Année Universitaire 2019 / 2020 Licence 2 Analyse de fonctions de plusieurs variables

Collège Sciences et technologies

Self-test, Durée: 3h00

Ni documents, ni équipements électroniques ne sont autorisés.

Question 1 Soit

$$A = \bigcap_{n=1}^{\infty} \left(\mathbb{R}^2 \backslash B[2^n, n] \right)$$

Est-ce que A est ouvert ou pas? Justifier votre réponse.

Question 2 Soit

$$B = \{(x, y) \in \mathbb{R}^2 : |y| \le e^{-x^2}\}$$
 $C = \{(x, y) \in \mathbb{R}^2 : |y| \ge |x|\}$

- (a) Est-ce que B ou C sont compacts? Justifier vos réponses.
- (b) Qu'en est-il pour $B \cap C$ et $\hat{B} \cup C$? Justifier vos réponses.

Question 3 Soit

$$f(x,y) = \begin{cases} \frac{x^2y + 2xy^3}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

Discuter la continuité et différentiabilité de f en tout point de \mathbb{R}^2 . Quel est le plus grand ouvert sur lequel f est de classe C^1 ?

Question 4 Déteminer les lieux et nature des extrema locaux de la fonction $f(x,y) = xye^{-x^2-y^2}$, définie sur \mathbb{R}^2 . Justifier vos étapes.

Question 5 Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^2y + 4x, x + y)$. Déterminer les points $(x,y) \in \mathbb{R}^2$ dans lesquelles f admet une inverse locale. Justifier vos étapes. Soit g une inverse locale dans un voisinage de (0,0). Calculer la matrice Jacobienne de g en (0,0).

Question 6 Montrer qu'il existe un voisinage U de $(0,e) \in \mathbb{R}^2$ et une fonction $g:U \to \mathbb{R}$ tel que g(0,e)=2 et que

$$\forall x, y \in U:$$
 $y^2 + xg(x, y) + (g(x, y))^2 - \exp(g(x, y)) = 4.$

Justifier vos étapes. Déterminer $\frac{\partial}{\partial x}g(0,e)$.