DEVOIR nº 1 (pour la semaine du 28/03)

Problème I

Théorème 1 (Eisenstein). Un nombre premier $p \equiv 1 \pmod{4}$ est de la forme $A^2 + 64B^2$, $A, B \in \mathbb{Z}$ si et seulement si 2 est une puissance 4-ième dans \mathbb{F}_p .

Soit donc $p \equiv 1 \pmod{4}$ un nombre premier. On rappelle qu'alors $p = a^2 + b^2$, $a, b \in \mathbb{Z}$. On choisit a, b > 0, a impair, et donc b pair. Noter que

$$2p = (a+b)^2 + (a-b)^2 \tag{1}$$

A) Montrer que $(a+b)^2 \equiv 2ab \pmod{p}$, puis

$$(a+b)^{(p-1)/2} \equiv (2ab)^{(p-1)/4} \pmod{p},$$
 (2)

et enfin que a, b, a + b et a - b sont étrangers à p.

B) Montrer que

$$\left(\frac{a}{p}\right) = 1,\tag{3}$$

puis à l'aide de (1) que

$$\left(\frac{a+b}{p}\right) = (-1)^{((a+b)^2 - 1)/8}. (4)$$

- C) On considère maintenant a, b comme des éléments de \mathbb{F}_p^* . Soit f = b/a. Montrer que $f^2 = -1$.
- **D)** En utilisant (4), (2) et (3), montrer que

$$(-1)^{((a+b)^2-1)/8} = 2^{(p-1)/4} f^{(a^2+b^2-1)/4}$$

dans \mathbb{F}_{n} .

- **E)** Montrer enfin que $2^{(p-1)/4} = f^{ab/2}$. Quel est l'ordre de f dans \mathbb{F}_p^* ? En déduire le Théorème d'Eisenstein.
- F) Montrer que si $p \equiv 3 \pmod{4}$, alors tout carré est une puissance 4-ième.

Problème II

Soit $m \ge 1$ un entier et $p \nmid m$ un nombre premier. On veut étudier la fonction zêta sur \mathbb{F}_p de la courbe projective plane

$$\mathcal{C}_m: X^m + Y^m = Z^m.$$

L'entier $s \geqslant 1$ sera utilisé pour paramétrer les extensions \mathbb{F}_{p^s} de \mathbb{F}_p , χ, ρ désignent deux caractères de $(\mathbb{F}_{p^s})^*$, étendus à \mathbb{F}_{p^s} de la façon habituelle. On note

$$J(\chi, \rho) = \sum_{x \in \mathbb{F}_{p^s}} \chi(x) \rho(1 - x)$$

la somme de Jacobi.

- A) Montrer que la restriction $p \nmid m$ n'est pas une perte de généralité.
- **B)** Caractériser en fonction de l'ordre de p dans $(\mathbb{Z}/d\mathbb{Z})^*$ les corps \mathbb{F}_{p^s} contenant une racine primitive d-ème de l'unité.
- C) Montrer que $J(\chi^p, \rho^p) = J(\chi, \rho)$ pour tous caractères χ, ρ de $(\mathbb{F}_{p^s})^*$.
- **D)** Si χ, ρ sont deux caractères, on note $d(\chi, \rho)$ le ppcm de leurs ordres exacts. Montrer que

$$\#\mathcal{C}_m(\mathbb{F}_{p^s}) = p^s + 1 + \sum_{\substack{d \mid m \\ \mu_d \subset \mathbb{F}_{p^s}}} \sum_{\chi, \rho} J(\chi, \rho),$$

où χ, ρ parcourent les caractères de \mathbb{F}_{p^s} tels que $d(\chi, \rho) = d, \ \chi \neq \varepsilon, \ \rho \neq \varepsilon$, et $\chi \rho \neq \varepsilon$.

E) En déduire que C_m vérifie les hypothèses et les conclusions du théorème de Weil. Expliciter le degré du numérateur de la fonction zêta.