Exercise 1 Are the following functions differentiable on an open subset of \mathbb{R}^{n} ? Calculate the (Frechet) derivative if possible.
a) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(x, y, z)=x y+y z+z x$.
b) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad f(x, y, z)=\left(x^{2} z-2 x y, z^{3}+x y z\right)$.
c) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f(x, y)=(y \sin (x), \cos (x))$.

Exercise $2 \quad$ Consider the following functions from $\mathbb{R}^{2} \rightarrow \mathbb{R}$. Are they f partially differentiable? Fréchet differentiable? Even of class $C^{1}\left(\mathbb{R}^{2}\right)$?

$$
\begin{aligned}
& f_{1}(x, y)=\left\{\begin{array}{lll}
\frac{\sin \left(x^{3}+y^{3}\right)}{x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\
0 & \text { if } & (x, y)=(0,0)
\end{array}\right. \\
& f_{2}(x, y)=\left\{\begin{array}{lll}
\frac{\left.x^{2} y+2 x y^{2}\right)}{x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\
0 & \text { if } & (x, y)=(0,0)
\end{array}\right. \\
& f_{3}(x, y)=\left\{\begin{array}{lll}
\frac{x \sin (y)}{x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\
0 & \text { if } & (x, y)=(0,0)
\end{array}\right. \\
& f_{4}(x, y)=\left\{\begin{array}{lll}
\left(x^{2}+x y+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right) & \text { if } & (x, y) \neq(0,0) \\
0 & \text { if } & (x, y)=(0,0)
\end{array}\right. \\
& f_{5}(x, y)= \begin{cases}\frac{\sin ^{2}(x)\left(e^{y}-1\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { otherwise }\end{cases} \\
& f_{6}(x, y)=\left\{\begin{array}{lll}
\frac{x^{3} y+x y^{3}}{x^{4}+y^{4}} & \text { if } & (x, y) \neq(0,0) \\
0 & \text { if } & (x, y)=(0,0)
\end{array}\right.
\end{aligned}
$$

Exercise $3 \quad$ Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable and that $f(t x)=t f(x)$ for all $x \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$. Show that there exists some matrix $A \in \mathbb{R}^{n \times n}$ such that $f(x)=A \cdot x$.

Exercise $4 \quad$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x)=\|x\|_{2}$. Is f differentiable on an open subset of \mathbb{R}^{2} ? Which one? Calculate the derivative (same question for $\|x\|_{1}$ and $\|x\|_{\infty}$, if you like).

Exercise 5* Let $\Omega=\mathrm{GL}_{n}(\mathbb{R}) \subset \mathbb{R}^{n \times n}$.
a) Show that det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is continuous.
b) Infer that $\Omega \subset \mathbb{R}^{n \times n}$ is open.
c) Show that there exists some $\delta>0$ such that $I+H$ is invertible for $\|H\|<\delta$.
d) Use $(I+H)(I-H)=I-H^{2}$ to show that $(I+H)^{-1}=I-H-H^{2}(I-H)^{-1}$ for $\|H\|<\delta$.
e) Let $f: \Omega \rightarrow \Omega$ be given by $f(M)=M^{-1}$. Show that f is differentiable at I. Infer that f is differentiable on Ω and that $(D f)(M)(H)=-M^{-1} H M^{-1}$.

Exercise 6 Let $f(x, y)=x e^{x y}, g(t)=\left(t^{2}, t-1\right)$. Calculate the derivative of $h=f \circ g$, by (1) using the chain rule and (2) direcly, by simplifying $h(t)$. Same question for

$$
\begin{array}{lll}
f(x, y)=x^{2} y^{3}+y \cos (x) & \text { and } & g(t)=\left(\ln \left(t^{2}\right), \sin (4 t)\right) \\
f(x, y)=\sin \left(x^{2}+y^{2}\right) & \text { and } & g(t)=\left(t^{2}+3, t^{3}\right) \\
f(x, y)=x^{2} y & \text { and } & g(t)=\left(\sin (t), t^{2}+1\right) \\
f(x, y)=x^{2} y^{2} & \text { and } & g(s, t)=\left(s t, t^{2}-s^{2}\right)
\end{array}
$$

Exercise $7 \quad$ Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0\right\}$ and $\mathcal{O}=\left\{(u, v, w) \in \mathbb{R}^{3}: w>0\right\}$ Let $f: \Omega \rightarrow \mathbb{R}^{3}$ and $g: \mathcal{O} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left(\ln (x y), \cos \left(x^{2}+y\right), e^{x}\right) \quad \text { and } \quad g(u, v, w)=e^{u}+v w+\ln (w)
$$

Show that $h=g \circ f$ is differentiable in Ω and calculate its derivative (1) using the chain rule and (2) directly, by simplifying $h(x, y)$.

Exercise $8 \quad$ Let $f, u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Write out the chain rule for $\frac{\partial}{\partial s} f(u(s, t), v(s, t))$. Write $\frac{\partial f}{\partial u}=\partial_{1} f$ and $\frac{\partial f}{\partial v}=\partial_{2} f$. Compare the chain rule with the diagram. This explains the expression "chain rule".

Exercise 9 Let $f(x, y)=\int_{0}^{x} \sin (y t) d t$. Show that f is of class C^{1} and calculate its derivative. Infer the derivative of

$$
h(x)=\int_{0}^{x} \sin (x t) d t
$$

Exercise 10*

a) Calculate the derivative of trace : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$, $\operatorname{trace}(A)=\sum_{i} a_{i i}$. (hint: work out some properties of the trace map first: sums, products, commutativity...).
b) Calculate the derivative of $f: A \mapsto \operatorname{trace}\left(A^{2}\right)$, once by using the chain rule and the map $g: \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ given by $g(X, Y)=X Y$, another time by decomposing

$$
\operatorname{trace}\left((A+H)^{2}\right)=\operatorname{trace}(A)+\ell(H)+r(H)
$$

for a suitable linear functional $\ell: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$.
c) Same question for trace $\left(A^{n}\right)$ where $n \in \mathbb{N}^{*}$.

