UNIVERSITÉ DE BORDEAUX

Calcul différentiel

Examen

le 18 décembre 2014

Durée 3h. Aucun document autorisé.

Exercice 1. Soit $K = [-2, 2] \times [0, 2\pi]$. On considère la fonction $f: K \to \mathbf{R}$ définie par la formule

$$f(x,y) = \frac{x^2}{2} - \sqrt{4 - x^2} \cos y.$$

1) On note U l'intérieur de K. Déterminer les extrema locaux de la fonction f dans U.

Solution: On a

$$\begin{split} \frac{\partial f}{\partial x} &= x + \frac{x}{\sqrt{4 - x^2}} \cos y, \\ \frac{\partial f}{\partial y} &= \sqrt{4 - x^2} \sin y, \\ \frac{\partial^2 f}{\partial x^2} &= 1 + \left(\frac{1}{\sqrt{4 - x^2}} + \frac{x^2}{(4 - x^2)^{3/2}}\right) \cos y, \\ \frac{\partial^2 f}{\partial y^2} &= \sqrt{4 - x^2} \cos y, \\ \frac{\partial^2 f}{\partial x^2} &= -\frac{x}{\sqrt{4 - x^2}} \sin y. \end{split}$$

Les solutions du système $\frac{\partial f}{\partial x} = 0$, $\frac{\partial f}{\partial y} = 0$ sur U sont $(0, \pi)$, $(-\sqrt{3}, \pi)$ et $(\sqrt{3}, \pi)$. La matrice jacobienne en $(0, \pi)$ est

$$Jac(f)_{(0,\pi)} = \begin{pmatrix} 1/2 & 0\\ 0 & -2 \end{pmatrix}.$$

Les valeurs propres de $Jac(f)_{(0,\pi)}$ sont 1/2 et -2. Donc f n'a pas d'extremum en $(0,\pi)$. En $(-\sqrt{3},\pi)$ et $(\sqrt{3},\pi)$ on a

$$Jac(f)_{(\pm\sqrt{3},\pi)} = \begin{pmatrix} -3 & 0\\ 0 & -1 \end{pmatrix}.$$

Donc $(\pm\sqrt{3},\pi)$ sont des points de maxima locaux et $f(\pm\sqrt{3},\pi)=5/2$.

2) Déterminer le maximum et le minimum absolus de f sur K.

Solution: On étudie le comportement de f sur la frontière de K. Il est clair que f(x,y)=2 sur les segments $\{-2\}\times[0,2\pi]$ et $\{2\}\times[0,2\pi]$. D'autre part,

$$f(x,0) = f(x,2\pi) = \frac{x^2}{2} - \sqrt{4-x^2}.$$

L'étude de cette fonction montre qu'elle a un minimum local en x=0 et que $f(0,0)=f(0,2\pi)=-2$. En comparant avec la question 1) on trouve que f atteint sont maximum en $(\pm\sqrt{3},\pi)$, où $f(\pm\sqrt{3},\pi)=5/2$ et son minimum en (0,0) et $(0,2\pi)$ où $f(0,0)=f(0,2\pi)=-2$.

Exercice 2. Soit c > 0. On note K l'ensemble

$$K = \{(x_1, x_2, \dots, x_n) \in \mathbf{R} \mid x_1, x_2, \dots, x_n \geqslant 0 \text{ et } x_1 + x_2 + \dots + x_n = c\}.$$

Soit $f: K \to \mathbf{R}$ la fonction définie par $f(x_1, x_2, \dots, x_n) = x_1 x_2 \cdots x_n$.

1) Soit

$$U = \{(x_1, x_2, \dots, x_n) \in \mathbf{R} \mid x_1, x_2, \dots, x_n > 0 \text{ et } x_1 + x_2 + \dots + x_n = c\}.$$

Prouver que si $a = (a_1, a_2, \dots, a_n)$ est un extremum local de f sur U, alors $a_1 = a_2 = \dots = a_n = c/n$.

