Exercice 1 Donner un exemple d'un espace vectoriel normé dont la boule d'unité fermé n'est pas compact (avec démonstration bien entendu).

Par exemple: considérons la boule fermée $\bar{B}(0,1)$ de l'espace ℓ^2 . L'ensemble mentionné est fermé et borné, mais non-compact. En effet, soient $(e^n)_n \subset \bar{B}(0,1)$ les vecteurs de la base standard. On constate que $||e^n - e^k|| = \sqrt{2}, \ n \neq k$, et donc la suite ne contient pas de sous-suite convergente.

Exercice 2 Soit $E = \{ f \in C([0,1], \mathbb{R}) \}$ muni de la norme sup, et $m \in E$. On considère $\phi : E \to E$ donne par

$$\phi(f)(t) = m(t)f(t)$$

Est-ce que ϕ est un opérateur linéaire sur E? Si oui, est-il borné ? Si oui, calculer sa norme ! Clairement, ϕ est linéaire. En effet,

$$\phi(f+g)(t) = m(t)(f+g)(t) = m(t)f(t) + m(t)g(t) = \phi(f)(t) + \phi(g)(t)$$

et pareil $\phi(\lambda.f) = \lambda.\phi(f)$. On a de plus

$$|\phi(f)(t)| \le ||m||_{\infty} ||f||_{\infty}$$

d'où $\|\phi(f)\| \le \|m\|_{\infty} \|f\|_{\infty}$, donc $\|\phi\| \le \|m\|_{\infty}$. D'autre part, pour $f \equiv 1$, on a $\|\phi(f)\| = \|m\|_{\infty}$ et donc $\|\phi\| = \|m\|_{\infty}$.

Exercice 3

- a) Soit $(a_n)_{n\geq 0}$ une suite réelle telle que pour tout $(x_n)_{n\geq 0} \in \ell_{\infty}$ on a $(a_nx_n)_{n\geq 0} \in c_0$. Montrer que $(a_n)_{n\geq 0} \in c_0$. Facile: choisissons $x = (x_n)_n \in \ell^{\infty}$ avec $x_n = 1$. Alors $(a_nx_n)_n = (a_n)_n \in c_0$, CQFD.
- b) Soit $(a_n)_{n\geq 0}$ une suite réelle telle que pour tout $(x_n)_{n\geq 0} \in c_0$ on a $(a_nx_n)_{n\geq 0} \in c_0$. Montrer que $(a_n)_{n\geq 0} \in \ell_{\infty}$. On raisonne par absurde: supposons que $a = (a_n)_n \notin \ell^{\infty}$. Ceci implique qu'il y a

On raisonne par absurde: supposons que $a = (a_n)_n \notin \ell^{\circ\circ}$. Ceci implique qu'il y a une sous-suite $(a_{n_k})_k$ telle que $|a_{n_k}| \to \infty$ quand $k \to \infty$. Posons alors

$$x = (x_n)_n, \quad x_n = \begin{cases} \frac{1}{\sqrt{|a_{n_k}|}}, & n = n_k, \\ 0, & \text{sinon.} \end{cases}$$

On a $x \in c_0$, mais la suite $(a_n x_n)_n$ n'est même pas bornée, d'où la contradiction recherchée.

Exercice 4 Soit f une fonction continue sur [0,1] et pour $n \in \mathbb{N}$ soit $0 \le t_0^{(n)} < t_1^{(n)} < \ldots < t_n^{(n)} \le 1$ des points "d'échantillonage". On pose

$$Q_n(f) = \sum_{k=0}^{n} \alpha_k^{(n)} f(t_k^{(n)})$$

et on interprète Q_n comme une formule de calcul numérique d'une intégrale. Montrer l'équivalence suivante:

- a) $Q_n(f) \longrightarrow \int_0^1 f(t) dt$ pour tout $f \in C([0,1])$
- b) Il existe une constante M > 0 tel que $\sum_{k=0}^{n} |\alpha_k^{(n)}| \leq M$ et on a $Q_n(f) \longrightarrow \int_0^1 f(t) dt$ pour tout polynôme f.

