MATHEMATICAL ANALYSIS OF THE MOTION OF A RIGID BODY IN

BERNHARD H. HAAK, DEBAYAN MAITY, TAKEO TAKAHASHI, AND MARIUS TUCSNAK

A COMPRESSIBLE NAVIER-STOKES-FOURIER FLUID.

ABSTRACT. We study an initial and boundary value problem modelling the motion of a rigid
body in a heat conducting gas. The solid is supposed to be a perfect thermal insulator. The
gas is described by the compressible Navier-Stokes-Fourier equations, whereas the motion
of the solid is governed by Newton’s laws. The main results assert the existence of strong
solutions, in an LP-L? setting, both locally in time and globally in time for small data. The
proof is essentially using the maximal regularity property of associated linear systems. This
property is checked by proving the R-sectoriality of the corresponding operators, which in
turn is obtained by a perturbation method.
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Part 1. Introduction and Statement of the Main Results
1. INTRODUCTION

The purpose of this work is to provide existence and uniqueness results for a coupled PDEs-
ODEs system which models the motion of a rigid body in a viscous heat conducting gas. The
rigid body is assumed to be a perfect insulator. As far as we know, this system has not been
studied in the literature in three space dimensions. A related problem in one space dimension,
the so-called adiabatic piston problem has been studied in [15].

Let us now mention some related works from the literature. The one-dimensional piston
problem with homogenous boundary conditions has been studied by Shelukhin [23, 24]. Maity,
Takahashi and Tucsnak [20] proved existence and uniqueness of global in time strong solutions
with nonhomogeneous boundary conditions in a Hilbert space setting. Local in time existence
and uniqueness of a heat conducting piston in LP-L? framework is studied by Maity and
Tucsnak [21]. Concerning three-dimensional models, global existence of weak solutions for
compressible fluid and rigid body interaction problems was studied by Desjardins and Esteban
[10] and Feireisl [14]. Boulakia and Guerrero [5] proved global existence and uniqueness of
strong solutions for small initial data within the Hilbert space framework. Hieber and Murata
[17] proved local in time existence and uniqueness in a LP-L9 setting. Let us also mention that
an important influence on the methods in this work comes from several recent advances on
the LP-L9 theory of viscous compressible fluids (without structure), see Enomoto and Shibata
[13] and Murata and Shibata [25].

In this work we are interested in strong solutions and the main novelties we bring in are:

e The full nonlinear free boundary system coupling the compressible Navier-Stokes-
Fourier system with the ODE system for the solid has not, at our knowledge, been
studied in the literature.

e The existence and uniqueness results are proved in a LP-L9 setting, which, at least as
global existence is concerned, is new even in the case when the fluid is barotropic.

The methodologies we employ for the local in time, versus the global in time (for small
data), existence results are quite different. More precisely, in the proof of the local existence
theorem, we begin by considering a linear “cascade” system. The corresponding operator is
proved to have the maximal regularity property in appropriate spaces by combining various
existing maximal LP-L? regularity results for parabolic equations. This allows us to develop
a quite simple fixed point procedure to obtain the local in time existence and uniqueness of
solutions. More precisely, using this associated linear system we estimate the nonlinear terms
with a coefficient involving the length of the considered time interval, see Proposition 6.4
below. This is why this method is suitable for local existence results (but not relevant if we
are interested in global existence for small data).

The strategy developed in proving global existence and uniqueness for small initial data
is more involved. More precisely, in this case it is essential to linearize around a stationary
solution and to prove that the corresponding linear system is exponentially stable. To prove
this property we use a “monolithic” approach, which means that the linear system preserves
the coupling between fluid and structure. However, in order to obtain the maximal regularity
property we repeatedly use a perturbation argument. Roughly speaking, this means we deduce
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the maximal regularity property for the coupled system from the corresponding properties of
the linearized fluid equations with homogeneous boundary conditions.

