# Infinitely small \& large 

Bernhard Haak

University of Bordeaux
bernhard.haak@math.u-bordeaux.fr
February 8, 2021

## Your Conception of mathematics ??



## Mathematics ? It's rather like this!



## Schrödinger's Question

Question: Is random behaviour at atomic scale consistent with deterministic mechanics?


Schrödinger's Question

Question: Is random behaviour at atomic scale consistent with deterministic mechanics?



## Schrödinger's Question

Question: Is random behaviour at atomic scale consistent with deterministic mechanics?

scale 1

scale 100.000.000.000.000.000.000.000

## Schrödinger's Question

Question: Is random behaviour at atomic scale consistent with deterministic mechanics?

scale 1

scale 100.000.000.000.000.000.000.000

## Random variables and their sums

Probabilists have strange vocabulary: most important examples

| $\Omega$ | $=$ probability space |
| :--- | :--- |
| Random variable | $=$ function |
| Expectation | $=$ integral |
| Event | $=$ subset of $\Omega$ |

## Random variables and their sums

Probabilists have strange vocabulary: most important examples

| $\Omega$ | $=$ probability space |
| :--- | :--- |
| Random variable | $=$ function |
| Expectation | $=$ integral |
| Event | $=$ subset of $\Omega$ |

\& Probabilists have strange way of thinking: a "random variable"

$$
X: \Omega \longrightarrow \mathbb{R}
$$

is actually a deterministic function. The "random" comes from the fact that we don't know which $\omega \in \Omega$ is "selected", so we don't know $X(\omega)$. That sounds strange, but turns out very helpful.

## Random variables and their sums

## $\downarrow$

Let $\left(X_{n}\right)$ be $s$ sequence of independent random variables, taking only two values $\pm 1$. So $\mathbb{P}\left(X_{n}=1\right)=p$ and $\mathbb{P}\left(X_{n}=-1\right)=1-p$.


Let $S_{0}=0$ and $S_{n}=X_{1}+. .+X_{n}$. It is the position of a "random walk" (starting at 0 ), at time $n$ (recall: all functions depending on $\omega$ !)

## Random walk

3 different random walks - meaning: 3 different $\omega$ 's. Each is 1000 "steps". $x$ (t)


Bionomial coefficients
Consider a random walk in $\mathbb{Z}$ possible positions at tim $2 n$ ??


First $2 n$ must be even!

$$
\begin{array}{lllll}
n=0 & \text { of cows } & S_{0}=0 \\
n=2 & -2 & -1 & 0 & 2 \\
\mathbb{P}: & \frac{1}{4} & 1 & \frac{1}{2} & 0
\end{array}
$$



If we follow this logic, $\frac{1}{4}(1,0,2,0,1)$
if $n=4=\frac{1}{8}(1, \phi, 3, \varnothing, 3, \varnothing, 1)$
sums and integrals
let $[a, b]$ be an interval, $f$ a positive function. In order to estimate the "air under the curve" we use lower and upper estimates by rectangle decompositions:
 b

## Dyadic Riemann sums

## have a look at

https://www.math.u-bordeaux.fr/~bhaak/enseignement/ riemant_sums.gif

## Random walk

Question: Probablity to get back to your origin in time $2 n$ ?

## Random walk

Question: Probablity to get back to your origin in time $2 n$ ? in $\mathbb{Z}$ we need a walk

$$
(+1,+1,-1,+1,-1,-1, \ldots,-1)
$$

with $2 n$ steps, exactly $n$ steps +1 and $n$ steps -1 ! i.e.

$$
\mathbb{P}\left(S_{2 n}=0\right)=\left(\frac{1}{2}\right)^{2 n}\binom{2 n}{n}=\left(\frac{1}{2}\right)^{2 n} \frac{(2 n)!}{n!\cdot n!}
$$

What can be said about this formula?

## Random walk

$$
n!=1 \cdot 2 \cdot 3 \ldots n
$$

Question: Probablity to get back to your origin in time $2 n$ ? in $\mathbb{Z}$ we need a walk

$$
(+1,+1,-1,+1,-1,-1, \ldots,-1)
$$

with $2 n$ steps, exactly $n$ steps +1 and $n$ steps -1 ! i.e

$$
\begin{aligned}
& \mathbb{P}\left(S_{2 n}=0\right)=\left(\frac{1}{2}\right)^{2 n}\binom{2 n}{n}=\left(\frac{1}{2}\right)^{2 n} \frac{(2 n)!}{n!\cdot n!} \\
& \text { said about this formula? }
\end{aligned}
$$

What can be said about this formula?

Generalise it! In $\mathbb{Z}^{2}$ we need $4 n$ steps, exactly $n$ steps "up", "down", "left" and "right". And in $\mathbb{Z}^{3}$ we need $6 n$ steps ... Here, a small student project starts!

## Stirling formula

Question: estimate $n$ !.

## Stirling formula

Question: estimate $n$ !. similar question: estimate $\ln (n!)$ : this leads to "Baby-Stirling":

Stirling formula
Question: estimate $n!$.) similar question: estimate $\ln (n!)$ : this leads to "Baby-Stirling" :


## Stirling formula 2

$$
\int_{1}^{n} \ln (t) d t \leq \ln (n!) \leq \int_{1}^{n} \ln (1+t) d t
$$

## Stirling formula 2

$$
\int_{1}^{n} \ln (t) d t \leq \ln (n!) \leq \int_{1}^{n} \ln (1+t) d t
$$

Knowing the anti-derivative $t \ln (t)-t$ we get

$$
n \ln (n)-n \quad \leq \ln (n!) \leq \quad(n+1) \ln (n+1)-(n-1)-2 \ln (2)
$$

or, writing $1=\ln (e)$ to get only logarithms,

