one optimal solution to 1|rj |
∑
wjUj in which the selected job

occurrences of the on-time jobs are ordered according to a non-decreasing order of their deadlines with ties
being broken by non-decreasing order of release dates.

In the remainder, we assume that the job occurrences are ordered according to Dominance Rule 1.
Moreover, •k denotes the data • of the kth job occurrence in that order. For instance, pk denotes the
processing time of the kth job occurrence in that order.

We now recall in detail an MILP model, which is based on the following consideration: assume having
fixed the sequencing of the on-time tasks, a straightforward way to check the feasibility of the corresponding
schedule is to plan every task as soon as possible. This allows [17] to derive an efficient MILP model for
1|rj |

∑
wjUj , close to the one proposed in [16]. In this model, one has to choose which jobs are late, and for

each on-time job j, a job occurrence from Gj has to be selected. Then timing variables are used to ensure
that job occurrences are scheduled in their hard time window. For every job j ∈ J , let Uj be a binary
variable equal to 1 if j is tardy, 0 otherwise. Then, for every job occurrence k ∈ Gj , xk is the binary variable
equal to 1 if k is selected, 0 otherwise, and tk is a variable equal to its completion time if it is scheduled, or
to tk−1 if xk = 0. The following MILP models 1|rj |

∑
wjUj .
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minimize∑
j∈J

wjUj (1)

subject to∑
k∈Gj

xk = 1− Uj ∀j ∈ J (2)

tk ≤ d̄k ∀k ∈ J̃ (3)

tk − tk−1 − pkxk ≥ 0 ∀k > 1, k ∈ J̃ (4)

tk − pkxk −Mkxk ≥ rk −Mk ∀k ∈ J̃ (5)

Uj ∈ {0, 1} ∀j ∈ J (6)

xk ∈ {0, 1} ∀k ∈ J̃ (7)

tk ≥ 0 ∀k ∈ J̃ (8)

Objective function (1) minimizes the weighted number of tardy jobs. Constraints (2) enforce that exactly
one job occurrence is selected for an on-time job while no job occurrence should be selected if the job is
tardy.

Constraints (3) enforce that no job ends after its deadline, while constraints (4) ensure that jobs do not
overlap. Finally, constraints (5) force each scheduled job to begin after its release date. A suitable value for
constant Mk is given by max(0,minℓ>k{rℓ}), which ensures that if a job is not scheduled, then the value of
tk will not be larger than the smallest release date of a job occurrence of larger index.

2. Robust 1|rj|
∑

wjUj

In this section, we introduce a problem where the weighted number of tardy jobs has to be minimized
and where the weight associated with the execution of a task is subject to uncertainty. In 1|rj |

∑
wjUj , if

a job is not processed on time, it can be arbitrarily delayed. So, deciding that a job will be processed late
can be seen as the decision not to accept the order at all. Thus the cost associated with the late job can be
seen as a loss of income.

In the two-stage robust version of 1|rj |
∑
wjUj , we assume that the precise weights wj are known only

after deciding which jobs will be on time, and before processing them. Such hypothesis holds for example
when orders are accepted at a mid-term level without precise knowledge of the future technical difficulties
that may arise from specific jobs, incurring extra production costs.

Our approach is also a conservative approximation of multi-stage decision processes, where the actual
production costs would be revealed along time. To the best of our knowledge, uncertain multi-stage integer
problems are far out of reach of existing optimization methodologies (see for example [20] or [33] for algorithms
dedicated to multi-stage continuous optimization problems), so that such an approximation can still be useful.

2.1. Problem description

We now consider that the executed jobs may fail in such a way that the output of the task is deteriorated,
leading to an additional cost. When a deterioration is detected, the decision maker can take recourse decisions
of three types: (1) accept the output of the job as it is, thus undertaking a penalty for producing faulty
goods; (2) spend more time on the job to perform it correctly and thus avoiding the additional cost or (3)
outsource the execution of jobs. Note that it is possible to outsource any job j, even if its weight wj has not
been modified, since it gives additional time for other jobs to be executed or repaired.

We assume that the maximum possible penalty for the faulty production of each job j ∈ J is known, and
denoted by δ̄j . The penalty to pay for a given task j ∈ J is computed as δ̄jξj , where ξj is the (uncertain)
ratio of penalty incurred by j. Following the robust optimization framework, vector ξ ∈ R|J | belongs to the
uncertainty set Ξ ⊂ R|J |. In this paper, we consider the budgeted uncertainty set

Ξ =

ξ ∈ R|J |
+

∣∣∣∣∣∣ξj ≤ 1,∀j ∈ J and
∑
j∈J

ξj ≤ Γ
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where Γ is referred to as the uncertainty budget or uncertainty parameter. This uncertainty set was intro-
duced in [11] and is conservative in the following sense: if Γ increases, the size of Ξ increases. A given vector
ξ ∈ Ξ can be interpreted as a job failure scenario. In any scenario, at most Γ jobs can incur their maximum
penalty, but more of them can be partially impacted since vector xi does not have to take integer values, and
the worst-case scenario is generally not an extreme point of Ξ in the two-stage robust optimization context.
Remark that when Γ ≥ |J |, the uncertainty set embeds every possible job failure scenarios.

The decision flow goes as follows: in a here-and-now phase (or first stage), the decision maker decides
a set of jobs to be executed on time, then, as the jobs fail, the decision maker is allowed, in a wait-and-see
phase (or second stage), to take recourse actions. Note that the optimal solution may be to decide to execute
more tasks on time than what is feasible and to finally outsource some of these jobs to restore feasibility.

The problem can now be enunciated formally as follows. We first describe the (second-stage) repairing
problem.

Problem: Repairing problem (decision)
Input data: (V,J , (r, d, w, p, δ̄, τ, f), A, ξ), where V ∈ R is a target value, J , a set of jobs characterized
by data (r, d, w, p), and for each job j, a maximum additional cost δ̄j if j fails, a fixed extra time τj
needed to repair j, a fixed cost fj for outsourcing j, a set of initially on-time jobs A, and ξ̄ is a failure
scenario.
Question: Is there a partition (B,C,D) of A and a permutation σ of B∪C, where B is the set of jobs to
be scheduled without modification, C is the set of jobs to be fixed and scheduled, and D is the set of jobs
to be outsourced, such that all jobs of B∪C are on-time and

∑
j∈J\A wj +

∑
j∈B δ̄jξj +

∑
j∈D fj ≤ V ?

Using this definition, one can enunciate the two-stage problem formally.

Problem: Robust 1|rj |
∑
wjUj (decision)

Input data: (V,J , (r, d, w, p, δ̄, τ, f),Ξ), where V ∈ R is a target value, J , a set of jobs characterized
by data (r, d, w, p), and for each job j, a maximum additional cost δ̄j if j fails, a fixed extra time τj
needed to fix j, a fixed cost fj for outsourcing j, and Ξ is an uncertainty set.
Question: Is there a subset A ⊆ J of on-time jobs such that for any scenario ξ ∈ Ξ, REPAIR-
ING PROBLEM with data (V,J , (r, d, w, p, δ̄, τ, f), A, ξ) has answer yes?

Our scheduling problem consists in seeking the minimum value of V such that the decision problem has
answer yes. This optimization problem will be further referred to as problem (P). When δ̄j = 0 for any job
j, the problem becomes the classical 1|rj |

∑
wjUj and is therefore NP-hard. However, note that for given

input data, if one is given a subset A of jobs, determining if the repairing problem has solution yes for all
possible scenarios is not straightforward. This means that in terms of theoretical complexity, a first-stage
solution A does not provide a direct polynomial certificate, as would be the case in a deterministic setting.
We need to introduce complex reformulations before being able to prove that the problem belongs to class
NP, and so, is NP-complete.

2.2. Formulation

In this section, we show that (1)-(8) can be extended to model problem (P). To do so, we use an approach
similar to [17] and which was recalled in Section 1. Its validity is based on dominance rule 1, we therefore
need to ensure that it still holds for the robust case.

We create a set of job occurrences J̃ from the original set of jobs J in order to turn the problem into
a job occurrence selection problem with agreeable time windows. Formally, consider a job i ∈ J , for any
job j ∈ J whose time window is included in that of i (i.e., ri < rj , di > dj), and such that i and j

can both be on-time in a solution (i.e. ri + pi + pj ≤ dj), we create a job occurrence k ∈ J̃ such that

rk = ri, pk = pi, wk = 0, fk = fi, δ̄k = δ̄i, τk = τi and dk = dj . Again, the original job i is also added to J̃
and we introduce the set Gj as the set of job occurrences related to a given job j.