The plan of the paper is as follows. In the next section, we introduce the governing
equations and we state our main results. Section 3 is devoted to notation, which introduces,
in particular, several function spaces playing an important role in the remaining part of this
work.

Part 2 is devoted to the proof of a local in time existence result. More precisely, in Section 4
we rewrite the governing equations in Lagrangian coordinates, in Section 5 we prove the
maximal LP-L? regularity for an associate “cascade” type linear system, whereas in Section 6,
we derive the required estimates and Lipschitz properties of the nonlinear terms in order to
apply a fixed-point procedure.

In Part 3 we prove global existence and uniqueness of solutions for small initial data. This
is divided into several sections. In Section 7, we linearize the system around a constant steady
state and we rewrite the system in the reference configuration. In Section 8 we recall some
results concerning maximal LP regularity for abstract Cauchy problems and its connections
with the R-sectoriality property. In Section 9 and in Section 10 we prove the maximal LP-L4
regularity of a linearized coupled fluid-structure interaction problem on time interval [0, c0).
We prove Lipschitz properties of the nonlinear terms in Section 11 and finally in Section 12
we prove the global existence theorem.

2. STATEMENT OF THE MAIN RESULTS

We consider a rigid structure immersed in a viscous heat conducting gas and we denote by
Qg(t) the domain occupied by the solid at time ¢ > 0. We assume that the fluid and rigid
are contained in a smooth bounded domain Q C R3. Moreover, we suppose that (0) has a
smooth boundary and that

dist(Q2s(0),09) > v > 0. (2.1)

For any time ¢ > 0, Qp(t) = Q \ Qs(t) denotes the region occupied by the fluid. The motion
of the fluid is given by

Op + div(pu) =0 in (0,7) x Qp(t),
p(Ou + (u - V)u) —dive(u,p) =0 in (0,7) x Qp(t), (2.2)
cop (09 +u - V) + pdiv u — kAY = a(div u)? +2uDu: Du  in (0,T) x Qp(t),

where
o(u,p) =2pDu+ (adiv u — p)Is,

Du = %(Vu +Vu'),

2
,u>()andoz—|—§u>0, (2.3)
A:B= Z a;;bij is the canonical scalar product of two n X n matrices,
/Z:7j
p = Rp?, R is the universal gas constant.

Note that we denote by M T the transpose of a matrix M.
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At time t > 0, let a(t) € R, Q(t) € SO3(R) and w(t) € R? denote the position of the center
of mass, the orthogonal matrix giving the orientation of the solid and the angular velocity of
the rigid body. Therefore we have,

QUQH) 'y = Aw(t))y =w(t) xy, VyeR’,

where the skew-symmetric matrix A(w) is given by

0 —Wws3 w2
Aw) = | ws 0 —wi|, weR?
%) w1 0

and where f denotes the time derivative of f.
Without loss of generality we can assume that

a(0)=0 and Q(0)=1Is. (2.4)
Thus the domain occupied by the structure Qg(t) is given by
Qs(t) = alt) + Q)y, >0,y € Qs(0). (2.5)

We denote by m > 0 the mass of rigid structure and J(t) € M3zx3(R) its tensor of inertia at
time t. The equations of the structures are given by

2
md—za = —/ o(u,p)n dy in (0,7),
a 295(1) (2.6)
J%w = (Jw) X w — (x —a(t)) x o(u,p)n dy in (0,7,

0Qs(t)

where n(t, ) is the unit normal to 9Qg(¢) at the point = directed toward the interior of the
rigid body. We assume that the fluid velocity satisfies the no-slip boundary conditions:

u(t,z) =0, x € I,

u(t,z) = a(t) +w(t) x (z —a(t)) (x € 0Q5(1)). (2.7)
We also suppose that the structure is thermally insulating:
)
g—n(t,w) =0 (t € (0,T), x € 00p(t)). (2.8)

The above system is completed by the following initial conditions
p(0,-) = po, u(0,-) =up, I(0,-) =1 (in Qr(0)),
a(0) =0, a(0) =4y, Q0)=1I3, w(0)=wo. (2.9)
To state our main results we introduce some notation. Firstly W*9(Q), with s > 0 and

q > 1, denote the usual Sobolev spaces. Let K € N. For every 0 < s < k, 1 < p < o0,
1 < g < oo, we define the Besov spaces by real interpolation of Sobolev spaces

By () = (L), WMD) ok -

We refer to [1] and [28] for a detailed presentation of Besov spaces. We also need some
notation specific to our problem.

