Exercise 1 Are the following functions differentiable on an open subset of \mathbb{R}^n ? Calculate the (Frechet) derivative if possible.

- a) $f: \mathbb{R}^3 \to \mathbb{R}$, f(x, y, z) = xy + yz + zx. b) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x, y, z) = (x^2z - 2xy, z^3 + xyz)$. c) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (y \sin(x), \cos(x))$.
- c) $f: \mathbb{R} \to \mathbb{R}$, $f(x, y) = (y \operatorname{sm}(x), \cos(x)).$

Exercise 2 Consider the following functions from $\mathbb{R}^2 \to \mathbb{R}$. Are they f partially differentiable? Fréchet differentiable? Even of class $C^1(\mathbb{R}^2)$?

$$f_{1}(x,y) = \begin{cases} \frac{\sin(x^{3}+y^{3})}{x^{2}+y^{2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

$$f_{2}(x,y) = \begin{cases} \frac{x^{2}y+2xy^{2}}{x^{2}+y^{2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

$$f_{3}(x,y) = \begin{cases} \frac{x\sin(y)}{x^{2}+y^{2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

$$f_{4}(x,y) = \begin{cases} (x^{2}+xy+y^{2})\sin(\frac{1}{x^{2}+y^{2}}) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

$$f_{5}(x,y) = \begin{cases} \frac{\sin^{2}(x)(e^{y}-1)}{x^{2}+y^{2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$$

$$f_{6}(x,y) = \begin{cases} \frac{x^{3}y+xy^{3}}{x^{4}+y^{4}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Exercise 3 Assume that $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable and that f(tx) = tf(x) for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$. Show that there exists some matrix $A \in \mathbb{R}^{n \times n}$ such that $f(x) = A \cdot x$.

Exercise 4 Let $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x) = ||x||_2$. Is f differentiable on an open subset of \mathbb{R}^2 ? Which one? Calculate the derivative (same question for $||x||_1$ and $||x||_{\infty}$, if you like).

Exercise 5^{*} Let $\Omega = \operatorname{GL}_n(\mathbb{R}) \subset \mathbb{R}^{n \times n}$.

- a) Show that det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous.
- b) Infer that $\Omega \subset \mathbb{R}^{n \times n}$ is open.
- c) Show that there exists some $\delta > 0$ such that I + H is invertible for $||H|| < \delta$.
- d) Use $(I+H)(I-H) = I H^2$ to show that $(I+H)^{-1} = I H H^2(I-H)^{-1}$ for $||H|| < \delta$.
- e) Let $f: \Omega \to \Omega$ be given by $f(M) = M^{-1}$. Show that f is differentiable at I. Infer that f is differentiable on Ω and that $(Df)(M)(H) = -M^{-1}HM^{-1}$.

Exercise 6 Let $f(x, y) = xe^{xy}$, $g(t) = (t^2, t - 1)$. Calculate the derivative of $h = f \circ g$, by (1) using the chain rule and (2) directly, by simplifying h(t). Same question for

$$\begin{array}{ll} f(x,y) = x^2 y^3 + y \cos(x) & \text{and} & g(t) = (\ln(t^2), \sin(4t)) \\ f(x,y) = \sin(x^2 + y^2) & \text{and} & g(t) = (t^2 + 3, t^3) \\ f(x,y) = x^2 y & \text{and} & g(t) = (\sin(t), t^2 + 1) \\ f(x,y) = x^2 y^2 & \text{and} & g(s,t) = (st, t^2 - s^2) \end{array}$$

Exercise 7 Let $\Omega = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$ and $\mathcal{O} = \{(u, v, w) \in \mathbb{R}^3 : w > 0\}$ Let $f : \Omega \to \mathbb{R}^3$ and $g : \mathcal{O} \to \mathbb{R}$ be given by

$$f(x,y) = (\ln(xy), \cos(x^2 + y), e^x)$$
 and $g(u, v, w) = e^u + vw + \ln(w)$

Show that $h = g \circ f$ is differentiable in Ω and calculate its derivative (1) using the chain rule and (2) directly, by simplifying h(x, y).

Exercise 8 Let $f, u, v : \mathbb{R}^2 \to \mathbb{R}$. Write out the chain rule for $\frac{\partial}{\partial s} f(u(s,t), v(s,t))$. Write $\frac{\partial f}{\partial u} = \partial_1 f$ and $\frac{\partial f}{\partial v} = \partial_2 f$. Compare the chain rule with the diagram. This explains the expression "chain rule".

Exercise 9 Let $f(x,y) = \int_0^x \sin(yt) dt$. Show that f is of class C^1 and calculate its derivative. Infer the derivative of

$$h(x) = \int_0^x \sin(xt) \, dt$$

Exercise 10*

- a) Calculate the derivative of trace : $\mathbb{R}^{n \times n} \to \mathbb{R}$, trace $(A) = \sum_{i} a_{ii}$. (hint: work out some properties of the trace map first: sums, products, commutativity...).
- b) Calculate the derivative of $f : A \mapsto \operatorname{trace}(A^2)$, once by using the chain rule and the map $g : \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}$ given by g(X, Y) = XY, another time by decomposing

$$\operatorname{trace}((A+H)^2) = \operatorname{trace}(A) + \ell(H) + r(H).$$

for a suitable linear functional $\ell : \mathbb{R}^{n \times n} \to \mathbb{R}$.

c) Same question for trace (A^n) where $n \in \mathbb{N}^*$.