We can now extend the dominance rule 1 in the following sense:
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Dominance rule 2. There is at least one optimal solution ((B∗, C∗, D∗), σ∗) for REPAIRING PROBLEM
such that jobs of B∗ ∪ C∗ are scheduled according to a non-decreasing order of their deadlines

Proof. Let ((B,C,D), σ) be a feasible solution for REPAIRING PROBLEM, and consider two jobs i and j
such that i, j ∈ B ∪ C. Assume moreover that i is before j in σ.

If di < dj (or di = dj and ri < rj), then i and j are already scheduled in the desired order. Otherwise,
for any job ℓ, let p̂ℓ = pℓ if ℓ ∈ B and p̂ℓ = pℓ + τℓ if ℓ ∈ C. Note that since (B,C,D) is feasible, it holds
that

ri + p̂i + p̂j ≤ dj . (9)

Two cases remain:

• di > dj and ri < rj : (9) implies that ri + pi + pj ≤ dj . Therefore, there exists a job occurrence k ∈ Gi
such that dk = dj and with which we can replace i. Doing so, we end up in the desired order and the
objective value remains unchanged.

• di ≥ dj and ri ≥ rj : swapping i and j leads to the desired order, without modifying the cost of the
solution. Since rj ≤ ri and di ≥ dj , it holds from (9) that rj + p̂j + p̂i ≤ di, which shows that the
solution remains feasible.

In the exact same way as what has been done in [17] and recalled in Section 1, we sort the job occurrences
according to a non-decreasing order of their deadlines.

We now propose a characterization of valid recourse decisions. Schedule-feasibility of a selection of jobs
has been studied in the static case by [17] (see Section 1) and can be extended to our case.

For any k ∈ J̃ , binary variable yk takes value 1 if k is selected, 0 otherwise ; variable zk takes value 1 if
k is repaired, 0 otherwise. For each occurrence k ∈ J̃ , variable ρk ∈ R+ is equal to the processing time of
the job (including possible repairing).

We define the set Ȳ ⊂ {0, 1}2|J̃ | × R2|J̃ |
+ , which contains every feasible schedule, as follows.

Ȳ =



ρk = pkyk + τkzk ∀k ∈ J̃

zk ≤ yk ∀k ∈ J̃∑
k∈Gj

yk ≤ 1 ∀j ∈ J

tk ≤ d̄k ∀k ∈ J̃

tk − tk−1 − ρk ≥ 0 ∀k > 1, k ∈ J̃

tk − ρk −Mkyk ≥ rk −Mk ∀k ∈ J̃

tk ≥ 0 ∀k ∈ J̃

yk, zk ∈ {0, 1} ∀k ∈ J̃

ρk ≥ 0 ∀k ∈ J̃

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Constraints (10) ensure that each value ρk is equal to the processing time of k with respect to the recourse
action. Constraints (11) enforce that a job may be fixed only if it is scheduled while constraints (12)-(17)
are understood exactly as (1)-(8) where the constant processing times p have been substituted by decision
variables ρ. Recall that a job can be outsourced, which explains why constraints (12) are less-or-equal
constraints whereas (2) are equality constraints.

Let us also denote the set of second-stage decisions that admit a feasible timing of the jobs by

Y = {(y, z)|∃t, ρ : (y, z, t, ρ) ∈ Ȳ}.

To enforce the non-anticipation property, which stipulates that the decided recourse action may not
contradict the first-stage decision, we add so-called linking constraints between the first-stage decisions and
the second-stage decisions. These linking constraints are expressed as
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∑
k∈Gj

yk ≤ 1− Uj ∀j ∈ J (19)

We also introduce the set Y(U) of admissible recourse decisions respecting both the non-anticipation and
the schedule-feasibility property. It is given by Y(U) = {(y, z) ∈ Y | (19)}.

We now take interest in the objective value. Let j ∈ J be a job to be scheduled, then:

• if Uj = 1, then j is executed tardy and we have ∀k ∈ Gj , yk = zk = 0 (i.e., no recourse action)

• if Uj = 0, then j is accepted in the first stage. In the second stage (i.e., once the uncertainty is revealed)
the sequencing of the jobs has to be decided as well as the recourse actions. The following cases may
arise:

– there is k ∈ Gj such that yk = zk = 1: the job is executed and fixed

– there is k ∈ Gj such that yk = 1 and zk = 0: the job is executed

– for all k ∈ Gj , yk = zk = 0: the job is outsourced.

The problem can finally be cast as:

(P) : min
U∈{0,1}|J |

∑
j∈J

wjUj + fj(1− Uj) + max
ξ∈Ξ

min
(y,z)∈Y(U)

R(ξ, y, z)

where R(ξ, y, z) denotes the cost of recourse action (y, z) corresponding to scenario ξ given by:

R(ξ, y, z) =
∑
j∈J

∑
k∈Gj

[
(δ̄kξj − fk)yk − δ̄kξjzk

]
.

Note that the outsourcing cost appears both in the first-stage and second-stage objective functions.
This technical manipulation is required to preserve their linearity, and can be interpreted as always paying
outsourcing, unless the job is scheduled in the second stage.

3. Solution approaches

In this section, we develop two solution approaches for solving this min-max-min problem based on
two recent studies on robust optimization. First, we present a conservative approximation known as K-
adaptability, introduced in [7], which uses restrictive assumptions on the recourse set. Then, an exact
approach is developed based on polyhedral results introduced in [3], which are further briefly recalled for the
sake of completeness.

3.1. Finite adaptability

One of the most effective approaches for two-stage robust problems is the so-called finite adaptability
introduced in [7] also referred to as the K-adaptability. To obtain a tractable problem, the idea is to restrict
the set of possible recourse actions. The derivation of an exact MILP model of the finite adaptability
approximation for robust problems with recourse where the uncertainty is confined in the objective function
has been summarized in [22] and is well established. In our setting, this consists in deciding at the first
stage, in addition to the set of jobs accepted (i.e. a vector U), K recourse solutions (yq, zq) ∈ Y(U),
q = 1, . . . ,K, each of which prescribing which jobs should be executed and repaired if we select this specific
recourse solution. The second stage reduces to choosing one of these recourse solutions, once the uncertain
parameters ξ are revealed. We get the following model:

minimize∑
j∈J

wjUj + fj(1− Uj) + max
ξ∈Ξ

min
q=1,...,K

R(ξ, yq, zq) (20)

subject to

(yq, zq) ∈ Y(U) q = 1, . . . ,K (21)

U ∈ {0, 1}|J | (22)
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The reformulation process proposed in [22] goes by writing themax−min problem in (20) as a single stage
maximization linear program (LP), by making use of an epigraph formulation of the inner finite minimum.
Using LP duality, an equivalent minimization LP model is derived for expressing the cost of the second-stage
max−min sub-problem. Integrated into the first-stage model, this yields a bilinear model which is further
linerarized with help of additional decision variables.

More precisely, let us focus on the inner maximization problem in (20) and employ an epigraph formulation
of the finite minimum, we get that
maxξ∈Ξ minq=1,...,K R(ξ, yq, zq) is equivalent to the following problem:

maximize θ (23)

subject to θ ≤ R(ξ, yq, zq) q = 1, . . . ,K (βq ≥ 0) (24)∑
j∈J

ξj ≤ Γ (u ≥ 0) (25)

ξj ≤ 1 ∀j ∈ J (vj ≥ 0) (26)

ξj ≥ 0 ∀j ∈ J (27)

θ ∈ R (28)

where constraints (25)-(27) ensure that ξ ∈ Ξ. Observe that model (23)-(28) is a feasible and bounded linear
program. We can then use the strong duality theorem in linear programming to obtain an equivalent dual
linear program, where β, u and v are the vectors of dual variables respectively associated with constraints
(24), (25) and (26) of conforming dimensions. For the sake of completeness, we note that the fully developed
expression of Constraints (24) at rank q is:

θ −
∑
j∈J

∑
k∈Gj

δ̄k(z
q
k − yqk)

 ξj ≤
∑
j∈J

∑
k∈Gj

−fkyqk.