Solution: On a $\frac{\partial f}{\partial x_i} = \frac{f(x_1,...,x_n)}{x_i}$, d'où

$$grad(f) = f(x_1, \dots, x_n)(1/x_1, 1/x_2, \dots, 1/x_n).$$

D'autre part, soit $g(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n - c$. Alors

$$grad(g) = (1, 1, ..., 1).$$

Par la théorie des extrema liés, si f a un extremum local en $a = (a_1, \dots, a_n)$ sous la contrainte g = 0, alors il existe λ tel que

$$grad(f)_a = f(a_1, \dots, a_n)(1/a_1, 1/a_2, \dots, 1/a_n) =$$

= $\lambda grad(g)_a = \lambda(1, 1, \dots, 1).$

Donc $a_1 = a_2 = \dots = a_n = c/n$.

2) Prouver que le point $(c/n, c/n, \ldots, c/n)$ est l'unique maximum global de f sur K.

Solution: Comme K est compact, f atteint son maximum sur K. Or f = 0 sur la frontière de K, donc f atteint son maximum lorsque $x \in U$. Ce maximum est forcement un extremum relatif, d'où on obtient que f atteint son maximum pour $a = (c/n, c/n, \ldots, c/n)$ et que $f(a) = c^n/n^n$.

3) Prouver l'inégalité arithmético-géométrique: pour tous $x_1, x_2, \dots, x_n \geqslant 0$ on a

$$\frac{x_1 + x_2 + \dots + x_n}{n} \geqslant \sqrt[n]{x_1 x_2 \cdots x_n}.$$

Solution: Posons $c = x_1 + x_2 + \cdots + x_n$. On a

$$\frac{x_1 + x_2 + \dots + x_n}{n} = \frac{c}{n} = f(a)^{1/n} \geqslant f(x_1, \dots, x_n)^{1/n} = \sqrt[n]{x_1 x_2 \cdots x_n}.$$

Exercice 3. Soit $C([0,1], \mathbf{R})$ l'espace de Banach des fonctions continues $f: [0,1] \to \mathbf{R}$ muni de la norme infinie $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$.

1) Prouver que l'application $u:C([0,1],{\bf R})\to C([0,1],{\bf R})$ définie par

$$u(f)(x) = \int_0^x f(t)tdt$$

est une application linéaire continue.

Solution: Comme pour tous $f, g \in C([0,1], \mathbf{R})$ et $lambda \in \mathbf{R}$ on a

$$u(f + \lambda g)(x) = \int_0^x (f(t) + \lambda g(t))tdt =$$
$$\int_0^x f(t)tdt + \lambda \int_0^x g(t)tdt = u(f)(x) + \lambda u(g)(x),$$

u est une application linéaire. On a

$$|u(f)(x)| = \left| \int_0^x f(t)tdt \right| \leqslant \int_0^x |f(t)|tdt \leqslant |f||_{\infty} \int_0^1 tdt \leqslant |f||_{\infty}.$$

Donc $||u(f)||_{\infty} \leq ||f||_{\infty}$ pour tout $f \in C([0,1], \mathbf{R})$. On en déduit que u est continue.

2) Soit $\Phi: C([0,1], \mathbf{R}) \to C([0,1], \mathbf{R})$ l'application définie par $\Phi(f) = f + u(f)f$. Montrer que Φ est une application différentiable et calculer $D(\Phi)_f$ en tout $f \in C([0,1], \mathbf{R})$.

