Exercice 20 Soit C un ouvert convexe équilibré* d'un e.v.n. $(E, \|\cdot\|)$ contenant 0 . Soit

$$p(x) := \inf\{\alpha > 0, \alpha^{-1}x \in C\}, x \in E.$$

Montrer les propriétés suivantes:

- a) $p(\lambda x) = \lambda p(x) \ \forall \lambda > 0, x \in E$.
- b) $C = \{x \in E, p(x) < 1\}$
- c) $p(x+y) \le p(x) + p(y) \quad \forall x, y \in E$: il existe une preuve très intuitive: dessiner C, l'origine $0 \in E$, x, y, x+y et $\alpha^{-1}x \in C$ puis $\beta^{-1}y \in C$. Déduire de la convexité de C un $\gamma > 0$ tel que $\gamma^{-1}(x+y) \in C$. Finalement optimiser sur α, β pour conclure.
- d) Il existe une constante M telle que $p(x) \leq M||x||$ pour tout $x \in E$.

En déduire que C = B(0,1) pour la nouvelle norme (!) |||x||| := p(x).

Dans les exercices suivantes, on pourra utiliser le théorème de Hahn-Banach et ses conséquences, vues en cours.

Exercice 21 Soit E un e.v.n. réel et soient $x_1, x_2, \ldots, x_n \in E, c_1, \ldots, c_n \in \mathbb{R}$. Montrer que les assertions suivantes sont équivalentes:

- a) Il existe $f \in E'$ de norme ≤ 1 telle que $f(x_i) = c_i$ pour tout i.
- b) $\lambda_1 c_1 + \ldots + \lambda_n c_n \leq \|\lambda_1 x_1 + \ldots + \lambda_n x_n\|$ pour tout $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

Exercice 22 Soit E un e.v.n.. Le but de l'exercice est de montrer le lemme suivant: Si E' est séparable, alors E l'est également.

- a) Montrer que la sphère d'unité $S_{E'}$ est séparable si E' est séparable.
- b) Soit $(x'_n)_{n\geq 1}$ une suite dense dans $S_{E'}$. Montrer qu'il existe une suite $(x_n)_{n\geq 1}$ dans la sphère $\subset S_E$ de E tel que $x'_n(x_n)\geq \frac{1}{2}$.
- c) Soit U l'adhérence du sous-espace vectoriel engendré par la suite (x_n) de la question précédente. Montrer que U est dense.
- d) Est-ce que la séparabilité de E implique la séparabilité de E' (preuve ou contre-exemple)?

Les exercices seront contrôlés le vendredi 8. Novembre. La liste est à remplir avant le 08.11.2017, 13h00.

^{*}Pour tout |lambda| = 1 et tout $x \in C$, on a $\lambda x \in C$