The dual program reads:

minimize

−
K∑

q=1

∑
j∈J

∑
k∈Gj

fky
q
kβq + Γu+

∑
j∈J

vj (29)

subject to

K∑
q=1

βq = 1 (θ ∈ R) (30)

∑
k∈Gj

K∑
q=1

δ̄k (z
q
k − yqk)βq + u+ vj ≥ 0 ∀j ∈ J (ξ ≥ 0) (31)

βq ≥ 0, q = 1, . . . ,K (32)

vj ≥ 0,∀j ∈ J (33)

u ≥ 0 (34)

This equivalent formulation contains a bilinear term in (y, z) and β, which can be linearized using standard
techniques and introducing auxiliary variables such that ψq

k = yqkβq and ζqk = zqkβq for all q = 1, . . . ,K and

k ∈ J̃ . Doing so, we obtain the following MILP finite adaptability formulation:
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minimize∑
j∈J

[wjUj + fj(1− Uj) + vj ] + Γu−
K∑

q=1

∑
k∈J̃

fkψ
q
k (35)

subject to

ρqk = pky
q
k + τkz

q
k ∀k ∈ J̃ , q = 1, . . . ,K (36)

tqk ≤ d̄k ∀k ∈ J̃ , q = 1, . . . ,K (37)

tqk − tqk−1 − ρqk ≥ 0 ∀k > 1, k ∈ J̃ , q = 1, . . . ,K (38)

tqk − ρqk −Mky
q
k ≥ rk −Mk ∀k ∈ J̃ , q = 1, . . . ,K (39)

zqk ≤ yqk ∀k ∈ J̃ , q = 1, . . . ,K (40)∑
k∈Gj

yqk ≤ 1− Uj ∀j ∈ J , q = 1, . . . ,K (41)

∑
k∈Gj

K∑
q=1

δ̄k (ζ
q
k − ψq

k) + u+ vj ≥ 0 ∀j ∈ J (42)

ψq
k ≤ yqk ∀k ∈ J̃ , q = 1, . . . ,K (43)

ψq
k ≤ βq ∀k ∈ J̃ , q = 1, . . . ,K (44)

ψq
k ≥ βq − 1 + yqk ∀k ∈ J̃ , q = 1, . . . ,K (45)

ζqk ≤ zqk ∀k ∈ J̃ , q = 1, . . . ,K (46)

ζqk ≤ βq ∀k ∈ J̃ , q = 1, . . . ,K (47)

ζqk ≥ βq − 1 + zqk ∀k ∈ J̃ , q = 1, . . . ,K (48)

(30)− (34)

tqk ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (49)

Uj ∈ {0, 1} ∀j ∈ J (50)

yqk ∈ {0, 1} ∀k ∈ J̃ , q = 1, . . . ,K (51)

zqk ∈ {0, 1} ∀k ∈ J̃ , q = 1, . . . ,K (52)

ψq
k ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (53)

ζqk ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (54)

Here, equation (35) defines the objective function to be minimized. Constraints (36),(37)-(39) correspond
to scheduling constraints (10),(13)-(15) for each q = 1, . . . ,K, derived from [17], enforcing that the final
decision must yield a feasible schedule. Constraints (40) make sure that a job can be fixed only if it is
scheduled while constraints (41) enforce that one may only process a job which was chosen to be on-time
in the first stage. Constraints (42) correspond to the dualized cost corresponding to the uncertain event,
obtained from (31) through linearization of the bilinear terms. Finally, constraints (43)-(48) correspond to
the linearization of yqkβq and zqkβq.

This problem will be referred to as problem (PK) and its model as model KAdapt1 -a. Additionally, [34]
has introduced a generic branch-and-bound algorithm in order to solve finite adaptability approaches. Their
approach is based on disjunctive programming considerations and scenario generation. We will denote this
approach by KAdapt1-b.

3.2. Convexification of the recourse set

In [3], the authors introduce an exact single-stage MILP formulation for two-stage robust problems with
mixed recourse decisions and binary variables in linking constraints between the first and second stages. In
problem (P), the inner max − min problem involves continuous decision variables for the max part, and
mixed-binary decision variables for the min part. Thanks to the special structure of the linking constraints
(19), one can use Proposition 1 recalled below and employ the following reformulation process. First, replace
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the feasible space of the inner min sub-problem with its convex hull (step 1). It is then possible to swap
the max and min operators (step 2). This second step leads to a static robust MILP model. The third step
applies the classical LP duality-based reformulation [11] to obtain a single-stage deterministic model (step
3). To write a proper MILP model, the final step expresses Y(U) in terms of its extreme points (step 4).
This step implies an exponential growth of the model, which, at solution time, is taken care of with help of
a column generation algorithm.

We first detail the reformulation process applied to problem (P), and then show how the large-scale
MILP model obtained can be solved.

3.2.1. Reformulation

To perform step 1, observe that the recourse cost function R is affine in (y, z). It follows that minimizing
R over Y(U) and conv(Y(U)) is equivalent. Problem (P) is then equivalent to:

min
U∈{0,1}|J |

∑
j∈J

[wjUj + fj(1− Uj)] + max
ξ∈Ξ

min
(y,z)∈conv(Y(U))

R(ξ, y, z)

Step 2: since function R is affine in both (y, z) and ξ, it is convex in (y, z) and concave in ξ. Moreover,
thanks to step 1, both max and inner min operators are performed over compact convex sets, so that we
can use the well-known minimax theorem [28] to swap them. Grouping both min operators yields:

min
U∈{0,1}|J |

(y,z)∈conv(Y(U))

[∑
j∈J

[wjUj + fj(1− Uj)]

+max

R(ξ, y, z) :
∑
j∈J

ξj ≤ Γ (u ≥ 0)

ξj ≤ 1,∀j ∈ J (vj ≥ 0)
ξj ≥ 0,∀j ∈ J




Step 3 relies on the fact that the inner maximization problem is a feasible and bounded LP. Using the
strong LP duality theorem, one can replace it with its dual problem to get the following formulation, where
u and v are dual variables associated with the constraints imposing ξ ∈ Ξ:

minimize∑
j∈J

[wjUj + fj(1− Uj) + vj ] + Γu−
∑
k∈J̃

fkyk

subject to

(y, z) ∈ conv(Y(U)) (55)

u+ vj ≥
∑
k∈Gj

δ̄k (yk − zk) ∀j ∈ J

Uj ∈ {0, 1} ∀j ∈ J

yk, zk ≥ 0 ∀k ∈ J̃
vj ≥ 0 ∀j ∈ J
u ≥ 0

This model is linear except for constraint (55). In order to write a linear system for these conditions,
step 4 alleviates a key obstacle: considering a fixed vector Ū , it is easy to express the set conv(Y(Ū)) in
terms of the extreme points of Y(Ū) since it is a bounded mixed-integer set. However, the set of extreme
points to consider depends on the value of Ū . In a general setting, this naturally leads to a disjunctive
formulation whose numerical solution seems to be very challenging (the reader may refer to [3] for details
about this technical difficulty and approaches to cope with it). Problem (P) enjoys a convenient structure
that allows us to use the convex hull of Y instead of Y(U), and impose the restrictions over y, z and U
independently. That means that a single set of extreme points, independent of U , can be considered in the
model. To this end, we use the following key result:
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Proposition 1 (Arslan and Detienne [3]).
Consider the following two-stage robust mixed-integer linear problem with objective uncertainty:

min
x∈X

{
cTx+max

ξ∈Ξ
min

y∈Ỹ(x)
ξTQx

}
where X ⊂ {0, 1}N × RM denotes the set of feasible first-stage decision, Ξ represents the uncertainty
polyhedron and Ỹ(x) denotes the set of eligible second-stage decisions defined as {y ∈ Y|y1 ≤ x1} with
Y ⊂ {0, 1}N × RM and y1 ∈ {0, 1}N , x1 ∈ {0, 1}N . It holds conv(Ỹ(x)) = conv(Y) ∩ {y|y1 ≤ x1} for any
x ∈ X .

From which we easily derive the following corollary:

Corollary 1.

conv(Y(U)) = conv(Y) ∩

 y ∈ R|J̃ |

z ∈ R|J̃ |t ∈ R|J̃ |
+

∣∣∣∣∣∣
∑
k∈Gj

yk ≤ 1− Uj , ∀j ∈ J


Let us denote the set of extreme points of Y by (ye, ze), e ∈ E (E being a list for their indices). Problem

(P) is finally modeled by this deterministic equivalent program:

[DEP ] : minimize F (U, u, v, α)

=
∑
j∈J

[wjUj + fj(1− Uj) + vj ] + Γu−
∑
k∈J̃

fk ∑
e∈ER

ye
kαe

 (56)

subject to∑
e∈E

αe = 1 (57)

∑
k∈Gj

∑
e∈E

ye
kαe ≤ 1− Uj ∀j ∈ J (58)

u+ vj ≥
∑
k∈Gj

[
δ̄k

∑
e∈E

(ye
k − zek)αe

]
∀j ∈ J (59)

Uj ∈ {0, 1} ∀j ∈ J
αe ≥ 0 ∀e ∈ E

u ≥ 0

vj ≥ 0 ∀j ∈ J

Here, decision vector α represents the convex combination multipliers from the reformulation of conv(Y).
Again, u and v are the dual variables associated to the constraint ξ ∈ Ξ. Constraints (58) link the recourse
action with the first-stage decision. Constraint (57) enforces that the recourse actions are convex combina-
tions of the extreme points of conv(Y). Finally, constraints (59) embed the dualized cost associated to the
worst case scenario. This model will be referred to as ColGen1.

