

Année Universitaire 2014 / 2015 EXAMEN D'ÉTÉ DEUXIÈME SESSION

Collège Sciences et technologies

Licence 2, analyse 3 Durée: 3h00

Documents: non autorisés Calculatrice: inutile, mais autorisé

Penser à bien justifier vos réponses.

La correction tiendra compte de la qualité de la rédaction.

Question 1 Étudier la convergence des séries numériques de terme général suivants:

$$a_n = (-1)^n \arctan(\frac{1}{n})$$
 ; $b_n = (1 - \frac{1}{n})^n$ et $c_n = \frac{\ln(n)}{n^2}$

$$b_n = \left(1 - \frac{1}{n}\right)^n$$

Question 2 Calculer le rayon de convergence de chacune des séries entières suivantes:

$$\sum_{n \ge 1} \frac{x^n}{1+2^n}$$

$$\sum_{n \ge 0} \frac{n}{3^n + n} x^n$$

 $\sum_{n\geq 1} \frac{x^n}{1+2^n} \qquad ; \qquad \sum_{n\geq 0} \frac{n}{3^n+n} x^n \qquad \text{et} \qquad \sum_{n\geq 0} 4^n x^{2n}$

Discuter la convergence ponctuelle (ou simple) sur [0, 1] ainsi que la convergence

uniforme sur
$$[0,1]$$
 des *suites de fonctions* suivantes:

a) $f_n(x) = \left(\frac{x}{1+\ln(x)^2}\right)^n$ pour $x \in (0,1]$ et $f_n(0) = 0$.

b) $g_n(x) = (1-x)x^n$.

Pour $n \in \mathbb{N}^*$, on définit $u_n(x) = \frac{1}{(n+x)^3}$ sur l'intervalle $I = (-1, \infty)$. Question 4

- a) Étudier la convergence ponctuelle (ou simple) de la série de fonctions $u(x) = \sum_{n=1}^{\infty} u_n(x)$ sur I.
- b) Étudier la convergence uniforme la série u(x) sur I et sur $[a, \infty)$ pour a > -1.
- c) Montrer que u est de classe $C^1(I)$.

Pour $x \ge 0$ on définit **Question 5**

$$\varphi(x) := \int_0^x e^{-t^2/2} dt.$$

- a) Rappeler la série entière de $\exp(\cdot)$, et déterminer son rayon de convergence.
- b) Déduire la série entière de $e^{-t^2/2}$, et démontrer sa convergence normale sur tout intervalle de la forme [-M, M].
- c) S'en servir pour établir une série entière de φ . Justifiez votre réponse.

Question 6 On cherche une solution de d'équation différentielle

$$(*) \quad \left\{ \begin{array}{rcl} y''(x) - x \, y'(x) - y(x) &= 0 \\ y(0) &= 1 \\ y'(0) &= 0 \end{array} \right.$$

a) On suppose que la solution admet un DSE de la forme $y(x) = \sum_{n=0}^{\infty} a_n x^n$ avec un rayon de convergence strictement positif. Déduire une condition nécessaire sur la suite numérique les coefficients (a_n) en justifiant vos réponses.

b) On considère la suite récurrente définie par

$$\begin{cases} a_0 = 1 \\ a_1 = 0 \\ (n+2)a_{n+2} + a_n = 0 & n \ge 0 \end{cases}$$

Expliciter a_n pour tout $n \in \mathbb{N}$. Indication: $2 \cdot 4 \cdot 6 \dots (2k) = 2^k k!$.

c) Expliciter la fonction $y(x) = \sum_{n=0}^{\infty} a_n x^n$ ainsi que son rayon de convergence. Déduire qu'il s'agit d'une solution de (*).

Question 7 Soit f la fonction 2π -périodique définie par

$$f(x) = \begin{cases} 0 & \text{si } x \in [-\pi, 0] \\ x & \text{si } x \in [0, \pi) \end{cases}$$

- a) Faire une esquisse de la courbe représentative de f sur $[-3\pi, 3\pi]$.
- b) Calculer les coefficients de Fourier 1 de f.
- c) Quel est la somme de la série de Fourier de f au point $x=\pi$? Justifier votre réponse.

Ouestion 8

a) Pour quelles $\alpha>0$ la limite $S(\alpha)\stackrel{\text{def.}}{=\!\!=\!\!=} \sum_{n=1}^\infty n^{-\alpha}$ existe-t-elle (sans preuve)?

Soit $S_N(\alpha)$ la somme partielle, c'est à dire $S_N(\alpha) \stackrel{\text{def.}}{=\!\!\!=\!\!\!=} \sum_{n=1}^N n^{-\alpha}$.

b) Soit $(a_n)_{n\geq 0}$ une suite numérique. Montrer que pour tout $N\in\mathbb{N}^*$,

$$\sum_{n=1}^{N-1} n(a_n - a_{n+1}) = \left(\sum_{k=1}^{N-1} a_k\right) - (N-1)a_N$$

c) Pour $x \in \mathbb{R}$, on désigne par [x] sa partie entière. Soit $\alpha > 1$ et

$$f_N(\alpha) \stackrel{\text{def.}}{=\!\!\!=\!\!\!=} \alpha \int_1^N \frac{[x]}{x^{\alpha+1}} dx$$

Découper l'intervalle [1, N] en union disjointe d'intervalles I_n de façon à ce que la fonction $x \mapsto [x]$ devienne une fonction constante sur chaque intervalle I_n . S'en servir pour montrer que $\lim_{N\to\infty} (f_N(\alpha) - S_N(\alpha)) = 0$.

d) Soit $\alpha > 1$ et

$$g(\alpha) \stackrel{\text{def.}}{=\!=\!=\!=} \frac{\alpha}{\alpha-1} - \alpha \int_{1}^{\infty} \frac{x - [x]}{x^{\alpha+1}} dx$$

Déduire de la question précédente que $g(\alpha) = S(\alpha)$ pour $\alpha > 1$.

e) Montrer que l'intégrale définissant $g(\alpha)$ converge pour $\alpha > 0$.

Remarque: L'application $\alpha \mapsto g(\alpha)$ est appelé la fonction zêta de Riemann. Dans l'énoncé de la question, on pourrait remplacer la condition $\alpha > 0$ par $\operatorname{Re}(\alpha) > 0$, car pour x > 0,

$$|x^{\alpha}| = |\exp(\alpha \ln(x))| = \exp(Re(\alpha) \ln(x)).$$

La question si oui ou non, toutes les zéros de la fonction zêta se trouvent sur la droite affine donné par $Re(\alpha) = 1/2$ est un problème ouvert, appelé la conjecture de Riemann.