Exercise 1 Show that $f : \mathbb{R}^3 \to \mathbb{R}^3$ given by $f(x, y, z) = \begin{pmatrix} \sin(x) + y^2 + yz \\ x^2 + y^2 + 2z \\ y^3 - z^3 \end{pmatrix}$ is injective in

a neighbourhood of (0, 1, 1). Determine the Jacobian of its inverse function at f(0, 1, 1).

Exercise 2 Let $\Omega \subset \mathbb{R}^n$ be an open set, $f : \Omega \to \mathbb{R}^n$ be of class C^1 and N(x) any norm on \mathbb{R}^n . Assume that det $J_f(x) \neq 0$ on Ω . Show that g(x) = N(f(x)) cannot have a local maximum inside Ω . Hint: argue by contradiction. Suppose g has a local maximum at $x_0 \in \Omega$. Now use the local inversion theorem at x_0 applied to f to find a contradiction: carefully read the theorem and think of your topology lectures in \mathbb{R}^n !

Exercise 3 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^1 -function, $a \in \mathbb{R}^n$ and assume that $0 \neq v \in \ker(J_f(a))$. Show that f is not invertible in any neighbourhood of a.

Exercise 4 Let $f(x, y) = \arctan(x + y) - \sinh(y - x)$. Show that there exists some $\varepsilon > 0$ and a function $g: (-\varepsilon, \varepsilon) \to \mathbb{R}$ such that g(0) = 0 and f(x, g(x)) = 0 for all $|x| < \varepsilon$. Calculate g'(0).

Exercise 5 Let $\Omega = \{(x, y, z) \in \mathbb{R}^3 : x + z > 0\}$ and $f : \Omega \to \mathbb{R}$ given by $f(x, y, z) = y + z + 2 \ln(x + z)$.

a) Show that there exists a function g defined in a neighbourhood U of $(0, -1) \in \mathbb{R}^2$ taking values in a neighbourhood V of $1 \in \mathbb{R}$ such that

$$f(x, y, g(x, y)) = 0 \qquad \forall (x, y) \in U$$

b) Show that $g_x + g_y = -1$ on U.

Exercise 6 Show that in a neighbourhood U of (0, -1) exists a function $g: U \to \mathbb{R}$ such that

$$y^{2} + \cos(x) + g(x, y)^{2} \cosh(xg(x, y)) = 2$$

Provide the Taylor polynomial of degree 1 of this function at the development point (0, -1).

Exercise 7 Show that the equation $y^2 \sinh(x)(3x+z^2)e^{y^2} - \cos(x)\cos(y)\cos(z) = 4\pi^2 - 1$ has a solution of the form (g(y, z), y, z) in a whole neighbourhood of $(0, 0, 2\pi)$. Calculate the gradient of g.

Exercise 8 Let $F : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $F(x, y, z) = \begin{pmatrix} \sin(xz) + yz^2 - e^{xy} + 1 \\ x^2yz + y + \cos(yz) - 1 \end{pmatrix}$. Show that in some neighbourhood U of $-1 \in \mathbb{R}$ are defined two functions g, h of class C^1 such that

$$g(-1) = h(-1) = 0$$
 and $f(g(z), h(z), z) = 0$ $\forall z \in U$

Calculate q'(-1) + h'(-1).

Let $F : \mathbb{R}^4 \to \mathbb{R}^2$ be given by $F(x, y, u, v) = \begin{pmatrix} x^2 + y^2 + u\cos(x) + \arctan(v) \\ xy + \cos(xv) + e^{u^2} + (x-1)v - 1 \end{pmatrix}$. **Exercise 9** Show that two neighbourhoods U, V of (0,0) in \mathbb{R}^2 exist and a function $q: U \to V$ such that, for all $(x, y) \in U$, one has F(x, y, g(x, y)) = (0, 0). Is g invertible in a neighbourhood of (0, 0)?

Consider the non-linear system of equations $\{xu + yvu^2 = 2, xu^3 + y^2v^4 = 2\}$. Exercise 10 Show that close to (1, 1, 1, 1) one can resolve x, y as functions of u, v.

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = x^3 + 4y^2 + 8xz^2 - 3z^3y$ Show that in a Exercise 11 neighbourhood of (0, 1, 1), the equation f(x, y, z) = 1 admits a solution of the form (x, y, q(x, y)). Then show that in a neighbourhood of (0,1), the equation q(x,y) = 1 has a solution of the form (t, h(t)). Calculate h'(0).

Additional exercises (hors programme)

Exercise 12

- a) Let $F(x,y) = x^2 y^2$. Solve the differential equation $F_x(x,y(x)) + F_y(x,y(x))y'(x) = 0$.
- b) Now solve $\cos(x)y(x) + \sin(x)\cos(x) + (1 + \sin(x))y'(x)$ (hind: find F first).
- c) Consider $y^2 3xy 2x^2 + (xy x^2)y' = 0$. To solve it, first find an "integrating factor" $\mu(x)$ that allows to determine F.

Evaluate the given scalar line integral. Exercise 13

- a) $\int_{\Gamma} y \, ds$, where Γ is the curve parameterised by $\gamma(t) = (3\cos(t), 3\sin(t))$ for $0 \le t \le \pi/2$. b) $\int_{\Gamma} xy \, ds$, where Γ is the line segment between the points (3, 2) and (6, 6).

c) $\int_{\Gamma} (x^2 + y^2) ds$, where Γ is the curve parameterised by $(e^{\theta} \cos(\theta), e^{\theta} \sin(\theta))$ for $0 \le \theta \le \pi$. (answers: 9, 95, and $\frac{e^{2\pi}-1}{\sqrt{2}}$).

Exercise 14 Evaluate the given vector line integral.

a) $\int_{\Gamma} (y,1) \cdot ds$, where Γ is the curve $\gamma(t) = (t^3 - t, t^2)$ from the point (0,0) to the point (6,4). b) $\int_{\Gamma} (y,-x) \cdot ds$, where Γ is the portion of the curve $y = \frac{1}{x}$ from the point (1,1) to the point (2, 1/2).

(answers: $\frac{308}{15}$ and $2\ln(2)$).

Evaluate the given scalar surface integral. $\int_{S} 6xy \, dS$ where S is the part of the Exercise 15 plane x + y + z = 1 where $0 \le x \le 1$ and $0 \le y \le 2$. (answer: $6\sqrt{3}$)

The upper half-sphere S in \mathbb{R}^3 is parameterised by Exercise 16

$$\phi(s,t) = (\cos(s)\cos(t), \sin(s)\cos(t), \sin(t))$$

where $(s,t) \in [0,2\pi] \times [0,\pi/2]$. Convince yourself that the right surface integral in this case is $\int_{S} f dS = \int_{0}^{2\pi} \int_{0}^{\pi/2} f(\phi(s,t)) \|\phi_s \wedge \phi_t\|_2 dt \, ds. \text{ Now calculate } \int_{S} z dS.$