We remark that such a characterization of the convex hull as its Minkowski-Weyl formulation is akin to
the Dantzig-Wolfe decomposition. Unlike the typical application of Dantzig-Wolfe decomposition, there is
no integrality requirements over the reformulated variables (here, the second-stage variables y and z). This
stems from the reformulation process that we use. Although (P) involves integer variables in the second-
stage, step 1 allows considering conv(Y(U)) instead of Y(U) while keeping an equivalent problem, hence
dropping the integrality requirements on variables y and z. It follows that the Dantzig-Wolfe reformulation
is applied to a subsystem that involves only continuous variables. Note that, in optimal solutions of [DEP ],
second-stage variables are most of the time non-integer. Intuitively, several different second-stage solutions
are required to prevent the adversary that maximizes the cost of the solution from increasing the value of
the first-stage solution by moving slightly the uncertain parameters.

Problem (P) is trivially NP-hard, since considering null penalties yields a problem equivalent to the
deterministic 1|ri|

∑
wiUi. However, it is often not clear whether two-stage robust problems lie higher in the
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polynomial hierarchy or not (see [10] for example). As a by-product, this reformulation shows that problem
(P) is not harder than NP-complete problems (the result is proven in a more general setting in [3]).

Corollary 2. Problem (P) is NP-complete.

3.2.2. Column generation-based solution algorithm

Model [DEP ] has an exponential number of variables. A classical approach to solve such problems is to
use the column generation algorithm to compute its linear relaxation. In this section, we formally present
the master program and the pricing problem that has to be solved in this purpose. We then describe the
column generation procedure. Finally, we depict the so-called branch-and-price algorithm, which is a tree
search embedding the column generation routine to compute the optimal feasible solution of [DEP ].

The column generation procedure solves the linear relaxation of model [DEP ]. Its basic idea is to
consider only a subset ER of the α-variables and solve optimally the so-called restricted master program
(RMP) [DEP ]R, using for example the simplex algorithm. The linear relaxation of RMP can be stated as
follows (constraints Uj ≤ 1 are dropped since they are implied by constraints (62)).

[DEP ]R : minimize FR(U, u, v, α)

=
∑
j∈J

[wjUj + fj(1− Uj) + vj ] + Γu−
∑
k∈J̃

fk ∑
e∈ER

ye
kαe

 (60)

subject to∑
e∈ER

αe = 1 (61)

∑
e∈ER

ye
kαe + Uj ≤ 1 ∀k ∈ Gj , ∀j ∈ J (62)

u+ vj ≥
∑
k∈Gj

δ̄k ∑
e∈ER

(ye
k − zek)αe

 ∀j ∈ J (63)

αe ≥ 0 ∀e ∈ ER (64)

Uj ≥ 0, vj ≥ 0 ∀j ∈ J (65)

u ≥ 0 (66)

Basic LP theory tells us that the solution obtained is optimal for the linear relaxation of [DEP ] if the
reduced costs of all the α-variables are non-negative. Let λ, µ and π be the dual variables respectively
associated with constraints (61), (62) and (63). Given an optimal dual solution (λ∗, µ∗, π∗) to [DEP ]R, the
so-called pricing problem that seeks a minimum reduced cost α-variable can be cast as:

[Pricing(λ∗, µ∗, π∗)] : minimize G(λ∗, µ∗, π∗, y, z)

= −λ∗ +
∑
j∈J

∑
k∈Gj

[
(−fk − µ∗

k + δ̄kπ
∗
j )yk − δ̄kπ

∗
j zk

]
subject to (y, z, t, ρ) ∈ Ȳ

This problem can be interpreted as a variant of 1|ri|
∑
wiUi where each job comes in two possible modes

(related with variables y or z), having different processing times and weights.
When the optimal solution (U∗, u∗, v∗, α∗) of the linear relaxation of [DEP ] satisfies the integrality

requirements (i.e. U∗ ∈ {0, 1}|J |), then it provides an optimal first-stage solution for (P). Otherwise, one
has to branch in order to exclude the current fractional solution and explore the feasibility set. Algorithm 1
summarizes the branch-and-price procedure proposed to solve problem (P) through its formulation [DEP ].
Line 1 initializes the set of columns so that the restricted master problem is feasible. The best primal bound
found, PrimalBound and the best feasible solution found, S∗ are initialized in Line 2. Each node is encoded
as the set of branching constraints, B, defining the set of solutions of that node. The list of open nodes,
Q, is thus initialized in Line 2 with the root node, that has no branching constraints. Loop 3-14 processes
the open nodes. The solution of the relaxation at the current node is computed in Line 5. If the solution
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Algorithm 1: Branch-and-price algorithm for solving model [DEP ].

1 Initialize the set of columns so that [DEP ]R is feasible: (ȳ1, z̄1)← {(0,0)}, ER ← {1}
2 PrimalBound←∞, S∗ ← ∅, Q ← {∅}
3 while Q ≠ ∅ do
4 Pop a node/set of branching constraints B from Q
5 (U∗, u∗, v∗, α∗)← optimizeRelaxation(B, ER)
6 DualBound← F (U∗, u∗, v∗, α∗)
7 if DualBound ≥ PrimalBound then
8 Current node is pruned by bound
9 else

10 if U∗ ∈ {0, 1}|J| then
11 Update PrimalBound and S∗ with DualBound and (U∗, u∗, v∗, α∗)
12 else
13 Choose i ∈ {1, . . . , |J |} such that U∗

i ∈]0, 1[
14 Add two nodes B0 = B ∪ {Ui = 0} and B1 = B ∪ {Ui = 1} to Q

15 return S∗, an optimal solution of [DEP ]

satisfies the integrality requirements (Line 10), PrimalBound and S∗ are updated (line 11). When U∗ is
not integer, branching is performed in Lines 13 and 14.

Algorithm 2 depicts the column generation procedure used to compute the relaxation at each node of the
search tree in Line 5 of Algorithm 1. Loop 1-8 adds new columns to the restricted master [DEP ]R until no
negative reduced cost column is found. Model [DEP ]R is solved in Line 2, providing optimal dual variables
that are used as input to the pricing problem in Line 4. Lines 6-7 add a new column to [DEP ]R if the
pricing problem returns a column with a negative reduced cost.

Algorithm 2: optimizeRelaxation(B, ER): column generation algorithm for computing the dual
bound at each node of the search tree when solving [DEP ].

Input: B: set of branching constraints, ER: set of indices of columns
1 repeat
2 Solve [DEP ]R with additional branching constraints B
3 Let (U∗, u∗, v∗, α∗) be the optimal solution and λ∗, µ∗ and π∗ be the optimal dual values

associated with constraints (61), (62) and (63)
4 Solve [Pricing(λ∗, µ∗, π∗)]
5 Let (y∗, z∗, t∗, ρ∗) be the optimal solution
6 if G(λ∗, µ∗, π∗, y, z) < 0 then

7 ER ← ER ∪ {|ER|+ 1}, (ȳ, z̄)|ER| ← (y∗, z∗)

8 until G(λ∗, µ∗, π∗, y, z) ≥ 0
9 return (U∗, u∗, v∗, α∗)

4. Order-fixing first stage

In this section, we study a variant of problem (P), denoted (P̃), where the first-stage decisions include
not only the selection of jobs to process, but also their order. In a wait-and-see phase, the recourse actions
to be decided for each accepted job are: process the job (possibly with a decreased cost), outsource the job,
or repair the job. In problem (P), one can decide the actual processing order of the jobs after knowing their

true weight, while in (P̃) the sequence of accepted jobs is decided at first stage, and can only be amended
by removing some elements of the sequence in the second stage.

14



We first formalize this variant, characterize its relation with problem (P) and derive MILP formulations.
The same two solution approaches, namely finite adaptability and convexification can be applied. Since
their application to this variant uses the same mathematical results as the first problem, we report them in
Appendix A.

4.1. Formulation

We formally state problem (P̃). Similarly to problem (P), we first define the recourse problem.

Problem: Fixed-order-Repairing problem (decision)
Input data: (V,J , (r, d, w, p, δ̄, τ, f), A, ξ, σ), where V ∈ R is a target value, J , a set of jobs character-
ized by data (r, d, w, p), and for each job j, a maximum additional cost δ̄j if j fails, a fixed extra time τj
needed to repair j, a fixed cost fj for outsourcing j, a set of initially on-time jobs A, ξ̄ a failure scenario,
and σ a permutation of the elements of A.
Question: Is there a partition (B,C,D) of A, where B is the set of jobs to be scheduled without
modification, C is the set of jobs to be fixed and scheduled, and D is the set of jobs to be outsourced,
σ restricted to B ∪ C is feasible, and∑

j∈J\A wj +
∑

j∈B δ̄jξj +
∑

j∈D fj ≤ V ?