Solution: On a

$$\Phi(f+h) = (f+h) + u(f+h)(f+h) = f+h+u(f)f+u(f)h+u(h)f+u(h)h = \Phi(f)+((1+u(f))h+u(h)f)+u(h)h.$$

L'application L(h) = (1 + u(f))h + u(h)f est linéaire. Pour prouver qu'elle est continue on remarque que

$$||L(h)||_{\infty} \leq ||(1+u(f))h||_{\infty} + ||u(h)f||_{\infty} \leq ||h||_{\infty} ||1+u(f)||_{\infty} + ||u(h)||_{\infty} ||f||_{\infty} \leq ||h||_{\infty} ||1+u(f)||_{\infty} + ||h||_{\infty} ||f||_{\infty} \leq (||1+u(f)||_{\infty} + ||f||_{\infty}) ||h||_{\infty}$$

d'où on trouve que L est continue et que $||L|| \le ||1 + u(f)||_{\infty} + ||f||_{\infty}$. En posant $\varepsilon(h) = u(h)h/||h||_{\infty}$ on a

$$\Phi(f+h) - \Phi(f) = L(h) + ||h||_{\infty} \varepsilon(h),$$

οù

$$\|\varepsilon(h)\|_{\infty}=\|u(h)h\|_{\infty}/\|h\|_{\infty}\leqslant \|u(h)\|_{\infty}\|h\|_{\infty}/\|h\|_{\infty}=\|u(h)\|_{\infty}\leqslant \|h\|_{\infty}.$$

On en déduit que $\varepsilon(h) \to 0$ quand $||h||_{\infty} \to 0$. Donc Φ est différentiable et $D(\Phi)_f = L$.

3) Prouver que Φ est de classe C^1 . En déduire que Φ est un C^1 -difféomorphisme d'un voisinage de 0 dans $C([0,1], \mathbf{R})$ sur un voisinage de 0 dans $C([0,1], \mathbf{R})$.

Solution: Soient $f, g \in C_0^1([0,1], \mathbf{R})$. On a

$$||D(\Phi)_f(h) - D(\Phi)_g(h)||_{\infty} = ||(u(f) - u(g))h + (f - g)u(h)||_{\infty} \le ||u(f - g)h||_{\infty} + ||(f - g)u(h)||_{\infty} \le ||u(f - g)||_{\infty} ||h||_{\infty} + ||f - g||_{\infty} ||u(h)||_{\infty} \le ||f - g||_{\infty} ||h||_{\infty} + ||f - g||_{\infty} ||h||_{\infty} \le 2||f - g||_{\infty} ||h||_{\infty}.$$

Donc $||D(\Phi)_f - D(\Phi)_g|| \le 2||f - g||_{\infty}$ d'où on déduit que l'application $f \mapsto D(\Phi)_f$ est continue.

Comme $D(\Phi)_0(h) = h$, on a $D(\Phi)_0 = \mathrm{id}$ et il est clair que $D(\Phi)_0$ admet un inverse continu. Maintenant il suffit d'appliquer le théorème d'inversion locale pour conclure.

Exercice 4. On considère l'équation différentielle

(1)
$$y'(t) = y(t)^4 + t^2 y(t)^2.$$

- 1) Trouver une solution $y_0(t)$ de cette équation vérifiant $y_0(0) = 0$. Solution: Poser $y_0(t) = 0$ pour tout $t \in \mathbf{R}$.
- 2) Soient $(t_0, y_0) \in \mathbf{R}^2$. Prouver qu'il existe une unique solution maximale $(\varphi(t), I)$ de l'équation (1) vérifiant $\varphi(t_0) = y_0$.

Solution: On a y'(t) = f(t,y), où $f(t,y) = y^4 + t^2y^2$. Comme $\frac{\partial f(t,y)}{\partial y} = 4y^3 + 2t^2y$ est continue sur \mathbf{R}^2 , la fonction f(t,y) est localement lipschitzienne en y. Il résulte maintenant du théorème de Cauchy-Lipschitz, que pour tout $(t_0, y_0) \in \mathbf{R}^2$ il existe une unique solution maximale $(\varphi(t), I)$ de l'équation (1) vérifiant $\varphi(t_0) = y_0$.

3) On note $(\varphi(t),]a, b[)$ la solution maximale de (1) vérifiant $\varphi(t_0) = y_0$. Prouver que $\varphi(t)$ est strictement croissante sur]a, b[.

