

Année Universitaire 2015 / 2016 **EXAMEN**

Collège Sciences et technologies

Licence 2, analyse 3 Durée: 3h00

Documents: non autorisés Calculatrice: inutile, mais autorisée.

Penser à bien justifier vos réponses.

La correction tiendra compte de la qualité de la rédaction.

Discuter la convergence / divergence des séries numériques suivantes: Exercice 1

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(n+1)} \qquad \sum_{n=1}^{\infty} \frac{\sqrt{n}}{(n+1)(n+2)} \qquad \sum_{n=1}^{\infty} (-1)^n \frac{n}{(n+1)} \qquad \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{(n+1)}$$

Exercice 2

- (a) Donner la définition du rayon de convergence d'une série entière $\sum_n a_n z^n$.
- (b) Calculer le rayon de convergence de chacune des séries entières suivantes:

$$\sum_{n \geq 1} \tfrac{2^n}{1+3^n} z^n \qquad ; \qquad \sum_{n \geq 1} \tfrac{1}{1+n!} z^n \qquad \text{et} \qquad \sum_{n \geq 1} \tfrac{5^n}{n^3} z^{2n} \qquad \text{et} \qquad \sum_{n \geq 13} \ln(n)^{\ln(n)} z^n$$

- (c) Pour chaque des quatre séries ci-dessus, si la rayon de convergence R est fini, étudier la convergence sur le bord du disque de convergence $\{z : \mathbb{C} : |z| = R\}$.
- On suppose que la série $f(z) = \sum_n a_n z^n$ converge en $z_0 = 5$ et diverge en $z_1 = 3 + 4i$. Quel est le rayon de convergence de la série? Justifier votre réponse.

Soit $f_n(x) = \frac{x+1}{n+1}$ pour $x \in \mathbb{R}$, et soit $a, b \in \mathbb{R}$. Exercice 3

- (a) Étudier la convergence simple de la suite de fonctions (f_n) .
- (b) Sur $I = \mathbb{R}_+$ étudier la convergence uniforme de la suite de fonctions (f_n) .
- (c) Sur I = [a, b] étudier la convergence uniforme de la suite de fonctions (f_n) .

Soit $g_n(x) = (\sqrt{n+1} - \sqrt{n})\sin(\frac{x}{n}), x \in \mathbb{R}$.

- (a) Donner un équivalent simple de a_n = √(n+1) √n pour n → +∞.
 (b) Étudier la convergence simple de la série de fonctions G(x) = ∑_{n=1}[∞] g_n(x) sur ℝ.
- (c) Est-ce que la convergence est normale sur \mathbb{R} ?
- (d) Est-ce que la convergence est normale sur des intervalles compacts?
- (e) Déterminer l'ensemble des points de continuité de G. Donner l'énoncé précis des résultats
- (f) Déterminer l'ensemble des points de différentiabilité de G. Donner l'énoncé précis des résultats utilisés.

Exercice 5

(a) Pour des entiers relatifs n, m, calculer

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} e^{imx} \, dx$$

Pensez à distinguer les cas n=m et $n\neq m$.

Déterminer les coefficients complexes de Fourier des fonctions 2π -périodiques $\cos(x)$, $(\cos(x))^2$, sans effectuer des intégrations. Justifier votre démarche.

Problème. Soit g la fonction 2π -périodique sur \mathbb{R} donné par g(x) = x si $-\pi < x \le \pi$.

- (a) Dessiner $g \operatorname{sur} [-2\pi, 2\pi]$.
- (b) Donner la forme générale des sommes de Fourier $s_n(g;x)$.
- (c) Démontrer que la convergence de la suite $s_n(g,x)$ n'est pas uniforme sur \mathbb{R} .
- (d) Calculer les coefficients de Fourier, réels ou complexes, de *g*.
- (e) Montrer que

$$s_n(g;x) = 2\sum_{k=1}^n \frac{(-1)^{k+1}}{k}\sin(kx)$$

- (f) Justifier que $\sin(x)/x$ est Riemann intégrable sur $[0, \pi]$.
- (g) Utiliser des sommes de Riemann pour déduire que

$$s_n(g, \pi - \frac{\pi}{n})) \xrightarrow{n \to \infty} 2 \int_0^{\pi} \frac{\sin(x)}{x} dx$$

On s'intéresse par la suite à la constante $A=\frac{2}{\pi}\int_0^\pi \frac{\sin(x)}{x}\,dx$. (h) Expliciter la série entière de $\sin(x)/x$ pour $x\in\mathbb{R}$.

- (i) Justifier que

$$A = \frac{2}{\pi} \int_0^{\pi} \frac{\sin(x)}{x} dx = \sum_{n=0}^{\infty} (-1)^n \frac{2 \cdot \pi^{2n}}{(2n+1) \cdot (2n+1)!}$$

On note la série numérique ci-dessus $\sum_{n=0}^{\infty} (-1)^n b_n$, et on note σ_N ses sommes partielles jusqu'au rang N. Justifier que

$$\sigma_{2N+1} \leq \frac{2}{\pi} \int_0^{\pi} \frac{\sin(x)}{x} dx \leq \sigma_{2N}.$$

Un calcul numérique donne les valeurs numériques de σ_N de 0.9033, 1.2281, 1.1735, 1.1794pour N = 1, 2, 3, 4.

Déduire que, pour la norme infini et pour n assez grand, $||s_n||_{\infty} \ge 1.17 ||g||_{\infty}$. Comparer avec le résultat de la question (c).

Remarque: ceci s'appelle le phénomène de Gibbs. Il apparaît dans tous les points de discontinuité d'une fonction continue par morceaux, et pas uniquement dans l'exemple de la fonction g retenu pour le problème.