The order-fixing version of the problem can now be defined formally.

Problem: Order-fixing Robust 1|rj |
∑
wjUj (decision)

Input data: (V,J , (r, d, w, p, δ̄, τ, f),Ξ), where V ∈ R is a target value, J , a set of jobs characterized
by data (r, d, w, p), and for each job j, a maximum additional cost δ̄j if j fails, a fixed extra time τj
needed to fix j, a fixed cost fj for outsourcing j, and Ξ is an uncertainty set.
Question:

Is there a subset A ⊆ J of on-time jobs, and a permutation σ of the elements of A such that for
any scenario ξ ∈ Ξ, Fixed-order-repairing problem with data (V,J , (r, d, w, p, δ̄, τ, f), A, ξ, σ) has
answer yes?

Problem (P̃) can be formulated in a similar way as what has been done for problem (P). Just like in

Section 1, let us denote, for any job occurrence k ∈ J̃ , by xk the selection of the kth job occurrence in the
non-decreasing order of their deadlines (i.e., 1 if the kth job occurrence is used, 0 otherwise). Variables yk,
zk for job occurrences and Uj will keep the same meaning as in the previous section.

Again, regarding the set of admissible recourses, the schedule-feasibility property is dealt with by set
Y introduced in Section 2. Concerning the non-anticipativity property, which stipulates that the recourse
action should not contradict a first-stage decision, we impose that yk ≤ xk,∀k ∈ J̃ . That is, that one may
confirm the execution of a job, or fix a job, only if it were actually accepted in the first stage. The set of
admissible recourses is then given by the following set: Ỹ(x) = {(y, z) ∈ Y | yk ≤ xk ∀k ∈ J̃ }.

We now detail the different possible decisions. Let j ∈ J be a job:

• if Uj = 1, then the job is executed tardy and no recourse action may be taken (i.e., yk = zk = 0)

• if there is k such that k ∈ Gj and xk = 1, the job is to be scheduled on time in the first stage:

– if yk = zk = 1, job j is executed and fixed on time

– if yk = 1 and zk = 0, job j is executed on time and a penalty is paid

– if yk = zk = 0, job j is outsourced

The objective function can therefore be expressed as follow:

min
(x,U)∈X̃

∑
j∈J

[wjUj + fj(1− Uj)] + max
ξ∈Ξ

min
(y,z)∈Ỹ(x)

R(ξ, y, z)
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where X̃ denotes the set of feasible first-stage solutions (i.e., the set of solutions which define a sequence of
tasks), that is:

X̃ =

(x, U) ∈ {0, 1}|J̃ | × {0, 1}|J |

∣∣∣∣∣∣
∑
k∈Gj

xk + Uj = 1 ∀j ∈ J


Again, note that the first-stage decision does not have to be physically feasible in the sense that the

optimal solution may be to decide a sequence of jobs in the first stage and to outsource some of them in the
second stage so as to make the schedule feasible.

4.2. Relation with problem (P)
This section is devoted to show that the first problem yields a lower bound for the second problem, which

is an intuitive result: compared to (P̃), in (P) some decisions are postponed. That means that, for different

realizations of the uncertainty those decisions can be different in (P) but must be identical in (P̃). In that

sense, (P) relaxes some of the non-anticipativity constraints of (P̃).

Observation 1. Denoting by (•)∗ the optimal value of problem •, the following relation holds:

(P)∗ ≤ (P̃)∗

We now provide an example showing that (P̃) is a strict relaxation of (P̃).

Observation 2. Given one problem instance, optimal solutions to (P) may attain a strictly lower objective

value than the optimal solutions to (P̃).

Proof. Consider the following instance:

j rj dj pj τj wj δ̄j fj

i 0 6 1 4 100 6 ∞
j 5 8 2 2 100 4 ∞
k 1 9 2 3 100 5 ∞

, Γ = 1

where the outsourcing of a task is never considered (not affordable) for simplicity. The three jobs can be
scheduled on time and it is never optimal to execute a job tardy, even after knowing the penalty (i.e., it is
always better to pay the penalty than to execute the job tardy). That being said, it is clear that the optimal
sequence is either (i, k, j) or (i, j, k). Since the uncertainty parameter Γ is set to one, exactly one job will be
affected by the uncertainty (note that, because we are in a two-stage robust context, the uncertainty can be
spread among different random parameters in the worst case, but this does not happen for this instance).

Let us first consider problem (P̃) where one decides the sequencing of the jobs before knowing the
uncertainty. Figure 2 depicts the two solutions detailed below. If the decision, in the first stage, implies using
sequence i, k, j, then it is only possible to fix k. Thus, the cost of the worst case is given by max(δ̄i, δ̄j , 0) =
max(6, 4, 0) = 6. If one were to choose sequence i, j, k however, the only fixable task is i which means that
the worst-case scenario costs max(0, δ̄j , δ̄k) = max(0, 4, 5) = 5. The optimal solution to the overall problem

minimizes the worst-case cost, hence (P̃)∗ = 5.
If we consider (P) where one only selects on-time jobs in the first stage however, one can better react

to the uncertainty in the second stage. Indeed, if the uncertainty affects job j one is forced to pay δ̄j = 4
since it is never possible to fix it. However, if the uncertainty affects job i, one can react to that scenario by
choosing the sequence i, j, k under which job j can be fixed. If, to the contrary, the uncertainty affects job
k, the optimal recourse decision is realised by using the sequence i, k, j under which one can fix job k. This
shows easily that, for this problem, the worst case is realised when the uncertainty hits job j. In any way,
(P̃)∗ > (P)∗ (5 > 4).
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Figure 2: Two schedules and the associated extra cost under the failure of each job if the sequence of jobs
is fixed before the uncertainty is revealed

From left to right : the failing job, the associated extra cost, a graphical representation of the schedule

5. Computational experiments

This section reports the main computational results for the two problems we are addressing. We first
give some details about our implementation, and then explain how random instances were generated. We
also describe our protocol to compare the exact approach with the finite adaptability methods, which are
exact only if the input parameter K is large enough.

5.1. Implementation details and experimental setting

All mixed integer linear programs, as well as linear programs inside the column generation procedures,
are solved using IBM ILOG Cplex 12.9, through the C callable library, using default parameters and four
threads. The generic implementation BapCod [37] of the branch-and-price Algorithm 1 is used to optimize
models ColGen1 and ColGen2. At each node of the search tree, the linear relaxation of the problem is
computed using column generation (Algorithm 2). The pricing sub-problem is solved using the MILP solver.
At most one column is added to the master program [DEP ]R at each iteration. To improve the convergence
of the column generation procedure, we use stabilization by automatic smoothing of the dual variables of
the master program, as described in [29]. When the optimal solution of the corresponding relaxation does
not satisfy the integrality requirements of first-stage variables, one fractional variable is chosen and two child
nodes are created in order to exclude its current value from the search space. This variable is chosen to be
the closest from 0.5. The open nodes are processed according to the best first rule. The implementation of
the branch-and-price algorithm is sequential.

The approach from [34] (i.e., KAdapt1-b and KAdapt2-b) for solving the finite-adaptability counterpart
has been implemented in C++ using the author’s code which is publicly available4.

4https://github.com/AnirudhSubramanyam/KAdaptabilitySolver
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All our experiments are conducted using a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3 2.5 GHz machine
with 128Go RAM running Linux OS, part of the PlaFRIM5 experimental platform. The resources of this
machine are strictly partitioned using Slurm Workload Manager6 to run several tests in parallel. The
resources available for each run (algorithm-instance) are set to 4 threads and a 20 Go RAM limit (we remark
that our branch-and-price algorithm does not benefit from parallel processing). This virtually creates six
independent machines, each running one single instance at a time.

5.2. Instances

The test bed was randomly generated based on the technique used in [15] in which the authors generate a
random test bed for the deterministic 1|rj |

∑
wjUj problem. Their approach takes as input three parameters:

the number of jobs N , a factor for the dispersion of the release dates R1 and a factor controlling the
dispersion of the deadlines R2. Having fixed these parameters, we generate, for each of the N jobs, random
characteristics defined as follows7:

pj ∼ U(1, 100) wj ∼ U(1, 100)
δ̄j ∼ U(1, 100) fj ∼ U(1, 100)

rj ∼ U(0, N ×R1) ∆j ∼ U(0, N ×R2)

dj = rj + pj +∆j τj ∼ U(0, λ∆j)

Here, ∆j denotes the slack time of jobs j within its time window. Note that the extra time needed
to fix one job τj is generated depending on an extra parameter λ, fixed, for our experiments, to 5

4 . This
implies that it is generally feasible to fix a job if it had its whole time window to be scheduled (i.e., if no
other job interferes with it). The parameters which were used are combinations of N ∈ {5, 10, 15, 20, 25},
R1 ∈ {5, 10, 20, 30} and R2 ∈ {5, 10, 20, 30}. In total, 480 instances were generated. Yet, each of these
instances are parameterized by the uncertainty budget Γ. Throughout our experiments, the value for Γ
varied, from 1 to 3 for 5-job instances, from 1 to 7 for 10-job instances, from 1 to 10 for 15, 20 and 25-job
instances. Therefore, we compared the two approaches over 3200 instances.