1 1 1
Let2<p<ooand3<q<oosuchthat7—1—2—7&5. We set
p q

Ipg = {(Po,uo,ﬁo,fo,wo) | po € WH(Qp(0)), uo € BXSHP)(Qp(0))?,



9o € B7HYP(Qp(0)), b € R, wp € R, Sini(lg) po >0
F

uo=00ndQ u(y)=lo+woxy yE 393(0)}}. (2.10)
Such a definition has a sense since from the Sobolev embedding we have
WH(QF(0)) — C(2r(0)).
Moreover since » +1q <1l,if f € By (1 1/p)(Q (0)), then (see, for instance, [28, p.200]), f

admits a trace on dQp(0) with flaq,. (o) € By (1 1/p)= 1/"(39 (0)).
The norm of Z,, ; is the norm of

W(Qp(0)) x BXYP(Qp(0))® x BE=HP)(Qp(0) x RS

We introduce the set of initial data

1 1 1
Tpyq if - <-4+ =<1,
cc _ ’ 2 p 2
e = (2.11)
e ( 90, lo,wo) € T, \8190 0, on 90p(0) L ity L]
= n H—+—<-.
£0, U0, Vo, €0, Wo pa | g , O F » 2 B

Again, the normal derivative in the above definition is well-defined due to the trace theorem
for Besov spaces (see, for instance [28, p.200]).

We also need a definition of Sobolev spaces in the time dependent domain Qr(t). Let A(t, )
be a C!-diffeomorphism from Q5 (0) onto Qx(t) such that all the derivatives up to second
order in space variable and all the derivatives up to first order in time variable exist. For all
functions v(t,-) : Qp(t) — R, we denote v(t,y) = v(t, A(t,y)) Then for any 1 < p,q < co we
define

LP(0,T; LY(Q2r(+))) = {v | v e LP(0,T; L1(2r(0)))}

LP(0, T; W4(Qp(+) = {v | € LP(0, T; W (Qp( ) )},
WP (0,T; LYQp(-))) = {v | 0 € WHP(0,T; LY (2r(0)))}
C([0, T WH(Qe () = {v | € C(0, T WH(Qr(0))}

c([o, 7} Bg,%*/m(ﬂF(-))) ={v 15 e c(o, 1) B P @n(0) }

We are now in a position to state our first main result.

1 1 1
Theorem 2.1. Let 2 < p < o0 and 3 < q < oo satisfying the condition — + % # 3 Assume

q
that (2.1) is satisfied and (po,uo, Vo, Lo, wo) belongs to Iy, Let M >0 be such that

1
i < po(x) < M for x € Qp(0). (2.12)
Then, there exists T > 0, depending only on M and v such that the system (2.2) - (2.9)
admits a unique strong solution

p € WH(0,T; WH(Qp () N C([0, TT; WH(Qp())),
u € LP(0, Ts W>U(Qp(-))?) N WHP(0,T5 LU (+)?) 0 C([0, T]; By /P (2 (1)),
9 € LP(0,T; W4(Qp(-) NWHP(0,T5 LYQr(-) N C([0,T); By~ /P(Qr (),

| (pos uo, Vo, Lo, wo)llz, , < M,
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2,p .3 1,p .3
a € W*P(0,T;R%), we W"P(0,T;R?).

1
Moreover, there exists a constant Mr > 0 such that Vo < p(t,x) < My forallt € (0,T),x €
Qp(t) and dist(Qs(t),0Q) > v/2 for all t € [0,T].