Clairement, Q_n est une forme linéaire. On a

$$|Q_n(f)| \le ||f||_{\infty} \sum_{k=0}^n |\alpha_k^{(n)}|$$

et donc $||Q_n|| \leq \sum_{k=0}^n |\alpha_k^{(n)}|$. Si f est une fonction qui satisfait $|f(t)| \leq 1$ et $f(t_k^{(n)}) = \text{signe}(\alpha_k^{(n)})$, on a même égalité. Une telle fonction sous forme de ligne polygonale est facile à construire.

Si (a) est vrai, $\sup_n |Q_n(f)| < \infty$ pour tout $f \in E = C([0,1])$ et on déduit du théorème de Banach-Steinhaus que $\sup_n \|Q_n\| < \infty$. On a donc (b).

Réciproquement on suppose que (b) est vrai. Soit $f \in E$. Par le théorème de Weierstraß, il existe une suite de polynômes (p_n) qui converge uniformément vers f, autrement dit $p_n \to f$ dans $(E, \|.\|_{\infty})$. Soit $\varepsilon > 0$. L'estimation

$$\left| Q_m(f) - \int_0^1 f(t) \, dt \right| \le \left| Q_m(f) - Q_m(p_n) \right| + \left| Q_m(p_n) - \int_0^1 p_n(t) \, dt \right| + \left| \int_0^1 p_n(t) \, dt - \int_0^1 f(t) \, dt \right|$$
(1)

montre comment procéder: l'hypothèse (b) assure que $||Q_m||_{E'} \leq C < \infty$ pour tout m. D'autre part il existe un $n \in \mathbb{N}$ tel que $||p_n - f||_{\infty} \leq \frac{\varepsilon}{3(C+1)}$. Par conséquent,

$$|Q_m(f) - Q_m(p_n)| = |Q_m(f - p_n)| \le ||Q_m|| ||f - p_n||_{\infty} \le C||f - p_n||_{\infty}$$

Le premier terme de la droite de (1) est donc majoré par $\varepsilon/3$. D'autre part, le troisième terme est majoré par $||f - p_n||_{\infty}$, donc également par $\varepsilon/3$. Pour un tel n fixé, il existe par hypothèse un m_0 qui rend le deuxième terme de le droite de (1) plus petit que $\varepsilon/3$ pour tout $m \ge m_0$. Résumons: on a montré que pour tout $\varepsilon > 0$ il existe un $m_0 \in \mathbb{N}$ tel que $m \ge m_0$ implique $|Q_m(f) - \int_0^1 f(t) dt| < \varepsilon$. CQFD.

Une application: Soit E_n le sous-espace de C([0,1]) engendré par les fonctions $e_k(t)$, $k = 0 \dots n-1$, affines par morceaux tel que

$$e_k(t) = 0 \quad \text{si } t < \tfrac{k-1}{n}, \quad e_k(\tfrac{k}{n}) = 1, \quad \text{et} \quad e_k(t) = 0 \quad \text{si } t > \tfrac{k+1}{n}.$$

Soit $f_n = \sum_k f(\frac{k}{n}) e_k(t) \in E_n$. Expliquer que f_n est l'interpolation de f par une ligne polygonale. On pose $\alpha_k^{(n)} = \int_0^1 e_k(t) dt$. Montrer que $Q_n(f) \to \int_0^1 f(t) dt$ pour toute fonction continue.

Chaque fonction e_k est une ligne polygonale, f_n donc également. De plus, $f_n(\frac{k}{n}) = f(\frac{k}{n})$ par construction. Observons que

$$Q_n(f) = \frac{1}{n} \left(\frac{f(0) + f(1)}{2} + f(\frac{1}{n}) + \dots + f(\frac{n-1}{n}) \right).$$

(eh oui, e_0 et e_n sont des fonctions différents des autres e_k 's). Il en suit que $||Q_n|| = \sum_{i=1}^n \frac{i}{n} = 1$ pour tout n. Si f est un de classe C^1 (en particulier ceci est vrai pour tout polynôme), la dérivé f' est borné sur [0,1], donc f est Lipschitz et

$$Q_n(f) \sim \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}) \to \int_0^1 f(t) dt$$

(par des sommes de Riemann); le résultat découle alors avec (b) \Rightarrow (a) de l'exercice 5.