5.3. Protocol for comparing the two solution methods

The finite adaptability method solves the problem exactly only if parameter K is large enough; otherwise
it solves an approximation which is tighter and tighter as its parameter K grows. For this reason, we must
be careful when comparing its numerical performance with the one of the convexification approach. For
a given problem (P), let (PK) be its approximation as a K-adaptability problem. We denote by (•)∗ the
optimal solution of problem • (or the best known upper bound in case of reached time limit) and by t(•) the
computation time to solve problem •. An attractive case to compare the finite adaptability and the exact
approach is when (P)∗ = (PK)∗, since it amounts to comparing two exact methods. However, large values of
K lead to intractable models, so we need to find the smallest value for K which fulfills this condition. More
formally, we are interested in the following problem : K∗ = min{K : (PK)∗ = (P)∗,K ∈ N∗}. This problem
is feasible and has an upper bound equal to dimΞ + 1 = |J |+ 1 ([22]). Note that the a priori knowledge of
the optimal value (P)∗ is assumed. If this assumption is not satisfied, we do not have a practical method to
find K∗, since a local minimum of function K 7→ (PK)∗ sometimes fails to be global. This is illustrated in

Figure 3, which reports the optimal objective value for a specific 15-job instance of (P̃) for various values of
K. We can see that from the 1-adaptability to the 4-adaptability, the optimal value does not change while it
does for greater values of K. This shows that guessing the value K∗, for which the approximation is, in fact,
an exact solution, is hard and to our knowledge there is no straightforward stopping criterion for the search
for K∗. As a matter of fact, for that specific instance, we are unable to conclude if K∗ = 7 or if K∗ > 7
since we were unable to solve it within one hour. That particular observation holds for the two problems
(P) and (P̃).

5PlaFRIM: Plateforme Fédérative pour la Recherche en Informatique et Mathématiques (https://www.plafrim.fr/fr/
accueil/)

6https://slurm.schedmd.com/ (accessed June 2020)
7U denotes the discrete uniform distribution law
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1 2 3 4 5 6 7

264

265

266

267

268

K Objective Gap

1 269.000
2 269.000
3 269.000
4 269.000
5 268.252
6 267.963
7 267.888 1.129

Figure 3: A K-adaptability plateau for a 15-jobs instances : the optimal objective value does not change be-
tween the 1-adaptability and the 4-adaptability, we were unable to solve the instance using the 7-adaptability
within one hour (the vertical bar represents the optimality gap)

We run our algorithms under a given time limit and not all instances are solved to optimality, thus (P)∗,
(PK)∗ and their fixed-order counterparts are sometimes approximated. To overcome this difficulty, we focus
on a slightly different problem: find the smallest value for K which, under a given time limit T , yields an
objective function at least as good as the solution of the exact approach. Formally, we estimate K∗ by

K̂∗ = min

K :

(PK)∗ ≤ (P)∗,
t(P) ≤ T,
t(PK) ≤ T,
K ∈ N∗


In our experiments, the search for K̂∗ is done iteratively starting from K = 1 and increasing K by one unit
until one of the four conditions is reached:

• (PK)∗ ≤ (P)∗, t(P) ≤ T and t(PK) ≤ T : the two problems were solved optimally and we set K̂∗ = K

(in this case, the equality of the objectives hold and the approximation is tight: K̂∗ = K∗);

• (PK)∗ ≤ (P)∗, t(P) > T and t(PK) ≤ T : the exact approach could not achieve and/or prove optimal-

ity, and (P)∗ equals the best upper bound found. We set K̂∗ = K and we know that K̂∗ ≤ K∗;

• t(P) ≤ T and t(PK) > T : the finite adaptability approach could not achieve and/or prove optimality,

the search for K̂∗ is stopped since increasing K typically increases the computation time to solve (PK).

We set K̂∗ = K and we know that K̂∗ ≤ K∗;

• t(P) > T and t(PK) > T : none of the two problems could be solved to proven optimality, the search

for K̂∗ is stopped and the two methods are considered to perform as badly as the other. We set
K̂∗ = K and we know that K̂∗ ≤ K∗.

Note that, as K∗ is typically unknown, comparing (P) with (PK∗) or (PK̂∗) in fact gives an advantage
to the finite adaptability.

5.4. Comparison of the approaches for problem (P)
In Table 1, we present a comparison between finite adaptability from Section 3.1 (columns KAdapt1-a

and KAdapt1-b) and the exact approach from Section 3.2 (columns ColGen1). We use the experimental
protocol described above with a time limit T = 1 hour for each run. The two first columns describe the main
characteristics of the instances considered (number of jobs and value of Γ). The left-hand part of the table
gathers the percentage of instances that were not solved to optimality within the time limit. Then, the
average computing time is reported (instances for which the time limit is reached count for 3600 seconds).
In the right-hand part of the table, we finally reported the percentage of times in which one solution was
found to be the fastest among the three. The same data are illustrated as performance profiles in Figure 4.
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(a) All instances (b) 25-job instances (c) Instances with Γ ≤ |J |/4

Figure 4: Performance profiles [18] for different sets of instances. Each curve is associated with one method,
and shows the fraction of instances it solves not slower than the value of the abscissa times the time required
for the fastest approach

The finite adaptability approach KAdapt1-a solves all five-job instances, but fails to solve 11.25% of the
instances for 10 jobs and Γ = 2. Less than 15% of the 25-job instances instances are solved by this method
when Γ ≤ 4. Indeed, we have noticed that the hardest instances correspond to those having a value of Γ
such that the ratio Γ/|J | is around 0.3-0.4. For very small values of Γ the problem often becomes easy since
a small number of critical jobs have to be found. For large values of Γ, to the contrary, the problem almost
reduces to the deterministic problem where all the jobs are penalized. The in-between instances are the
most challenging. Regarding KAdapt1-b, our results show that the method proposed in [34] is more efficient
than the MILP formulation. Indeed, the average CPU time for KAdapt1-b is typically smaller than the time
spent solving the MILP model for KAdapt1-a. Moreover, it solves significantly more hard instances than
the MILP approach (see Figure 4c). The branch-and-price algorithm ColGen1 is able to solve all instances
up to 20 jobs to optimality, and more than 88% of the 25-job instances. When finite adaptability is able
to find the optimal solution, it is generally faster than ColGen1. Note that the reported computing times
are those of the last run of KAdapt1 during the search for K̂∗ (those can be obtained only if one is able to
”guess” value of K̂∗ beforehand, which is not the case in a practical context).

Table 2 shows the percentage of 25-job instances for which each method could find a feasible solution
within the time limit T although it was not able to prove its optimality. KAdapt1-a always finds a feasible
solution while it is clearly not the case for the convexification approach. Once again, note that the results
for KAdapt1-a are obtained with the first value of K for which the execution time exceeded T , which may
not be equal to K∗. This means that the cost reported is an upper bound of the actual cost of the first-
stage solution found by K-adaptability (since the recourse used is heuristic if K is not large enough). For
these instances, KAdapt1-a always finds a feasible solution but with a very large optimality gap: the gap
between the lower and upper bounds of the MILP solver at the time limit is larger than 70% on average.
This is partly explained by the poor linear relaxation of the MILP model. Conversely, the branch-and-price
algorithm ColGen1 based on the convexification approach does not always find a feasible solution, but when
it does, the optimality gap is often small (4.5% on average). Similarly, KAdapt1-b always finds a feasible
solution within the given time limit.

In Table 3, we study the values ofK that are needed to obtain the optimal solution with theK−adaptability
method. For this purpose, we report for every value of K from 1 to K∗, the average gap between the value
found by KAdapt1-a and the exact method ColGen1. We also compare computation times of KAdapt1-a
and ColGen1, according to the different values of K. An important information gathered from the table is
that a very large proportion of instances can be solved to optimality within one hour with a value of K = 1.
This means that for many instances, the so-called static model where the recourse actions are decided a
priori is sufficient to solve the problem.