Our second main result asserts global existence and uniqueness under a smallness condition
on the initial data.

1 1 1
Theorem 2.2. Let 2 < p < oo and 3 < g < oo satisfying the condition — + % # 3 Assume
p q

that (2.1) is satisfied. Let p > 0 and 9 > 0 be two given constants. Then there exists ng > 0
such that, for all n € (0,n9) there exist two constants 69 > 0 and C > 0, such that, for all
6 € (0,60) and for any (po,uo, Yo, Lo, wo) in LG, with

1
L = (2.13)
12£(0)] Ja, 0
and
||(p0 - ﬁv up, 190 - ga 607 wO)HZp,q g 57
the system (2.2) - (2.9) admits a unique strong solution (p,u,,{,w) in the class of functions
satisfying
(o = P)ll oo (0,00 (1)) T 1€ Vol wio0.00:La(@p () + 1€7000] 1o (0,00s 10020 (1))
1€ | oo comzagar () 1€ 0l Loo.00 a2 ) 1™l 0 00520179 (9
+ 117091 1o (000529 (2 () + 17 VI 100 0052001 () + 1€7 VI 100 00: 20010 ()
+ H(l9 - 5)HLoo(07OO;B3F;*1/p>(QF(‘))) + ”en(.)aHLl’(O,oo;]R% + Hen(.)d”Lp(opo;R:i)
+llall oo 0,002 + €7 Wm0 comey < C6. (2.14)
Moreover, p(t,z) >
t € [0,00).

for all t € (0,00), @ € Qp(t) and dist(Qs(t),00) > v/2 for all

N

As shown in Section 12, a simple consequence of the above theorem is:
Corollary 2.3. With the assumptions and notation in Theorem 2.2 we have

et M a1 g s+ 100 s + (8 s < Coe,

ot ) = Blwra@p) < Coe™™, (2.15)
where the constant C is independent of t > 0.

To prove Theorem 2.1 and Theorem 2.2 we follow a strategy which is widely used in the
literature on existence and uniqueness of solutions for fluid-solid interaction models, which is:

e Step 1. Since the domain of the fluid equation is one of the unknowns, we first rewrite
the system in a fixed spatial domain. This can be achieved either by a “geometric”
change of variables (see [5]), by using Lagrangian coordinates (see [20]) or by combin-
ing these two change of coordinates (see [17]). In the present work, we found more
convenient to use Lagrangian variables. Apart from allowing to rewrite the coupled
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system in a fixed cylindrical domain this allows us to tackle the term u - Vp in the
density equation.

e Step 2. Next we associate to the original nonlinear problem a linear one, involving
source terms. A crucial step here is to establish the LP-LY regularity property for
this linear problem. This is done by proving that the associated linear operators are
R-sectorial in an appropriate Banach spaces.

o Step 3. We estimate the nonlinear terms in the governing equations and we use the
Banach fixed point theorem to prove existence and uniqueness results in the reference
configuration.

e Step 4. In the final step we come back to the original configuration.

3. NOTATION

In this section, we fix some notations that we use throughout this paper. For s € (0,1)
and a Banach space U, Flf,q(O,T, U) stands for U valued Lizorkin-Triebel space. For precise
definition of such spaces we refer to [28, 22]. If T' < oo, this spaces can be characterised as
follows (see [31])

F;,q(()?T; U) = {f S Lp(07T7 U) ‘ ’f‘FI‘;q(O,T;U) < OO},

where
T T—t p/q 1/p
e om0 = ( [ e m - sy an) dt)
These spaces endowed with the natural norm
175,070y = Wf e,y + | flEs  0,m0)- (3.1)

If T € (0,00], we set QF = (0,7) x Qr(0) and
W2 (QF) = LP(0,T; W9(Qp(0))) N WP (0,5 L9(2p(0))),
with
lellywz oy = lullzr©rw2a@e ) + lullwrrorLa@r o)
For T' € (0, 00|, the space St 4 is defined by
3
STpq = {(,mu, Il w) | pe Wl’p(O,T; Wl’q(QF(O))), u € (Wqul(Qg)) ,

