Exercise 1 For each of the following functions, justify that a minimum and maximum under the given constraint exists, and use Lagrange multipliers to find them.

$$
\begin{array}{lll}
\text { function } & \text { constraint } & \\
f_{1}(x, y)=4 x y & x^{2}+y^{2} & =1 \\
f_{2}(x, y)=x^{2} y & x^{2}+2 y^{2} & =1 \\
f_{3}(x, y)=x^{2}+y^{2}+2 x-2 y+1 & x^{2}+y^{2} & =2 \\
f_{4}(x, y)=x^{2}+y^{2} & x y & =1 \\
f_{5}(x, y)=x^{2}-y^{2} & x-2 y+6 & =0 \\
f_{6}(x, y)=x^{2}+y^{2} & x+2 y-5 & =0 \\
f_{7}(x, y)=x^{2}+y^{2} & (x-1)^{2}+4 y^{2}=4 \\
f_{8}(x, y)=4 x^{3}+y^{2} & 2 x^{2}+y^{2} & =1
\end{array}
$$

Exercise 2 Prove that the functions $f(x, y, z):=x^{4}+y^{4}+z^{4}$ and $g(x, y, z):=x y z$ admit a maximum on $S=\left\{x^{2}+y^{2}+z^{2}=1\right\}$. Calculate it.

Exercise 3 Show that $f(x, y, z)=y z+x y$ admit a minimum and maximum on the set $S=\left\{x y=1, y^{2}+z^{2}=1\right\}$. Find it.

Exercise 4 Consider $f(x, y, z)=x^{2}+y^{2}+z^{2}$ and $S=\{x+y+z=9, x+2 y+3 z=20\}$. Does the minimum/maximum on S exist? If so, calculate it in two different ways.

Exercise 5 Let $T=\left\{(x, y, z) \in \mathbb{R}^{3}:(x-1)^{2}+y^{2}=0, y+z=0\right\}$ and $f(x, y, z)=x^{2}+y^{2}-z$. Prove that f admits a minimum and a maximum on T and find them.

Exercise 6 Let $C \subset \mathbb{R}$ be a closed set and $f: C \rightarrow C$ a self-map. Suppose that f is differentiable, and that $\left|f^{\prime}(x)\right| \leq q<1$. Show that f admits a fixed point in C. Example: $f(x)=\ln (2 x+1)$ on $C=[1,2]$.

Exercise $7 \quad$ Consider the function $g(x)=x^{2} / 4+5 x / 4-1 / 2$.
a) g has two fixed points - what are they?
b) For each of these, find the largest region around them such that g is a contraction on that region.

Exercise 8 Let $f(x)=x+\frac{1}{x}$ on $A=[0, \infty)$. Show that f is a self-map of A and that $|f(x)-f(y)|<|x-y|$. Does f admit a fixed point?

Exercise $9^{*} \quad$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=\left(x^{3}-3 x y^{2},-3 x^{2} y+y^{3}\right)$. Show that f is a strict contraction on $A:=B\left[(0,0), \frac{1}{2}\right]$ by calculating both eigenvalues of the Jacobian matrix at (x, y). Justify all steps. Give the fixed point of f on A.

Exercise 10 Let $\left(x_{n}\right)$ be the sequence defined by $x_{1}=\sqrt{3}, x_{2}=\sqrt{3+\sqrt{3}}, x_{3}=\sqrt{3+\sqrt{3+\sqrt{3}}}$, $x_{4}=\sqrt{3+\sqrt{3+\sqrt{3+\sqrt{3}}}}, \ldots$ Prove that $\left(x_{n}\right)$ converges and give its limit.

Exercise 11* (Newton iteration)

a) Let $f \in C^{2}(I)$ and assume that $f\left(x^{*}\right)=0$, but $f^{\prime}\left(x^{*}\right) \neq 0$. Let $N(x)=x-\left(f^{\prime}(x)\right)^{-1} f(x)$. Prove that N is a contraction in a suitable closed neighbourhood C of x^{*}. Deduce that the sequence, defined by

$$
\begin{equation*}
x_{n+1}:=N\left(x_{n}\right) \tag{1}
\end{equation*}
$$

converges to x^{*} for any $x_{0} \in C$.
b)** Now let Ω be an open set in \mathbb{R}^{n} and let $F: \Omega \rightarrow \mathbb{R}^{n}$ be C^{2} mapping (i.e., all first and second partial derivatives of all components of F are continuous). Let us assume that the equation $F(x)=0$ has a solution $x^{*} \in \Omega$ such that the derivative $D_{F}\left(x^{*}\right)$ is invertible.
i) Show that the derivative $D_{F}(x)$ is invertible in some ball $B\left(x^{*}, r\right), r>0$.
ii) Let $N(x)=x-D_{F}(x)^{-1}(F(x))$ defined on $B\left(x^{*}, r\right)$. Show "by hand" that N is differentiable in x^{*} with $D_{N}\left(x^{*}\right)=0$: to this end write

$$
N\left(x^{*}+h\right)=N\left(x^{*}\right)+h-D_{F}\left(x^{*}\right)^{-1} f\left(x^{*}+h\right)-\left(D_{F}\left(x^{*}+h\right)^{-1}-D_{F}\left(x^{*}\right)^{-1}\right)\left(f\left(x^{*}+h\right)\right)
$$

and use that $f\left(x^{*}+h\right)=0+D_{F}\left(x^{*}\right)(h)+r(h)$, with $\frac{\|r(h)\|}{\|h\|^{2}} \rightarrow 0$. Hint: the identity $A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1}$ may be useful.
iii) Show now that in a suitable ball $C:=B\left[x^{*}, R\right]$ (for some $0<R<r$), N is a strictly contractive self-map from C to itself. Infer that the iteration scheme (1) converges to x^{*} for any starting point $x_{0} \in C$.

Exercise 12

a) Formulate the local inversion theorem in the case of a C^{1}-function in \mathbb{R} (dimension one), and give a simple proof. Compare your proof with the "general case" you saw in the lecture.
b) Consider $f(x)=x+x^{2} \sin \left(\frac{1}{x}\right)$. Show that f is differentiable in $x=0$, but that f^{\prime} is discontinuous in $x=0$.
c)* Can one find a local inverse in a neighbourhood of $x=0$?

Exercise 13 Let $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$. Show that f is locally invertibel at each point. Is there a global inverse? Think complex!

Exercise 14 Let $\Omega=\mathbb{R}^{2} \backslash\{(0,0)\}$ and $f: \Omega \rightarrow \Omega$ be given by $f(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$. Show that f is locally invertible in each point $\omega \in \Omega$. Provide explicitly the inverse function and discuss global invertibility.

Exercise 15 Let $f(x, y)=\left(x^{2}+y^{2}, \sin (\cos (y))\right)$ and $g(x, y)=\left(x+y^{3}, e^{x}\right)$. In which points are these functions locally invertible?

Exercise 16 Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $(x, y, z) \mapsto(x+y+z, x y+y z+z x, x y z)$. Show that f is locally invertible in a a neighbourhood of (a, b, c) if and only if $(a-b)(b-c)(c-a) \neq 0$. Provide in this case the Jacobian matrix of the inverse function g at the point $y=f(a, b, c)$.