It can also be noted that K−adaptability with a small value of K can be a good heuristic: for the 16
instances where K̂∗ = 5, setting K to 1 produces a gap of less than 7%, for computation times often two
order of magnitude smaller than the time required to solve the problem optimally using the branch-and-
price algorithm. This table also shows the high sensitivity of the K−adaptability approach with respect to
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parameter K. For example, let us consider instances with K̂∗ = 2. When K = 1, 587 instances can be
solved within one hour, whereas incrementing the value of K to 2 allows solving only 110 instances within
the same time limit. KAdapt1-a appears, at first glance, to perform surprisingly better when K̂∗ increases.
Indeed, when K̂∗ = 5 and K = 3, and when K̂∗ = 6 and K = 4, its computation time looks significantly
smaller than the one for ColGen1. But this anomaly is explained by the fact that only the instances that
could be solved using KAdapt1-a with K = 5 and K = 6, respectively, are reported in these sections of the
table. They are very likely to be well-suited for this approach, which explains the very good results when
the value of K is smaller. Notice that we could determine the value of K∗ for 2231 out of the 3200 instances,
leaving this question open for the 969 others.

Finally, looking at the last column of table 3, one can see that KAdapt1-a, when K = 1, is significantly
faster than ColGen1. In this case, the MILP model simplifies to a static robust optimization model (thanks
to the structure of constraint (30)), which explains the very good performance. However, for the more
complex settings, ColGen1 outperforms KAdapt1 by one to two orders of magnitude.

5.5. Comparison of the approaches for the order-fixing problem (P̃)
Table 4 compares computation times for approaches KAdapt2-a, KAdapt2-b and ColGen2. The values

reported for KAdapt2-a and KAdapt-b are obtained with parameter K = K̂∗ for each instance.
We can see that problem (P̃) is much more challenging to solve than (P), since the K−adaptability

methods reach limitations for 10-job instances while the branch-and-price algorithm ColGen2 is unable to
solve some 15-job instances. This is mainly explained by the relatively large number of variables in the models.
Indeed, while the number of first-stage variables was O(|J |) for problem (P), it is now O(|J̃ |) = O(|J |2).
Hence, there is a significant number of additional variables subject to integrality constraints in problem (P̃)
compared to (P).

Table 5 shows the computation time ratio between KAdapt2-a and ColGen2. As for problem (P), we
can see that the closer K gets to K̂∗, the faster the branch-and-price algorithm becomes compared to
K-adaptability.

We also studied the increase of the objective function when one has to decide the sequence of the selected
jobs before uncertainty is revealed. In Table 6, for several sizes of instances and several values of Γ, we report
the average costs related to problem (P) (column Free) and (P̃) (column fixed order), respectively.

Our experiments show that fixing the sequence of jobs beforehand only leads to a marginal increase of
the cost on average. The largest gap we obtained was 0.45% for instances with ten jobs.

As a conclusion, it appears that for this problem, the cost to pay to keep the order fixed in the first-stage
is not the cost of the solutions itself, but the practical difficulty to solve the optimization problem with
state-of-the-art algorithms.

6. Conclusion

In this paper, we have described a robust version of the classical one-machine scheduling problem where
one minimizes the weighted number of tardy jobs. Although solving general robust integer programs with
integer recourse is typically Σ2

P -hard, we were able to show that this problem is NP-complete, and proposed
two solution approaches: an exact reformulation which can be solved by means of the branch-and-price
algorithmic procedure, and a (MILP) conservative approximation. Our computational experiments show
that this problem is hard to solve in practice, since state-of-the-art methods may fail to solve 25-job instances
in one hour.

Regarding the exact method we proposed, we think that the development of good heuristic procedures for
the pricing problem may substantially improve the computing times. As for the conservative approximation,
its main drawback is its poor linear relaxation, which is a known issue in the literature. We also have
investigated another version of the problem where the sequencing decisions from the first stage cannot be
modified. It appears that this version of problem is harder than the first: some 15-job instances are left
unsolved by both approaches.
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Appendix A. Solution approaches for problem (P̃)

Appendix A.1. Finite adaptability

In this section, we give a K-adaptability formulation of the second problem. The main constraints are
identical to those derived in Section 3.1. Only the modified constraints and variables are explained below:

minimize∑
j∈J

[wjUj + (1− Uj)fj + vj ] + Γu−
K∑

q=1

∑
k∈J̃

fkψ
q
k (A.1)

subject to

(37)− (39)

yqk ≤ xk ∀k ∈ J̃ , q = 1, . . . ,K (A.2)

zqk ≤ yqk ∀k ∈ J̃ , q = 1, . . . ,K (A.3)∑
k∈Gj

xk = 1− Uj ∀j ∈ J (A.4)

(42)− (48)

tqk ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (A.5)

yqk ∈ {0, 1} ∀k ∈ J̃ , q = 1, . . . ,K (A.6)

zqk ∈ {0, 1} ∀k ∈ J̃ , q = 1, . . . ,K (A.7)

ψq
k ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (A.8)

ζqk ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (A.9)

Uj ∈ {0, 1} ∀j ∈ J (A.10)

u ≥ 0 (A.11)

vj ≥ 0 ∀j ∈ J (A.12)

βq ≥ 0 q = 1, . . . ,K (A.13)

Here, the binary (first-stage) decision variable xk represents the selection of the kth job occurrence in
the non-decreasing order of the deadlines while Uj denotes the variable indicating if a job is executed tardy
or not. Constraint (A.2) links the first- and second-stage decisions, constraint (A.3) enforces that a job is
repaired only if it is scheduled and constraint (A.4) enforces that exactly one job occurrence is selected for
on-time jobs. The other variables and constraints have the same meaning as in KAdapt1. This model will
be referred to as KAdapt2.

Appendix A.2. Convexification of the recourse set

In a very similar way as what has been done for problem (P), we can derive an exact formulation for this

problem variant by using proposition 1 on the set of eligible second-stage solutions Ỹ. Then, by enumerating
the extreme points of the convex hull of Y, we can derive the following model:
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minimize∑
j∈J

[wjUj + fj(1− Uj)]−
∑
k∈J̃

∑
e∈E

fky
e
kαe + Γu+

∑
j∈J

vj

subject to∑
e∈E

αe = 1 (A.14)

∑
e∈E

ye
kαe ≤ xk ∀k ∈ J̃ (A.15)

∑
k∈Gj

xk = 1− Uj ∀j ∈ J (A.16)

u+ vj ≥
∑
k∈Gj

[
δ̄k

∑
e∈E

(ye
k − zek)αe

]
∀j ∈ J (A.17)

xk ∈ {0, 1} ∀k ∈ J̃ (A.18)

Uj ∈ {0, 1} ∀j ∈ J (A.19)

αe ≥ 0 ∀e ∈ E (A.20)

u ≥ 0 (A.21)

vj ≥ 0 ∀j ∈ J (A.22)

Again, decision vector α represents the convex combination multipliers from the inner description of
conv(Y) and u and v are the dual variables associated to the constraint ξ ∈ Ξ. Constraint (A.14) enforces
that the second-stage variables must be a convex combinations of some extreme points. Constraint (A.15)
links the first-stage variables with the second-stage variables while constraint (A.16) enforces that exactly
one job occurrence per job is selected in the first stage. Finally, constraint (A.17) corresponds to the dualized
cost implied by the venue of a scenario ξ ∈ Ξ.

This model will be referred to as ColGen2.
We solve this large-scale MILP model using a simple adaptation of the branch-and-price algorithm pre-

sented in Section 3.2.2. Algorithm 1 is modified by checking, at line 10, the integrality of both U∗ and x∗,
and lines 13 and 14 are adapted to branch either on a U - or an x-variable. Surprisingly, the pricing problem
differs only by the value of the dual variable µ in input, which is now associated with constraint (A.15)
instead of (58).
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Table 1: CPU execution times for solving problem (P)

Unsolved within T = 1 hour (%) Average CPU time (s.) Fastest approach (%)
|J | Γ KAdapt1-a Kadapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1

5 1 0 0 0 0 0 2 10 90 0
2 0 1 0 0 0 2 4 96 0
3 0 0 0 0 0 2 1 99 0

Avg. |J | = 5 0 0 0 0 0 2 5 95 0

10 1 6 12 0 85 59 13 11 76 12
2 11 24 0 49 30 15 18 64 19
3 5 10 0 17 1 11 5 85 10
4 1 2 0 0 1 8 1 96 2
5 1 2 0 7 0 7 1 96 2
6 0 0 0 0 0 7 1 99 0
7 0 0 0 0 0 7 1 99 0

Avg. |J | = 10 4 7 0 22 13 10 6 88 7

15 1 35 28 0 443 207 43 8 50 42
2 57 69 0 452 27 69 4 28 69
3 46 49 0 16 1 64 1 50 49
4 29 29 0 55 0 47 4 68 29
5 12 12 0 0 0 29 6 81 12
6 10 10 0 0 0 23 2 88 10
7 2 2 0 0 0 21 4 94 2
8 0 0 0 0 0 17 4 96 0
9 0 0 0 0 0 16 1 99 0
10 0 0 0 0 0 16 1 99 0

