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Your Conception of mathematics ??
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Mathematics ? It’s rather like this!
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Schrödinger’s Question

Question: Is random behaviour at atomic scale consistent with
deterministic mechanics?
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Random variables and their sums

Probabilists have strange vocabulary: most important examples

Ω = probability space
Random variable = function
Expectation = integral
Event = subset

& Probabilists have strange way of thinking: a “random variable”

X : Ω −→ R

is actually a deterministic function. The “random” comes from the fact
that we don’t know which ω ∈ Ω is “selected”, so we don’t know X (ω).
That sounds strange, but turns out very helpful.
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Random variables and their sums

Let Xn be s sequence of independent random variables, taking only two
values ±1. So P(Xn = 1) = p and P(Xn = −1) = 1− p.

Let S0 = 0 and Sn = X1 + ..+ Xn. It is the position of a “random walk”
(starting at 0), at time n (recall: all functions depending on ω!)
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Random walk

3 different random walks – meaning: 3 different ω’s. Each is 1000 “steps”.
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Bionomial coefficients

Consider a random walk in Z possible positions at time n ??
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sums and integrals

let [a, b] be an interval, f a positive function. In order to estimate the “air
under the curve” we use lower and upper estimates by rectangle
decompositions:
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We explain this in detail on a separate paper.
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Dyadic Riemann sums

have a look at

https://www.math.u-bordeaux.fr/∼bhaak/enseignement/
riemann sums.gif
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Random walk

Question: Probablity to get back to your origin in time 2n?

in Z we need a walk

(+1,+1,−1,+1,−1,−1, . . . ,−1)

with 2n steps, exactly n steps +1 and n steps −1! i.e.

P(S2n = 0) =
(

1
2

)2n
(

2n

n

)
=
(

1
2

)2n (2n)!

n!.n!

What can be said about this formula?

Generalise it! In Z2 we need 4n steps, exactly n steps “up”, “down”,
“left” and “right”. And in Z3 we need 6n steps ...
Here, a small student project starts!
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Stirling formula

Question: estimate n!.

similar question: estimate ln(n!): this leads to “Baby-Stirling”:
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Stirling formula 2

∫ n

1
ln(t)dt ≤ ln(n!) ≤

∫ n

1
ln(1 + t)dt

Knowing the anti-derivative t ln(t)− t we get

n ln(n)− n ≤ ln(n!) ≤ (n + 1) ln(n + 1)− (n − 1)− 2 ln(2)

or, writing 1 = ln(e) to get only logarithms, more precise is Stirling’s
formula (Student project!!)

n! ≈
√

2πn
(
n
e

)n
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