Infinitely small & large

Bernhard Haak

University of Bordeaux

bernhard.haak@math.u-bordeaux.fr

February 8, 2021

Bernhard Haak (UBX)

Infinitely small & large

February 8, 2021 1 / 23

Your Conception of mathematics ??

Mathematics ? It's rather like this!

Bernhard Haak (UBX)

Infinitely small & large

Question: Is random behaviour at atomic scale consistent with deterministic mechanics?

Question: Is random behaviour at atomic scale consistent with deterministic mechanics? de terministic randous X: rendom Proton Nucleus Neutron Electron scale 1 scale 100.000.000.000.000.000.000 **Question**: Is random behaviour at atomic scale consistent with deterministic mechanics?

scale 100.000.000.000.000.000.000

- 4 ∃ ▶

scale 1

Infinitely small & large

Schrödinger's Question

Question: Is random behaviour at atomic scale consistent with deterministic mechanics?

Probabilists have strange vocabulary: most important examples

= probability space Random variable = function Expectation = integral Event = subset of L

Probabilists have strange vocabulary: most important examples

Ω	=	probability space
Random variable	=	function
Expectation	=	integral
Event	=	integral subset of J

& Probabilists have strange way of thinking: a "random variable"

$$X: \Omega \longrightarrow \mathbb{R}$$

is actually a **deterministic** function. The "random" comes from the fact that we don't know which $\omega \in \Omega$ is "selected", so we don't know $X(\omega)$. That sounds strange, but turns out very helpful.

Random variables and their sums

Let (X_n) be s sequence of independent random variables, taking only two values ± 1 . So $\mathbb{P}(X_n = 1) = p$ and $\mathbb{P}(X_n = -1) = 1 - p$.

Let $S_0 = 0$ and $S_n = X_1 + ... + X_n$. It is the position of a "random walk" (starting at 0), at time *n* (recall: all functions depending on ω !)

3 different random walks – meaning: 3 different ω 's. Each is 1000 "steps". $_{\rm *(t)}$

Bionomial coefficients

sums and integrals

let [a, b] be an interval, f a positive function. In order to estimate the "air under the curve" we use lower and upper estimates by rectangle decompositions:

have a look at

https://www.math.u-bordeaux.fr/~bhaak/enseignement/ riemann_sums.gif **Question:** Probablity to get back to your origin in time 2n?

э

Image: A matrix and a matrix

Question: Probablity to get back to your origin in time 2n? in \mathbb{Z} we need a walk

$$(+1,+1,-1,+1,-1,-1,\ldots,-1)$$

with 2n steps, exactly n steps +1 and n steps -1! i.e.

$$\mathbb{P}(S_{2n}=0) = \left(\frac{1}{2}\right)^{2n} \binom{2n}{n} = \left(\frac{1}{2}\right)^{2n} \frac{(2n)!}{n! \cdot n!}$$

What can be said about this formula?

$$n_{1} = 1.2.3...n$$

Question: Probablity to get back to your origin in time 2n? in \mathbb{Z} we need a walk

$$(+1, +1, -1, +1, -1, -1, \dots, -1)$$

with 2n steps, exactly n steps +1 and n steps -1! i.e.

$$\mathbb{P}(S_{2n}=0) = \left(\frac{1}{2}\right)^{2n} \binom{2n}{n} = \left(\frac{1}{2}\right)^{2n} \frac{(2n)!}{n! \cdot n!}$$

What can be said about this formula?

Generalise it! In \mathbb{Z}^2 we need 4n steps, exactly *n* steps "up", "down", "left" and "right". And in \mathbb{Z}^3 we need 6n steps ... Here, a small student project starts!

Question: estimate *n*!.

2

Question: estimate *n*!.

similar question: estimate ln(n!): this leads to "Baby-Stirling":

Image: A matrix

э

Question: estimate n!. similar question: estimate ln(n!): this leads to "Baby-Stirling":

Bernhard Haak (UBX)

February 8, 2021 12 / 23

 $\int_{1}^{n} \ln(t) dt \leq \ln(n!) \leq \int_{1}^{n} \ln(1+t) dt$

Image: A matrix

э

$$\int_1^n \ln(t) dt \leq \ln(n!) \leq \int_1^n \ln(1+t) dt$$

lu

Knowing the anti-derivative $t \ln(t) - t$ we get

$$n \ln(n) - n \le \ln(n!) \le (n+1) \ln(n+1) - (n-1) - 2 \ln(2)$$

or, writing $1 = \ln(e)$ to get only logarithms,