Avg. |J | = 15 19 20 0 97 24 35 3 75 21

20 1 66 45 0 693 184 118 2 44 54
2 88 86 0 171 39 190 4 12 84
3 86 91 0 306 42 273 5 6 89
4 71 76 0 132 20 332 6 19 75
5 55 56 0 20 1 346 5 39 56
6 35 35 0 0 0 269 16 49 35
7 20 20 0 0 0 188 20 60 20
8 5 5 0 0 0 127 31 64 5
9 0 0 0 0 0 67 34 66 0
10 0 0 0 0 0 46 28 72 0

Avg. |J | = 20 43 42 0 132 29 196 15 43 42

25 1 82 59 9 384 345 375 8 30 62
2 95 95 12 78 45 623 11 9 79
3 91 92 16 5 0 629 15 16 69
4 78 78 19 0 0 613 18 25 56
5 66 66 21 0 1 538 25 29 46
6 57 57 20 0 1 534 29 29 41
7 39 39 18 0 0 442 33 38 30
8 31 31 12 0 1 442 38 37 26
9 15 15 10 0 1 426 50 37 13
10 6 6 5 0 2 286 59 35 6

Avg. |J | = 25 56 54 14 47 40 491 29 29 43

From left to right : the number of jobs, the uncertainty budget, the average computation time (when less
than T = 1 hour) for the K-adaptability approach, the convexification-based branch-and-price algorithm,
the percentage of times one method was found to be the most efficient and the percentage of instances which
could not be solved within T = 1 hour. For the sake of readability, all numbers are rounded to the closest
integer.
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Table 2: Feasible solutions found for (P), over instances that could not be solved to optimality by the method
within the time limit T = 1 hour

Feasible solutions found (%)
|J | Γ KAdapt1-a KAdapt1-b ColGen1

25 1 100 100 29
2 100 100 30
3 100 100 15
4 100 100 7
5 100 100 6
6 100 100 6
7 100 100 14
8 100 100 10
9 100 100 38
10 100 100 25

From left to right : the number of jobs, the uncertainty budget and the percentage of instances for which a
feasible solution could be found within T = 1 hour over the instances which could not be solved optimally
within T = 1 hour. Numbers are rounded to the closest integer.

Table 3: The cost of approximating with finite adaptability for problem (P)

K̂∗ K # Instances Approximation gap (%) Time ratio

1 1 1989 0 0.03

2 1 587 0.00 0.03
2 110 0 5.23

3 1 368 5.86 0.01
2 368 1.43 6.00
3 90 0 14.59

4 1 123 6.3 0.01
2 123 2.06 0.09
3 123 0.6 14.23
4 32 0 13.27

5 1 16 6.85 0.01
2 16 2.25 0.04
3 16 0.67 0.82
4 16 0.24 34.76
5 3 0 29.28

≥6 1 3 1.92 0.01
2 3 1.7 0.02
3 3 0.58 0.05
4 3 0.13 0.31
5 3 0.02 5.87
6 2 0 2.06

From left to right : the value of K̂∗ (i.e. the value of K required for K-adaptability to be equivalent to (P)
or a lower bound on this value), the value of K which was used, the number of instances with this value of K̂∗

which were solved using Kadapt1 with that value of K within T = 1 hour, the approximation gap computed
as |KAdapt1∗ −ColGen1∗|/|ColGen1∗|, the computation time ratio computed as t(KAdapt1)/t(ColGen1).
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Table 4: Computation times for solving problem (P̃)

Unsolved within 1 hour (%) Average CPU time (s.) Fastest approach (%)
|J | Γ KAdapt2-a KAdapt2-b ColGen2 KAdapt2-a KAdapt2-b ColGen2 KAdapt2-a KAdapt2-b ColGen2

5 1 0 0 0 0 0 1 12 87 1
2 0 0 0 0 0 1 14 86 0
3 0 0 0 0 0 1 7 93 0

Avg. |J | = 5 0 0 0 0 0 1 11 88 0

1 0 11 0 14 27 28 22 72 5
2 1 22 0 22 18 24 28 59 14
3 1 9 0 9 4 11 16 78 6
4 0 2 0 43 2 8 6 91 2
5 0 1 0 37 40 4 12 86 1
6 0 0 0 0 0 3 6 94 0
7 0 0 0 0 0 3 8 92 0

Avg. |J | = 10 0 7 0 18 13 12 14 82 4

15 1 11 18 8 191 118 243 14 61 25
2 36 55 16 212 280 219 25 27 48
3 25 38 12 154 0 158 19 46 35
4 19 26 8 131 0 169 21 56 23
5 9 10 4 24 0 77 18 74 9
6 5 6 4 8 0 47 20 76 5
7 2 2 2 0 0 61 23 74 2
8 0 0 0 0 0 50 19 81 0
9 0 0 0 0 0 15 12 88 0

Avg. |J | = 15 12 17 6 80 44 115 19 65 16

From left to right : the number of jobs, the uncertainty budget, the average computation time (when less
than T = 1 hour) for each method, the percentage of times one method was found to be the most efficient
and the percentage of instances which could not be solved within the time limit T = 1 hour. All numbers
are rounded to the closest integer.
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Table 5: The cost of approximating with finite adaptability for problem (P̃)

K̂∗ K # Instances Approximation gap (%) Time ratio

1 1 1165 0 0.23

2 1 87 4.88 0.06
2 87 0 0.11

3 1 79 6.37 0.02
2 76 0.97 0.09
3 65 0 3.74

4 1 93 7.15 0.04
2 93 1.65 0.09
3 73 0.4 2.01
4 59 0 5.79

5 1 40 7.93 0
2 40 2.72 0.03
3 40 0.83 0.53
4 40 0.19 8.75
5 14 0 14.17

6 1 14 5.84 0.01
2 14 2.98 0.02
3 14 1.12 0.09
4 14 0.41 0.81
5 14 0.09 13.24
6 6 0 35.19

≥7 1 2 0.37 0.01
2 2 0.37 0.02
3 2 0.37 0.14
4 2 0.37 0.65
5 2 0.14 5.52
6 2 0.03 78.13

From left to right : the value of K̂∗ (i.e. the value of K required for K-adaptability to be equivalent to (P)
or a lower bound on this value), the value of K which was used, the number of instances with this value of K̂∗

which were solved using Kadapt2 with that value of K within T = 1 hour, the approximation gap computed
as |KAdapt2∗ −ColGen2∗|/|ColGen2∗|, the computation time ratio computed as t(KAdapt2)/t(ColGen2).
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Table 6: Fixed-order solutions cost analysis

Objective cost
|J | Γ Free Fixed order Gap (%) N. Instance

(ColGen1) (ColGen2)

5 1 70.39 70.40 0.00 80
5 2 75.27 75.28 0.01 80
5 3 75.94 75.94 0.00 80
10 1 144.76 145.14 0.26 80
10 2 165.92 166.21 0.18 80
10 3 171.73 171.80 0.04 80
10 4 173.24 173.26 0.01 80
10 5 173.61 173.61 0.00 80
10 6 173.70 173.70 0.00 80
10 7 173.70 173.70 0.00 80
15 1 192.83 193.32 0.25 74
15 2 232.46 233.06 0.26 67
15 3 248.97 249.57 0.24 70
15 4 253.39 253.78 0.15 74
15 5 254.77 254.91 0.05 77
15 6 255.35 255.37 0.01 77
15 7 255.74 255.74 0.00 78
15 8 256.98 256.98 0.00 80
15 9 256.98 256.98 0.00 80
15 10 256.98 256.98 0.00 80

From left to right : the number of jobs, the uncertainty budget, the average objective costs of free solutions and
fixed-ordered solutions, the relative gap between the two, the number of instances which where accounted
for in the computation (i.e., instances which could be solved within the time limit T = 1 hour for both
problems).

30


	Minimizing the weighted number of tardy jobs: literature review
	Robust 1|rj|wjUj
	Problem description
	Formulation

	Solution approaches
	Finite adaptability 
	Convexification of the recourse set 
	Reformulation
	Column generation-based solution algorithm


	 Order-fixing first stage
	Formulation
	Relation with problem (P)

	Computational experiments 
	Implementation details and experimental setting
	Instances
	Protocol for comparing the two solution methods
	Comparison of the approaches for problem (P)
	Comparison of the approaches for  the order-fixing problem (P"0365P)

	Conclusion
	Acknowledgments
	Solution approaches for problem (P)"0365P)
	Finite adaptability
	Convexification of the recourse set


