Exercice 1 Soit (X, d) un espace métrique.

- a) Donner la définition d'une partie ouverte de X. O est ouvert si $\forall x \in O : \exists r > 0 : B(x,r) \subseteq O$.
- b) Montrer que pour tout $x \in X$ et r > 0, B(x,r) est un ouvert de X. Soit $y \in B(x,r)$, c'est à dire d(x,y) < r. Soit a > 0 tel que d(x,y) + a < r. Pour tout z tel que d(z,y) < a, on a d(x,z) < d(x,y) + d(y,z) = d(x,y) + a < r, ce qui prouve $B(y,a) \subset B(x,r)$.

Exercice 2 Soit $X = \mathbb{N}$ muni de la topologie induite de \mathbb{R} . Décrire les parties compactes de X.

Observons que $\{n\} = \mathbb{N} \cap (n - \frac{1}{2}, n + \frac{1}{2})$ à l'effet que $\{n\}$ est ouvert pour tout n. Ainsi, $A \subset \mathbb{N}$ quelconque est un ouvert car $A = \bigcup_{n \in A} \{n\}$. Autrement dit, la topologie induite est $\mathcal{P}(\mathbb{N})$. Soit K un compact de $(X, \mathcal{P}(\mathbb{N}))$. Or $K = \bigcup_{n \in K} \{n\}$ est un recouvrement d'ouverts, permettant un ss-recouvrement fini, K est fini. Ainsi tout compact est fini. Reciproquement, il est facile de voir des parties finies sont des compacts (peu importe la topologie!).

Exercice 3 Soit X un espace topologique. Montrer que X est séparé (Hausdorff) si et seulement si la diagonale $\Delta = \{(x, x) : x \in X\}$ est un fermé de $X \times X$.

Soit X séparé et $(x,y) \not\in \Delta$. Alors, par séparation, il existe des ouverts disjoints U,V tels que $x \in U$ et $y \in V$. On observe qu'alors $(U \times V) \cap \Delta = \emptyset$, car sinon $U \cap V \neq \emptyset$. Ainsi, pour tout point (x,y) de Δ^{\complement} , il existe un ouvert (notemment $U \times V$) inclus dans Δ^{\complement} , ce qui prouve Δ^{\complement} ouvert, donc Δ fermé.

Soit Δ fermé et $x \neq y$. Donc $(x,y) \in \Delta^{\complement}$ qui est ouvert. Il existe un $O \in X \times X$ ouvert contenant (x,y), et par la definition de la topologie produit O convient un $U \times V$ contenant (x,y). Il est clair que $x \in U$, $y \in V$ et $U \cap V = \emptyset$.

Exercice 4 (lemme préparatif) Soit X un espace topologique (quasi-) compact et Y un espace topologique séparé (ou Hausdorff). Soit $f: X \to Y$ une bijection continue. Montrer que f^{-1} est continue.

Soit $g = f^{-1}$. Il suffit de montrer que $g^{-1}(A)$ est fermé pour tout fermé de X. Mais $g^{-1}(A) = f(A)$. Or, si A est fermé dans un quasicompact X, il est quasicompact lui-même (ajoutons a un recouvrement de A par ouverts encore A^{\complement} , puis prenons un ss-recouvrement fini...). Donc, A fermé est quasicompact, et par continuité de f, f(A) également. Or Y séparé, A est alors fermé.

Exercice 5 (application) Soit X = (0,1) et $Y = X \cup \{\infty\}$ sa compactification Alexandroff. Soit $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ muni de la topologie induite de \mathbb{R}^2 et

$$f: \begin{cases} Y \to S^1 \\ t \mapsto (\cos(2\pi t), \sin(2\pi t)) & \text{si } t \in (0, 1) \\ \infty \mapsto (1, 0) \end{cases}$$

- a) Montrer que f est bijectif. f est surjectif: le point (1,0) a pour préimage ∞ , les autres s'écritvent de la forme $(\cos(x),\sin(x))$ avec $x\in]0,2\pi[$, donc $t\in]0,1[$. Cette écriture étant unique, f est également injectif.
- b) Montrer que f est continue en tout point $t \in (0,1)$. La continuité de sin et cos donnent immédiatement que $\lim_{t_n \to t} f(t_n) = (\cos(2\pi t, \sin(2\pi t)))$ pour tout $t \in]0,1[$.
- c) Pour montrer la continuité en ∞ , soit V un voisinage de (1,0).
 - i) Montrer qu'il existe $\varepsilon > 0$ tel que V contient l'arc

$$\{(\cos(2\pi t), \sin(2\pi t)), -\varepsilon < t < \varepsilon\}.$$

Un voisinage de (1,0) contient un ouvert (relatif), donc un ensemble de la forme $\mathcal{O} \cap S^1$ avec $(1,0) \in \mathcal{O}$ et \mathcal{O} ouvert de \mathbb{R}^2 . \mathcal{O} contient une boule de rayon r > 0 autour de (1,0), et donc $\mathcal{O} \cap S^1$ un "arc", comme demandé.

- ii) Montrer que $f^{-1}(V)$ contient $\mathcal{O} := Y \setminus [\epsilon, 1 \epsilon]$. Par la périodicité de cos et sin, $f^{-1}(V)$ contient $X \setminus [\epsilon, 1 - \epsilon]$. De plus, par $(1,0) \in V$, $\infty \in f^{-1}(V)$, donc $\mathcal{O} \subset f^{-1}(V)$.
- $(1,0) \in V, \infty \in f^{-1}(V), \text{ donc } \mathcal{O} \subset f^{-1}(V).$ iii) $D\'{e}duire que f^{-1}(V) est un voisinage de <math>\infty$ dans Y. Observons que $\mathcal{O} = \{\infty\} \cup K^{\complement}$ où $K = [\epsilon, 1 \epsilon]$ est un compact de X. Ainsi, \mathcal{O} est ouvert dans Y.
- d) Montrer que f est continue. On a vu que f est continue en tout point! Par l'exercice précédent, f^{-1} est continue, c'est à dire Y et S^1 sont homéomorphes. On identifie Y avec S^1 grâce à f.