9 € W2LQK), e W'(0,T;R?), we Wl’p(O,T;R?’)} (3.2)

and
(o, w0, £,0) 151, = lpllwrrorwrapoy) + lullwz ey + 1921 o)
+Hlwreory + lwllwieor)-

For any T' < 0o or T' = oo we define Br ), , as follows

BT,p,q = {(fl)f??f?nh’aglagQ) | fl € LP(O7T7 WLq(QF(O))); f2 S LP(O,T, Lq(QF(O)))3,
f3 € LP(0,T; LY(Qp(0))), h € ESLHD/2(0,T5 L9(99Qp(0))) N LP(0, T3 W79(0Q5(0))),
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1 1 1
g1 € LP(0,T),92 € LP(0,T) with h(0,y) =0 for all y € 9Qp(0) if > + % < 5}, (3.3)

with

1(f1, f2s f3: b 91, 92) B,y = I f1ll oo, mswray + 1 f2ll o010y + [ f3ll Lo (0,20

+||h||Fé}q_l/Q)/Q(07T;Lq(89}7‘(0)))ﬂLp(O,T§W1_l/q’q(aQF(O))) + HgluLp(O,T) + HgQHLP(O,T)'

Part 2. Local in Time Existence and Uniqueness
4. LAGRANGIAN CHANGE OF VARIABLES

In this section, we describe a change of variables, obtained by a slight variation of the
usual passage to Lagrangian coordinates, which allows us to rewrite the governing equations
in a fixed spatial domain and to preserve the linear form of the transmission condition for
the velocity field. More precisely, we consider the characteristics X associated to the fluid
velocity u, that is the solution of the Cauchy problem

{ O X(ty) =u(t,X(ty) (E>0),
X(O7y) :yEQF(O)

Assume that X (t,-) is a C'-diffeomorphism from Qg(0) onto Qp(t) for all t € (0,7T) (see
(6.17)). For each t € (0,T), we denote by Y (¢,-) = [X(¢,-)]~! the inverse of X (t,-). We
consider the following change of variables

plty) = p(t, X(ty),  alt,y) = Q  (tult, X(t,y)),
d(t.y) =9t X (ty),  §= R, (4.2)
() =Q ' Wa(), () =Q " (Hw(t),
for (t,y) € (0,T) x Q(0). In particular,

(4.1)

plt,x) = Pt Y (t,2)), wult,z)=QU)u(t,Y(t,z)), O(tz)=70(tY(tz)) (4.3)

for (t,x) € (0,T) x Qp(t). This change of variables implies that (p, ﬂ,ﬁ,z,fu, a, Q) satisfies

{ P+ podivi = Fy in (0,7) x Q27 (0), (4.4)
5(07 ) = pPo in QF(O), '
Oy — pﬂAa— a:MV(div W) =F in(0,T)xQp(0),
0 0
=0 on (0,T) x 89, (4.5)
u=~l+wxy on (0,7) x 992¢(0),
[ u(0,7) =uo in Qr(0),
mi=g, in (0,7),
J(O)%w =Gy in (0,7), (46)
00) = £y, @(0) = wp




