Exercise $1 \quad$ Show that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f(x, y, z)=\left(\begin{array}{c}\sin (x)+y^{2}+y z \\ x^{2}+y^{2}+2 z \\ y^{3}-z^{3}\end{array}\right)$ is injective in a neighbourhood of $(0,1,1)$. Determine the Jacobian of its inverse function at $f(0,1,1)$.

Exercise 2 Let $\Omega \subset \mathbb{R}^{n}$ be an open set, $f: \Omega \rightarrow \mathbb{R}^{n}$ be of class C^{1} and $N(x)$ any norm on \mathbb{R}^{n}. Assume that $\operatorname{det} J_{f}(x) \neq 0$ on Ω. Show that $g(x)=N(f(x))$ cannot have a local maximum inside Ω. Hint: argue by contradiction. Suppose g has a local maximum at $x_{0} \in \Omega$. Now use the local inversion theorem at x_{0} applied to f to find a contradiction: carefully read the theorem and think of your topology lectures in \mathbb{R}^{n} !

Exercise 3 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1}-function, $a \in \mathbb{R}^{n}$ and assume that $0 \neq v \in \operatorname{ker}\left(J_{f}(a)\right)$. Show that f is not invertible in any neighbourhood of a.

Exercise 4 Let $f(x, y)=\arctan (x+y)-\sinh (y-x)$. Show that there exists some $\varepsilon>0$ and a function $g:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$ such that $g(0)=0$ and $f(x, g(x))=0$ for all $|x|<\varepsilon$. Calculate $g^{\prime}(0)$.

Exercise 5 Let $\Omega=\left\{(x, y, z) \in \mathbb{R}^{3}: x+z>0\right\}$ and $f: \Omega \rightarrow \mathbb{R}$ given by $f(x, y, z)=$ $y+z+2 \ln (x+z)$.
a) Show that there exists a function g defined in a neighbourhood U of $(0,-1) \in \mathbb{R}^{2}$ taking values in a neighbourhood V of $1 \in \mathbb{R}$ such that

$$
f(x, y, g(x, y))=0 \quad \forall(x, y) \in U
$$

b) Show that $g_{x}+g_{y}=-1$ on U.

Exercise $6 \quad$ Show that in a neighbourhood U of $(0,-1)$ exists a function $g: U \rightarrow \mathbb{R}$ such that

$$
y^{2}+\cos (x)+g(x, y)^{2} \cosh (x g(x, y))=2
$$

Provide the Taylor polynomial of degree 1 of this function at the development point $(0,-1)$.

Exercise 7 Show that the equation $y^{2} \sinh (x)\left(3 x+z^{2}\right) e^{y^{2}}-\cos (x) \cos (y) \cos (z)=4 \pi^{2}-1$ has a solution of the form $(g(y, z), y, z)$ in a whole neighbourhood of $(0,0,2 \pi)$. Calculate the gradient of g.

Exercise $8 \quad$ Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by $F(x, y, z)=\binom{\sin (x z)+y z^{2}-e^{x y}+1}{x^{2} y z+y+\cos (y z)-1}$. Show that in some neighbourhood U of $-1 \in \mathbb{R}$ are defined two functions g, h of class C^{1} such that

$$
g(-1)=h(-1)=0 \quad \text { and } \quad f(g(z), h(z), z)=0 \quad \forall z \in U
$$

Calculate $g^{\prime}(-1)+h^{\prime}(-1)$.

Exercise $9 \quad$ Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be given by $F(x, y, u, v)=\binom{x^{2}+y^{2}+u \cos (x)+\arctan (v)}{x y+\cos (x v)+e^{u^{2}}+(x-1) v-1}$. Show that two neighbourhoods U, V of $(0,0)$ in \mathbb{R}^{2} exist and a function $g: U \rightarrow V$ such that, for all $(x, y) \in U$, one has $F(x, y, g(x, y))=(0,0)$. Is g invertible in a neighbourhood of $(0,0)$?

Exercise $10 \quad$ Consider the non-linear sysytem of equations $\left\{x u+y v u^{2}=2, \quad x u^{3}+y^{2} v^{4}=2\right\}$. Show that close to $(1,1,1,1)$ one can resolve x, y as functions of u, v.

Exercise 11 Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by $f(x, y, z)=x^{3}+4 y^{2}+8 x z^{2}-3 z^{3} y$ Show that in a neighbourhood of $(0,1,1)$, the equation $f(x, y, z)=1$ admits a solution of the form $(x, y, g(x, y))$. Then show that in a neighbourhood of $(0,1)$, the equation $g(x, y)=1$ has a solution of the form $(t, h(t))$. Calculate $h^{\prime}(0)$.

Additional exercises (hors programme)

Exercise 12

a) Let $F(x, y)=x^{2} y^{2}$. Solve the differential equation $F_{x}(x, y(x))+F_{y}(x, y(x)) y^{\prime}(x)=0$.
b) Now solve $\cos (x) y(x)+\sin (x) \cos (x)+(1+\sin (x)) y^{\prime}(x)$ (hind: find F first).
c) Consider $y^{2}-3 x y-2 x^{2}+\left(x y-x^{2}\right) y^{\prime}=0$. To solve it, first find an "integrating factor" $\mu(x)$ that allows to determine F.

Exercise 13 Evaluate the given scalar line integral.
a) $\int_{\Gamma} y d s$, where Γ is the curve parameterised by $\gamma(t)=(3 \cos (t), 3 \sin (t))$ for $0 \leq t \leq \pi / 2$.
b) $\int_{\Gamma} x y d s$, where Γ is the line segment between the points $(3,2)$ and $(6,6)$.
c) $\int_{\Gamma}\left(x^{2}+y^{2}\right) d s$, where Γ is the curve parameterised by $\left(e^{\theta} \cos (\theta), e^{\theta} \sin (\theta)\right)$ for $0 \leq \theta \leq \pi$.
(answers: 9, 95, and $\frac{e^{2 \pi}-1}{\sqrt{2}}$).

Exercise 14 Evaluate the given vector line integral.
a) $\int_{\Gamma}(y, 1) \cdot d s$, where Γ is the curve $\gamma(t)=\left(t^{3}-t, t^{2}\right)$ from the point $(0,0)$ to the point $(6,4)$.
b) $\int_{\Gamma}(y,-x) \cdot d s$, where Γ is the portion of the curve $y=\frac{1}{x}$ from the point $(1,1)$ to the point (2, $1 / 2$).
(answers: $\frac{308}{15}$ and $2 \ln (2)$).

Exercise 15 Evaluate the given scalar surface integral. $\int_{S} 6 x y d S$ where S is the part of the plane $x+y+z=1$ where $0 \leq x \leq 1$ and $0 \leq y \leq 2$. (answer: $6 \sqrt{3}$)

Exercise 16 The upper half-sphere S in \mathbb{R}^{3} is parameterised by

$$
\phi(s, t)=(\cos (s) \cos (t), \sin (s) \cos (t), \sin (t))
$$

where $(s, t) \in[0,2 \pi] \times[0, \pi / 2]$. Convince yourself that the right surface integral in this case is $\int_{S} f d S=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} f(\phi(s, t))\left\|\phi_{s} \wedge \phi_{t}\right\|_{2} d t d s$. Now calculate $\int_{S} z d S$.