Solution: S'il existe $t_1 \in \mathbf{R}$ tel que $\varphi(t_1) = 0$, alors $\varphi(t) = 0$ pout tout $t \in]a, b[$ par l'unicité (Cauchy-Lipschitz). Donc on suppose que $\varphi(t) \neq 0$ pour tout $t \in]a, b[$. Alors $\varphi'(t) = \varphi(t)^4 + t^2 \varphi(t)^2 > 0$ pour tout $t \in]a, b[$.

Dans les questions 4-7) on suppose que $y_0 < 0$.

4) Prouver que $\varphi(t) < 0$ pour tout $t \in]a, b[$ et que $b = +\infty$.

Solution: Supposons qu'il existe t_1 tel que $\varphi(t_1) \geqslant 0$. Alors par le théorème des valeurs intermédiaires il existe t_2 tel que $\varphi(t_2) = 0$. On en déduit que $\varphi(t) = 0$ pour tout $t \in]a, b[$. Contradiction. Donc $\varphi(t)$ est strictement croissante et majorée par 0. On en déduit l'existence de $c = \lim_{t \to b} \varphi(t) \in \mathbb{R}$. Supposons que $b \in \mathbb{R}$. Alors (b, c) est un bout de $\varphi(t)$ et par le théorème des bouts (b, c) appartient à la frontière de \mathbb{R}^2 . Contradiction. Donc $b = +\infty$.

5) Prouver que $\lim_{t\to+\infty} \varphi(t) = 0$.

Solution: Supposons que $c \neq 0$. Alors c < 0 et $\varphi'(t) = \varphi(t)^4 + t^2 \varphi(t)^2 > c^4$. On en déduit que $\varphi(t) \geqslant y_0 + c^4(t - t_0)$ pour tout $t \geqslant t_0$. Donc $\varphi(t) > 0$ pout $t > t_0 - y_0/c^4$. Contradiction. En en déduit que c = 0.

6) Prouver que $\frac{\varphi'(t)}{\varphi(t)^4} \geqslant 1$ pour tout $t \in]a, t_0[$. En déduire que

$$\frac{1}{3\varphi(t)^3} - \frac{1}{3y_0^3} \geqslant t_0 - t$$

pour tout $t \in]a, t_0[$.

Solution: On a $\frac{\varphi'(t)}{\varphi(t)^4} = 1 + \frac{t^2}{\varphi(t)^2} \geqslant 1$. Donc

$$\frac{1}{3\varphi(t)^3} - \frac{1}{3y_0^3} = \int_t^{t_0} \frac{\varphi'(t)}{\varphi(t)^4} dt \geqslant t_0 - t.$$

7) Prouver que $a \in \mathbf{R}$ et que $\lim_{t \to a^+} \varphi(t) = -\infty$.

Solution: Supposons que $a = -\infty$. Alors

$$\frac{1}{3\varphi(t)^3}\geqslant \frac{1}{3y_0^3}+(t_0-t)\geqslant 0$$

pour $t \leqslant t_0 + \frac{1}{3y_0^3}$. Contradiction. Donc $a \in \mathbb{R}$. Comme $\varphi(t)$ est strictement croissante, soit $\lim_{t\to a^+} \varphi(t) \in \mathbb{R}$, soit $\lim_{t\to a^+} \varphi(t) = -\infty$. Or le cas $\lim_{t\to a^+} \varphi(t) \in \mathbb{R}$ est exclu par le théorème des bouts.

8) Soit $y_0 > 0$. Prouver que $a = -\infty$, $b \in \mathbf{R}$ et que $\lim_{t \to -\infty} \varphi(t) = 0$ et $\lim_{t \to b^-} \varphi(t) = +\infty$.

Solution: Posons $\psi(t) = -\varphi(-t)$. Alors $\psi(t)$ est une solution de (1), vérifiant $\psi(-t_0) = -y_0 < 0$. On applique les résultats précédents à la solution ψ et on en déduit les proprétés voulues de $\varphi(t)$.

FIN