90— ——AJ = F; in (0,T) x Qr(0),
. PoCy
ov
5, = Hen n (0,T) x 9Q2p(0), (4.7)
9(0,-) = 9 in QF(O),
Q = QA®) 01 9
a(0) =0, Q(0) = Is,
where
t
X(t,y) =y+/ Q(s)u(s,y) ds, and VY (t, X(t,y)) = [VX]~'(t,y), (4.9)
0
for every y € Qp(0) and t > 0. Using the notation
Z(t,y) = (Zij)<ijes = VXNt y) (t=0, y€Qr(0)), (4.10)
the remaining terms in (4.4)—(4.7) are defined by:
Fup0,0,6.3) = =(5— po) divia — (V) : [(2Q)7 — k], (4.11)
(Fo)ilp, 1 0,5.3) = — 2@ x Qu)s + (1 -2 @wi- L o- f)am
Po Po Po
(Z 0k.i) Z, )
lzk 3ylayk ki = Og) 21 Z 3y53yk L)
+ = DAU, + =Y 7
[(Q )Au]; ”Zk J 6yk ayl
p+ a — 9*(Qu); p+ o 9*(Qu);
i —O0ki) i+ i — 014
o Uzk e (Zk,j — Okj) 2, p” ; Iy, (Z1i — d14)
at+p 0 [oo AT a+p (Qu); 0Zy,;
Vu : —1I3)| + 214
po  0Yi [ @ 3)] Po ljzk Oyr Oy
V(o8 rP (7795
R (2 Vp)z - R (2 w)z, (4.12)
ISP —p\ .~ RUp _ v 87
F5(5,10,9,0,8) = <p° p) 00— L 12Q" :Va+ - 7o Tk
Cupo Cupo copo Oy Oyl
K 929 K 9%
Zi — 0.i) Zii + Zip—6
CUpO aykayl ( k] k?]) l,] CU,OO ; 8ykayl ( l,k‘ l,ki)
Z Vi) vazQ)" 4.13
CUPO([ Q" :va) (ViZQ) (413)
H(p,u,9,0,3) = looHr + Loag ) Hs, (4.14)
He(,0,9,0,8) = (- 2"V He(p,0,9,0,8) = (Is — (2Q) ")V
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Go(5,0,0,0,3) = [vaZQ + (vaZQ)T} ta ([ZQ]T : va) Is + RpUI;, (4.15)

6:(7.%0.03) = ~m@x D~ [ Gond, (4.16)
9Qs(0)

Go(py 1, 9,0,3) = J(0)& x & —/ y x Gon dry. (4.17)
9Qs(0)

Using the above change of variables, our main result in Theorem 2.1 can be rephrased as:

1 1 1
Theorem 4.1. Let 2 < p < o0 and 3 < g < oo satisfying the condition — + % # 3 Assume
p q

that (po, o, Vo, o, wo) belongs to I, such that (2.12) holds. Then, there evists T > 0 such
that for any T € (0,T), the system (4.4) - (4.17) admits a unique strong solution

p e WH(0, T WH(Qp (0))),

€ LP(0, T; W>9(Qp(0))*) n WP (0, T; LU(Qp(0))*) N C([0, T BZS P (2 (0))?),

9 € LP(0, T; W>(Qp(0))) N WEP(0, T; LU(Qr(0))) N C([0,T]; B2I-1/P) (Qp(0))),

(e WH(0,T;R?), &€ W"P(0,T;R?), (4.18)
ac W?P(0,T;R?), Qe W?P(0,T;50(3)),
X € WHP(0, T; W29(Qr(0))) N W2P(0,T; LU(Qr(0))),
X(t,-) : Qp(0) = Qp(t) is a Ct — diffeormorphim for all t € [0, T).

1 ~

Moreover, there exists a constant Mp > 0, such that A < plt,y) < My, for all t €
T

(OvT)ay € QF(O)

The proof of the above theorem relies on a fixed point theorem and a linearization. We
describe below the main steps of the proof using the maximal regularity of an associated linear
problem and some estimates of the non linear terms involved in the fixed point procedure. For
the clarity of the presentation , we postpone the detailed proofs of the maximal regularity and
the estimates of the non linear terms technical results in Section 5 and Section 6 respectively.

Proof of Theorem j.1. Assume

(po, uo, Yo, Lo, wo) € I,%,

is given (see (2.11)) and (2.12) holds with M > 0.
We consider the following linear problem.

