Université de Bordeaux, L3 de Mathématiques, Automne 2021

TD : Equations différentielles et calcul différentiel Feuille 2

1 Encore un peu de différentielles

Exercice 1 (Ca tourne!). On considère l'application $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ définie par

$$f(x,y) = \left(\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}\right).$$

- a) Montrer que f est différentiable et calculer sa matrice jacobienne J(x,y).
- b) Montrer que $||J(x,y)|| = 1/(x^2 + y^2)$.
- c) Soit R > 0. On appelle $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > R^2\}$. Montrer que

$$\forall z_1, z_2 \in \Omega, \quad ||f(z_1) - f(z_2)|| \le \frac{2}{R^2} ||z_1 - z_2||.$$

d) La fonction f est-elle Lipschitzienne sur $\mathbb{R}^2 \setminus \{0\}$?

Exercice 2. On considère le disque $\mathbb{D}(0,r)$ de centre 0 et de rayon $r \in]0,\frac{1}{2}] \subseteq \mathbb{C}$.

a) Montrer que la fonction définie pour $z \neq 1$ par

$$f(z) = \frac{z^3}{z - 1} + \frac{r}{2},$$

vérifie $f(\mathbb{D}(0,r)) \subset \mathbb{D}(0,r)$.

b) On suppose que 3r < 1. Montrer que f est contractante sur $\mathbb{D}(0,r)$ et que le polynôme $z^3 - z^2 + (1 + \frac{r}{2})z - \frac{r}{2}$ admet une racine dans $\mathbb{D}(0,r)$.

Exercice 3 (Distance à une sphère et à un plan). On munit \mathbb{R}^n de sa norme euclidienne usuelle $\|\cdot\|$. On rappelle que la distance usuelle est définie par $d(x,y) := \|y-x\|$. Soient $F \subset \mathbb{R}^n$ non vide et fermée. Pour $x \in \mathbb{R}^n$, on pose

$$d(x, F) = \inf\{d(x, y); y \in F\}.$$

- a) Montrer que l'application $x \mapsto d(x, F)$ est 1-Lipschitzienne et donc continue.
- b) Montrer que la distance à une boule $B := B_f(x_0, r)$ fermée est bien définie. Puis montrer que $x \mapsto d(x, B)^2$ est une application de classe C^1 . Calculer la différentielle de cette application.
- c) Même question pour un plan d'équation ax + by + cz = d dans \mathbb{R}^3 .
- d) (*) Même question pour la parabole $y = x^2$ dans \mathbb{R}^2 .

Dérivée d'ordre supérieur et formule de taylor

Exercice 4. Calculer le développement de Taylor à l'ordre 2 en 0 de la fonction f donnée par

$$f(x,y) := \exp(-x^2 - y^2).$$

Exercice 5. Montrer que pour h et k assez petits, les valeurs de

$$\cos(\pi/4 + h)\sin(\pi/4 + k)$$
 et $\frac{1}{2}(1 - h + k)$

coincident jusqu'à la troisième décimale.

Exercice 6. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction dont toutes les dérivées partielles d'ordre 3 existent et sont continues. Donner (explicitement en fonction des dérivées partielles de f) un polynôme P(x,y) de degré 2 en x et y tel que

$$|f(x,y) - P(x,y)| \le C(x^2 + y^2)^{3/2}$$

pour tout (x, y) appartenant à un petit voisinage de (0, 0), où C est une contante dépendant de f, mais pas de (x, y).

Indication : utiliser la formule de Taylor à l'ordre 3.

Exercice 7. Montrer que

$$\frac{1}{4}(x^2 + y^2) \le e^{x+y-2}$$

pour tous $x, y \in \mathbb{R}$.

Indication : considérer la fonction $f(x,y) = (x^2 + y^2)e^{-x-y}$.

Exercice 8 (Plan tangent à une sphère). On rappelle ici que la sphère de centre 0 et de rayon r est définie comme l'ensemble

$$S(0,r) := \{(x,y,z) \in \mathbb{R}^3; x^2 + y^2 + z^2 = r^2 \in \mathbb{R}\}.$$

On rappelle aussi que l'équation d'un plan est de la forme

$$z = ax + by + c$$

Calculer le plan tangent à la sphère de rayon $\sqrt{3}$ et de centre (1,3,4) au point (2,2,5).

Extrema locaux et liés

Exercice 9 (Retour sur le plan tangent à une sphère). Maximiser la quantité

$$f(x, y, z) := x + 2y + 3z$$

sous la contrainte $x^2 + y^2 + z^2 = 1$. Quel est le lien avec les plans tangents?

Exercice 10. Etudier les extrema de la fonction f définie sur le domaine $\Omega := \{(x, y) \in \mathbb{R}^2; x > 0, y > 0\}$ par

$$f(x,y) := \frac{xy}{(1+x)(1+y)(x+y)}$$

Exercice 11. Déterminer les extrema des fonctions suivantes $f: \mathbb{R}^2 \to \mathbb{R}$ sous la contrainte x + y = 0, par le méthode des multiplicateurs de Lagrange.

