Exercice 1 (Extrait de l'examen 2007, première session)

Soit $c_0(\mathbb{Z})$ l'espace des suites complexes $(u_n)_{n\in\mathbb{Z}}$ telles que

$$\lim_{n \to -\infty} u_n = \lim_{n \to +\infty} u_n = 0.$$

Soit $f \in L^1([0,2\pi],dx)$. Ici, dx désigne la mesure de Lebesgue et les fonctions sont à valeurs dans \mathbb{C} . Soit

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt$$

le n-ième coefficient de Fourier de f.

- 1. Montrer que pour chaque $n \in \mathbb{Z}$, c_n est une forme linéaire continue sur $L^1([0, 2\pi], dx)$. Calculer sa norme.
- 2. Montrer que si f est de classe C^1 sur $[0, 2\pi]$, alors la suite $(c_n(f))_{n\in\mathbb{Z}}$ est dans $c_0(\mathbb{Z})$.
- 3. En déduire que la suite $(c_n(f))_{n\in\mathbb{Z}}$ est dans $c_0(\mathbb{Z})$ pour tout $f\in L^1([0,2\pi],dx)$.
- 4. Soit $T: L^1([0,2\pi],dx) \to c_0(\mathbb{Z})$ l'opérateur défini par

$$T(f) = (c_n(f))_{n \in \mathbb{Z}}.$$

Montrer que T est un opérateur linéaire continu.

5. Quels sont les espaces de départ et d'arrivé de l'adjoint T' de T? Donner l'expression de T'.

Exercice 2 (la jauge de Minkowski)

- 1. $(une\ observation\ banale)$ Soit B la boule d'unité d'un espace vectoriel normé (e.v.n) E. Montrer que B est ouvert, convexe et contient 0.
- 2. (La réponse de Minkowski à une question naturelle) Soit maintenant C un ouvert convexe d'un e.v.n. réel E. On suppose que $0 \in C$. On définit la jauge de Minkowski p de C par

$$p(x) = \inf\{\alpha > 0, \alpha^{-1}x \in C\}, x \in E.$$

Montrer les propriétés suivantes:

- (a) $p(\lambda x) = \lambda p(x) \ \forall \lambda > 0, x \in E$.
- (b) $C = \{x \in E, p(x) < 1\}$
- (c) $p(x+y) \le p(x) + p(y) \quad \forall x, y \in E$.
- (d) Il existe une constante M telle que $p(x) \leq M||x||$ pour tout $x \in E$.

En déduire que $C = B_{\|\cdot\|}(0,1)$ où $\|x\| := p(x)$.

3. (une belle application) Soit E un e.v.n et F un sous-espace fermé de E. On considère l'application $\iota: F \to E$, $\iota(x) = x$ et on définit $\|x\|_F = \|\iota x\|_E$. Ainsi, ι est une isométrie et $(F, \|\cdot\|_F)$ est un espace de Banach (expliciter ceci!). Soit $\|\cdot\|_F$ une deuxième norme sur F telle que est $\|\cdot\|_F$ et $\|\cdot\|_F$ sont des normes équivalentes.

Construire une norme $\|\cdot\|_E$ sur E qui à la fois

- (a) étend la norme $\|\cdot\|_F$ (i.e. $\|x\|_F = \|x\|_E$ pour tout $x \in F$) et
- (b) est équivalente à la norme $\|\cdot\|_E$.

Indication: Considérer l'enveloppe convexe de $B_{\|\cdot\|_E}(0,1) \cup \iota(B_{\|\cdot\|_F}(0,1))$.

Exercice 3 Soit A une partie fermé d'un espace de Banach E et $f: A \to \mathbb{R}$ une fonction L-Lipschitzienne, c'est à dire, une fonction vérifiant

$$|f(x) - f(y)| \le L \cdot ||x - y||$$

On définit une fonction F sur E par $F(x) = \inf\{f(y) + L||x - y|| : y \in A\}$. Montrer que F est une extension L-Lipschitzienne de f sur E entier, c'est à dire que F est L-Lipschitzienne et que $F|_A = f$.

Remarque: dans la littérature mathématique on appelle la construction de F la infconvolution de f avec $g(x) = L \cdot ||x||$.

Exercice 4 (Le théorème de Tietze)

- 1. Soient E et F deux espaces de Banach. Soit $T \in \mathcal{L}(E, F)$. On suppose qu'il existe a > 0 et $r \in [0, 1[$ tels que pour tout $y \in F$ avec $||y|| \le 1$, il existe $x \in E$ tel que $||x|| \le a$ et $||y Tx|| \le r$. Montrer que T est surjective et ouverte.
- 2. Soit X un espace métrique. Montrer qu'alors toute fonction continue et bornée f à valeurs réelles sur un fermé Y de X se prolonge en une fonction continue bornée \tilde{f} sur X telle que

$$\|\tilde{f}\|_{C_b(X)} = \|f\|_{C_b(Y)} = \sup_{y \in Y} |f(y)|.$$

Ici, C_b désigne les fonctions continues bornés avec la norme (naturelle) $||f|| = \sup |f(x)|$.

Indication: Expliquer d'abord pourquoi on peut supposer sans restriction de la généralité que $||f||_{\infty}=1$. Considérer ensuite trois fermés $A_i\subseteq E$, pour i=1,2,3 qui sont formés des x sur lesquelles f est "petit" (pour i=1), "proche de zéro" (pour i=2) et "grand" (pour i=3) respectivement – les mots "petit", "proche de zéro" et "grand" sont à interpréter dans un sens convenable. Ensuite construire une fonction borné g qui admet son maximum sur A_1 , et son minimum sur A_3 afin que $||f-g||_{C_b(Y)} \le r||f|| = r$ pour un r < 1. Pour trouver g, jouer avec $d(x,A_1)$ et $d(x,A_3)$

Devoir à rendre Mercredi, le 1/12/09.