{ Op + podivu = fi in (0,T) x Qr(0), (4 19)
ﬁ(o7 ) = pPo n QF(O), ’
O — pﬂAa - O‘: EY(div @)= fo in(0,T) x Qp(0),
0 0
u=0 on (0,7) x 09, (4.20)
u=0+wxy on (0,7) x 092(0),

u(0,) = ugp in Qr(0),
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J(O)%UJ = g2 in (0,7), (4.21)
\ Z(O) = €07 W(O) = Wo
(00— AT = fy in (0,7) x Qp(0),
~ POCy
% - on (0,T) x 9 (0), (4.22)
9(0,-) = ¥ in Qz(0).

where
(P07 uo, 7907 éOv WO) € I]icqa (fla f27 f37 h7 g1, 92) € BT7p,q
are given (see (2.11) and (3.3)) and such that the initial conditions satisfy (2.12) with M > 0.
In the following we shall denote for each T, € (0,7, by Br, the closed unit ball in By, .

In Section 5 we will construct a solution to (4.19)—(4.22) providing a bounded ’solution
operator’

F- { Brpq — Stpg
(f17f27f3>hvglag2) = (ﬁ?aaﬁaaa})a
where we recall that By, , and Sr 4 are defined in (3.3) and in (3.2).
In Section 6 we then prove norm estimates for the nonlinear terms, 71, F2, F3, Hr, Hs, G1, Go.
More precisely, assuming that

T e (O,T), with 7 < 1 small enough,

we show that the obtained norm bounds here depend, up to a constant, on 7° where § depends
on p, q only. This allows us to define the operator

N Brpg — Brpg
(f17f27f37h791792) = (flaf%f?n?{yglng)?

and to show that, for sufficiently small f, it becomes a self-map of the closed ball

{(f17f27f37h791792) € BT,p,q ‘ ||(f17f27f37h?.glng)HBT,p,q < 1}

Finally, in Proposition 6.5 a Lipschitz estimate fQVr N is proved, again with a Lipschitz
constant depending on T°, provided that T € (0,T). This allows us to enforce a strict
contraction on the above closed ball and hence a fixed point, that provides a solution to
(4.4)—(4.17) satisfying (4.18). The bound of p will be obtained from the estimate (6.8). O

From Theorem 4.1 we can now deduce Theorem 2.1.

Proof of Theorem 2.1. Let us assume that (po,uo, Vo, o, wo) € 7, satisfies the condition
(2.12).

Let T < T with T as in Theorem 4.1. In particular, there exists a unique solution
(p, u, 5, g,w) to the system (4.4) - (4.15) satisfying

peWhP (0, T; Wh(Qp(0)))
w e LP(0,T; W4 (Qr(0))3) N WEP(0,T; LY(Qr(0))3)
9 € LP(0, T; W2(Qp(0))) N WHP(0, T3 LY(Q£(0)))
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(e WHP(0,T;R?), & e WhP(0,T;R?).

Since T < T, X(t,-) is C'— diffeomorphism from Q(0) into Qp(t), we set Y(¢,-) = X (¢,
and for x € Qp(t), t >0

a(t) = QU1), w(t) = QHB(D).
We can then check that (p,u, ), a,w) satisfies the original system (2.2) - (2.9) and
p € WH(0,T; WH(Qp () N C([0, TT; WH(Qr())),
w € LP(0, T W>9(Qr())°) N WHP(0,T; LUQr (-)*) N C(0, T); B~V (2 (1))?),
9 € LP(0, T; W4(Qp(-) NWHP(0,T5 LYQR(-) N C([0,T); By /P(Qr (),
a € WHP(0,T;R3), we WhP(0,T;R3).