- a) $f(x,y) = x^2 y^3$.
- b) $f(x,y) = x^2 + y^4$.
- c) $f(x,y) = 3xy x^3 y^3$

Exercice 12. Déterminer les extrema de la fonction $f(x, y, z) := x^3 + y^3 + z^3$ sur la sphère unité de \mathbb{R}^3 .

Exercice 13 (Retour sur la distance à un ensemble). Soit A le sous-ensemble de \mathbb{R}^3 définit par $A := \{(x, y, z) \in \mathbb{R}^3; z^2 - xy = 1\}$. Déterminer la distance de A à l'origine d(0, A).

Exercice 14 (Hölder via extrema liés). Soit $p, q \in]1, +\infty[$ vérifiant $\frac{1}{p} + \frac{1}{q} = 1$. Soit n un entier, $x, y \in \mathbb{R}^n$. On cherche à prouver l'inégalité de Hölder :

$$(\star)$$
 $\sum_{i=1}^{n} x_i y_i \le ||x||_p ||y||_q$

où on rappel que $\left\|\cdot\right\|_p$ est définie par

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}.$$

- a) Montrer que l'inégalité (*) est homogène au sens où pour tout $(x, y) \in (\mathbb{R}^n)^2$ et $(\lambda, \mu) \in (\mathbb{R}^*)^2$, on a : "Si (*) est vraie (x, y) alors elle est vraie pour $(\lambda x, \mu y)$ ".
- b) En déduire qu'il suffit de démontrer (\star) dans le cas particulier où $||x||_p = ||y||_q = 1$.
- c) Conclure en utilisant les extrema liés.

Exercice 15 (Principe du maximum). On définit le Laplacien Δf d'une fonction $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}$ de classe C^2 comme étant la trace de la Hessienne de f:

$$\Delta f := tr(Hf) = \sum_{i=1}^{d} \partial_i^2 f.$$

a) Soit $f:[0,1]^2\mapsto\mathbb{R}$ une fonction de classe C^2 dont le Laplacien est strictement positif :

$$\forall x \in [0,1]^2, \Delta f(x) > 0.$$

Montrer que f n'admet pas de maximum sur $]0,1[^2]$.

b) Soit $f:[0,1]^2 \mapsto \mathbb{R}$ une fonction de classe C^2 de Laplacien nul (on dit que f est harmonique). Pour $\varepsilon > 0$, on définit la fonction f_{ε} par

$$\forall x \in [0, 1]^2, f_{\varepsilon}(x) := f(x) + \varepsilon ||x||^2,$$

où $\|\cdot\|$ est la norme Euclidienne de \mathbb{R}^2 . Calculer le Laplacien de f_{ε} .

c) En déduire que pour tout ε , f_{ε} n'admet pas de maximum sur $]0,1[^2$. Puis déduire que f n'admet pas de maximum sur $]0,1[^2$.

Compléments

Exercice 16 (IPP en dimension 2). Soit $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$ une fonction de classe C^1 . On définit sa divergence comme étant la trace de sa Jacobienne :

$$\operatorname{div} f := \partial_1 f_1 + \partial_2 f_2.$$

Montrer que pour $f:[-1,1]^2\to\mathbb{R}^2$, de classe C^1 , on a :

$$\int_0^1 \int_0^1 \operatorname{div} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_0^1 \left(f_1(1,y) - f_1(-1,y) \right) \mathrm{d}y + \int_0^1 \left(f_1(x,1) - f_1(x,-1) \right) \mathrm{d}x.$$

Comment pourrait on généraliser cette formule à un ouvert Ω quelconques?

Exercice 17 (La Gaussienne est la fonction qui a le moins d'entropie). On note E l'ensemble de fonctions suivant :

$$E := \{ f \in C^0(\mathbb{R}, \mathbb{R}); \sup_{x \in \mathbb{R}} \frac{|f(x)|(1 + \ln(|f(x)|))}{1 + x^2} < +\infty \}.$$

On définit pour $j \in \{0, 1, 2\}$ les applications $I_n : E \mapsto \mathbb{R}$ ainsi que l'application $H : E \mapsto \mathbb{R}$ par

$$I_{j}(f) := \int_{-\infty}^{+\infty} x^{j} f(x) dx,$$

$$H(f) := -\int_{-\infty}^{+\infty} f(x) ln(|f(x)|) dx.$$

- a) Calculer les différentielles de I_0 , I_1 , I_2 , ainsi que celle de H.
- b) En admettant que les théorèmes du cours marchent dans ce contexte, maximiser H sur E avec les contraintes $I_0(f) = 1$, $I_1(f) = 0$ et $I_2(f) = 1$.