Exercise 1 Check if the following limits exist:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x}{x^{2}+y^{2}}, & \lim _{(x, y) \rightarrow(0,0)} \frac{(x+2 y)^{3}}{x^{2}+y^{2}}, \quad \lim _{(x, y) \rightarrow(1,0)} \frac{\log \left(x+e^{y}\right)}{\sqrt{x^{2}+y^{2}}}, \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{3}-x y}{x^{4}+y^{2}}, \quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+y^{4}} .
\end{aligned}
$$

Exercise 2 Study continuity (or not) of the functions

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array} \quad \text { and } \quad g(x, y)= \begin{cases}\frac{x^{3}+y^{3}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)\end{cases}\right.
$$

Exercise 3 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that
a) For all x, the function $y \mapsto f(x, y)$ is continuous.
b) For all y, the function $x \mapsto f(x, y)$ is uniformly continuous.

Show that f is continuous. Hint: consider f at the points $(x, y),\left(x, y^{\prime}\right)$ and $\left(x^{\prime}, y^{\prime}\right)$. An important Remark: if we replace (b) by (b^{\prime}): "For all y, the function $x \mapsto f(x, y)$ is continuous", the conclusion becomes wrong! consider for example the function $f(x, y)=\frac{|x|-|y|}{|x|+|y|}$ on $\mathbb{R}^{2} \backslash\{(0,0)\}$ that admits no limit in $(0,0)$ while (a) and $\left(b^{\prime}\right)$ are satisfied.

Exercise 4 Prove that the concepts "open", "closed", "bounded", "compact" for a set $A \subset \mathbb{R}^{n}$ do not depend on the chosen norm.

Exercise 5 Let $(E,\|\|$.$) be a normed vector space. Prove or disprove the following propositions.$
i) The empty set is compact.
ii) Singletons are compact.
iii) Finite sets are compact (start thinking with a two-point set).
iv) Countable sets are compact.

Are the following sets compact in R^{2} ?

$$
A=\left\{(x, y): 2 x^{2}+3 y^{2}<1\right\} \quad \text { and } \quad B=\{(x, y): 0 \leq x, y, \quad x y \leq 1\} .
$$

For subsets of \mathbb{R}^{n}, prove or disprove
a) Intersections of compact sets are compact.
b) Compact sets are closed.
c) A closed subset of a compact set is compact.
d) A union of finitely many compact sets is compact (start thinking with two compact sets).
e) An arbitrary union of compact sets is itself compact.

Exercise $6 \quad$ Let $K \subset \mathbb{R}^{n}$ be compact and $r>0$. Let $K_{r}=\bigcup_{x \in K} B[x, r]$. Prove that K_{r} is compact.

Exercise $7 \quad$ Show that $\max (a, b)=\frac{1}{2}(a+b+|a+b|)$ and $\min (a, b)=\frac{1}{2}(a+b-|a+b|)$. What can be said on $\max (f, g)$, if f, g are continuous real-valued functions?

Exercise 8 Let $f(x, y)=\max \left(e^{x} \sin (\arctan (y)), \ln \left(1+x^{2}+y^{4}\right)\right)$. Prove that f admits a maximum on the set $A=\left\{(x, y): x^{16}+y^{16}=64\right\}$ (do not try to calculate any numerical value!). Prove that f admits a global minimum on \mathbb{R}^{2}. Give it without calculating!

Exercise $9 \quad$ Let $K \subset R^{n}$ be compact and $F \subset R^{n}$ be closed. Prove that

$$
g(x)=\inf \{\|x-f\|: f \in F\}
$$

is 1-Lipschitz, hence continuous. (hint: start with $\|x-f\| \leq\|x-y\|+\|y-f\|$). Deduce that if the sets K and F do not intersect, they must have a strictly positive distance. Show that compacity is needed here by providing an example of two disjoint closed sets whose distance is zero.

Exercise 10 Let $\gamma(t)=(r \cos (t), r \sin (t))$ for $t \in[0,2 \pi]$. Calculate the arc-length of the curve γ.

Exercise 11 Let $\gamma(t)=\left(\frac{2}{3} t^{3}, \sqrt{2} t^{2}\right)$ for $t \in[\sqrt{2}, \sqrt{7}]$. Calculate the arc-length of the curve γ.

Exercise 12 Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Parameterise its graph as a curve, and give an integral expression for the arc-length of the curve. Concrete examples (observe that these function are of class C^{1}):

$$
f_{1}(t)=-t \quad \text { on }[-2,2], \quad f_{2}(t)=\frac{2}{3}(t-1)^{3 / 2} \quad \text { on }[1,4] \quad \text { and } \quad f_{3}(t)=\cosh (t) \quad \text { on }[0,1]
$$

Exercise 13 Calculate the length of one turn of the helix given by $\gamma(t)=(\cos (t), \sin (t), t)$. What is the length from $(1,0,0)$ to $\gamma(t)$? Find an arc length parameterization of the helix, i.e. a function $\widetilde{\gamma}$ suchh that the distance from $(1,0,0)$ to $\widetilde{\gamma}(t)$ is exacly t.

Exercise 14 Let $f(x, y)=3 x^{2} y^{3}$, and $(a, b) \in \mathbb{R}^{2}$. Let $\gamma_{1}(t)=(t, b)$ and $\gamma_{2}(t)=(a, t)$ two curves on a suitable interval I containing a and b. Calculate $g^{\prime}(a)$ where $g=f \circ \gamma_{1}$ and $h^{\prime}(b)$ where $h=f \circ \gamma_{2}$. Show that write $f_{x}(a, b)=g^{\prime}(a)$ and $f_{y}(a, b)=h^{\prime}(b)$.

Exercise 15 Find all of the first order partial derivatives for the following functions.

$$
\begin{array}{ll}
f(x, y)=x^{3}+2 \sqrt{y}-10 & g(x, y, z)=x^{2} y-8 y^{2} z^{3}+42 x-12 \tan (2 y) \\
h(s, t)=t^{7} \ln \left(s^{2}\right)+9 t^{3}-\sqrt[7]{s^{4}} & k(x, y)=\cos (2 / x) \exp \left(x y^{2}-3 y^{3}\right) \\
u(x, y)=\frac{9 x}{x^{2}+y} & v(x, y, z)=\frac{x \sin (y)}{z^{2}}-\sqrt{x^{2}+\ln \left(5 z-3 y^{2}\right)}
\end{array}
$$

Exercise 16 Calculate all second order derivatives of the functions in the preceding exercise.

