Exercise 1 Prove that $\|x\|:=|x|$ is a norm on \mathbb{R}. Explicit the open and closed balls $B(2,3)$ and $B[2,3]$. Discuss if the following sets are open or closed (or not). Determine interior, boundary and closure in each case. Determine interior, boundary and closure in each case.

$$
\begin{array}{llll}
A=\{0\} & B=\{0,1\} & C=(0,1) & D=[0,1] \\
E=(0,1] & F=\mathbb{Z} & G=\{1 / n: n \geq 1\} & H=\{1 / n: n \geq 1\} \cup\{0\}
\end{array}
$$

Exercise 2 Equip \mathbb{R}^{2} with the Euclidean norm. Discuss if the following sets are open or closed (or not).

$$
\begin{array}{lll}
A=\{(0,0)\} & B=\{0\} \times[0,1] & C=\{0\} \times(0,1) \\
D=(0,1) \times(0,1) & E=[0,1] \times(0,1) & F=\{(x, 2 x): x \geq 0\} \\
G=\{(x, 2 x): x>0\} & H=\{(x, 1 / x): x>0\} & J=\{(x, 1 / x): x \neq 0\} \cup\{(0,0)\}
\end{array}
$$

Exercise 3 Give proofs or counterexamples to the following assertions.
a) Arbitrary unions of open sets are open.
b) If $A \subset \mathbb{R}^{d}$ is not open then A must be closed.
c) Arbitrary intersections of closed sets are closed.
d) Arbitrary unions of closed sets are closed.
e) The set $\left\{x^{2}+3 y^{4}<1\right\}$ is open / closed / bounded?
f) The set $\left\{x^{2}+3 y^{4} \leq 1\right\}$ is open / closed / bounded ?

Exercise 4

Which of the following subsets of \mathbb{R}^{2} are vector spaces?
a) $\{(x, y): x=0\}$
b) $\{(x, y): x=0, y=1\}$
c) $\{(x, y): x+y=0\}$
d) $\{(x, y): x+y=1\}$
e) $\{(x, y): x \cdot y=0\}$
f) $\left\{(x, y): x^{2}+y^{2}=1\right\}$

Which of the following subsets of $E=C([0,1])$ are vector spaces?
a) E itself.
b) The polynomial functions: $\{f \in E: \exists p \in$ $\left.\mathbb{R}[X]: \forall_{x}: f(x)=p(x)\right\}$
c) $\left\{f \in E: \int_{0}^{1} f(x) d x=0\right\}$
d) $\left\{f \in E: \forall_{x}: f(x) \geq 0\right\}$
e) $\left\{f \in E: \int_{0}^{1} f(x)^{2} d x \leq 1\right\}$.

Exercise 5 Let $n \geq 2$ be fixed. For any $n \times n$ matrix $A=\left(a_{i j}\right)$ define $\|A\|=$ $\sum_{i=1}^{n} \max \left\{\left|a_{i k}\right|: k=1 . . n\right\}$ Show that this defines indeed a norm. Equip \mathbb{R}^{n} with the $\|\cdot\|_{1}$-norm. Show that $\|A x\|_{1} \leq\|A\|\|x\|_{1}$.

Exercise 6 Show that the closure of an open ball $B(x, a)$ in a normed vector space is the closed ball $B[x, r]$.

Exercise $7 \quad$ Let $N(x, y):=\max (|x-2 y|,|2 x-3 y|)$. Show that N is a norm on \mathbb{R}^{2}. Let U be the Euclidean unit ball in \mathbb{R}^{2}. Find $r>0$ such that $B_{N}(0, r) \subset U$.

Exercise 8 Let E be a finite dimensional vector space with basis $\left\{b_{1}, \ldots b_{n}\right\}$. For $x=\sum_{j} \xi_{j} b_{j}$, let $\|x\|_{\infty}:=\max \left\{\left|\xi_{1}\right|, . .,\left|\xi_{n}\right|\right\}$. Prove that this defines a norm on E. Now let $\|x\|_{1}:=\sum_{j}\left|\xi_{j}\right|$. Prove that this defines a norm on E. Can you find a sequence (x_{n}) that converges in $\|.\|_{\infty}$ but not in norm $\|.\|_{1}$? Or a sequence that converges in $\|\cdot\|_{1}$ but not in norm $\|\cdot\|_{\infty}$?

Exercise $9 \quad$ Let $E=C([0,1])$ and $\|f\|_{\infty}:=\max \{|f(x)|: x \in[0,1]\}$. Prove that this defines a norm on E. Now let $\|f\|_{1}:=\int_{0}^{1}|f(x)| d x$. Prove that this defines a norm on E. Can you find a sequence $\left(f_{n}\right)$ that converges in $\|\cdot\|_{\infty}$ but not in norm $\|\cdot\|_{1}$? Or a sequence that converges in $\|\cdot\|_{1}$ but not in norm $\|\cdot\|_{\infty}$?

Exercise 10 Let $E=C([0,1])$. Prove that $\langle f, g\rangle:=\int_{0}^{1} f(t) \overline{g(t)} d t$ defines a scalar product on E.

Exercise 11 Let $\langle x, y\rangle_{2}$ be the euclidean scalar product on \mathbb{R}^{n}. Establish a criterion on a $n \times n$ matrix A to guarantee that $[x, y]:=\langle A x, A y\rangle$ defines a scalar product on \mathbb{R}^{n}.

Exercise 12 Discuss continuity (or not) of the following functions on \mathbb{R}^{2}.

$$
\begin{aligned}
& f_{1}(x, y)= \begin{cases}\left(x^{2}+x y+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right) & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }\end{cases} \\
& f_{2}(x, y)= \begin{cases}\frac{x^{2} y+2 x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }\end{cases} \\
& f_{3}(x, y)= \begin{cases}\frac{y \sin (x)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }\end{cases} \\
& f_{4}(x, y)=\left\{\begin{array}{ll}
\frac{\sin (f(x))-\sin (f(y))}{x-y} & \text { if } x \neq y \\
f^{\prime}(x) \cos (f(y)) & \text { otherwise }
\end{array} \quad \text { where } f \text { is of class } C^{1}\right. \\
& f_{5}(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }\end{cases} \\
& f_{6}(x, y)= \begin{cases}\frac{\sin ^{2}(x)\left(e^{y}-1\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }\end{cases} \\
& f_{7}(x, y)=\left\{\begin{array}{lll}
\frac{|x y|^{\alpha}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise } & \text { for } \alpha>0
\end{array}\right. \\
& f_{8}(x, y)= \begin{cases}\frac{x^{4} y^{2}+x^{3} y^{3}}{x^{6}+2 y^{6}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }\end{cases} \\
& f_{9}(x, y)= \begin{cases}\frac{x^{3}-y^{4}}{\sqrt{x^{2}+y^{4}+1}-1} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