The uniqueness for the solution of (2.2) - (2.9) follows from uniqueness of solution to the
system (4.4) - (4.15). Since a(t) and w(t) belongs to C([0,T];R?), using (2.1) we obtain
dist(Qg(t),00) > v/2 for all t € [0,T] if T is small enough. This completes the proof of
Theorem 2.1. 0

5. MAXIMAL L? — LY REGULARITY FOR A LINEAR PROBLEM.
~ 1 1 1 1 1
In this section, we fix T'> 0, and 1 < p,q < oo such that —+ — # 1 and — + — # —. We
P 2q p 2q° 2

also take T' € (0, 7). We consider the linear system (4.19)—(4.22) associated with (4.4)—(4.7),
where we replace the terms in the right-hand side by given source terms. The initial data for
the system (4.19)—(4.22) satisfies the following properties:

po € WH(Qp(0) N C(QF(0),  min po > M,

Qr(0)
up € B2OMP)(Qp(0))3, 0o € BEITYP(Qp(0)), ly € R, wy € R, (5.1)
1 1
up=00n 92, uo(y) =4lo+woxy yeIg(0) if5+2—q <1,
0V 1 1 1

Observe that the linear system can be solved “in cascades”: Equation (4.21) can be solved
independently and admits a unique solution

(0,&) € WHP(0,T)% x WHP(0,T).
Moreover there exists a constant C' = C (TV ) independent of T such that
ellwreo,) + @llwieorys < C(WO”R?’ + [lwollrs + g1l zr (0,18 + ||92HLP(O,T)3)- (5.2)

We also note that if we show that system (4.20) admits a unique solution u € Wq2, ’pl(Qg )3,
we can use the Sobolev embedding to prove that system (4.19) admits a unique solution
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p e WLP(0,T; Wh1(Qp(0))). There exists again a constant C' = C(T)) independent of T such
that

1ollwrr o rwra@po)y < C (WHW;,;(Qg)g + 1 f1ll e o.7;w (o)) + HPonm(QF(o))) :
(5.3)
Consequently, in order to solve (4.19)—(4.22), we need to solve the two parabolic systems
(4.20) and (4.22). This is done below by using [9, Theorem 2.3].

Proposition 5.1. With the above notation, assume T € (0,T] and ug € B;(p}_l/p) (Qr(0))3
with
o1 1
ug =0 on 9Q, wug=~Ly+wyxy ondNs(0) if 2;+2—q<1. (5.4)
Then for any fa € LP(0,T; LY(Qr(0)))3, system (4.20) admits a unique strong solution u €
W;}}(Q%ﬁ)?’ Moreover, there exists a constant C > 0 depending only on M, T and Qp(0)
such that

@20y < € (Iuollgaa-1m ey, s + Wollzs + lwolles

+lgtllroryp + 92l roryp + 12l o ria@ro?) - (5:5)

Proof. We take n € C*°(Qr(0)) such that
n=0 ondQ, n=1 ondNg(0).

For (t,y) € (0,T) x Qr(0), we set w(t,y) = n(y)(L(t) + w(t) x y). Therefore, using (5.2) we

see that there exists a positive constant C' depending on T" and Qp(0) such that

[[w(0, ‘)HBgf,}*l/”)(QF(o))?’ T Hw”Wi’z}(Q?)g’

(5.6)
< C(HEOHRE‘ + [lwollgs + lg1ll e (0,73 + ngﬂm(o,:r)?»)-
We look for the solution of (4.20) of the form u = v + w, where v is the solution of
v — pﬂm - a:MV(div o) = For  in (0,T) x Qp(0),
0 0
v=20 on (0,7) x 092r(0), (5.7)
v(0,-) = v in Qr(0),

with vg = up — w(0,-) and with
a—+
Po

]?2:f2—8tw+pﬂAw+ V(div w).
0

We can check that f> belongs to LP(0,T; L9(2p(0)))? and that there exists a constant de-
pending only on M such that

I f2ll 2o 0.1:La(@p 0)))8 < C(Hfz||Lp(o,T;Lq(QF(o)))3 + Hw||W;,;(Q,{;)3)- (5.8)

_ 1 1
Moreover, since vy € Bg,(pl 1/p)(QF(O))3 with vg = 0 on 0Qp(0) if — + 50 < 1, we can apply
p q
[9, Theorem 2.3] and deduce that (5.7) admits unique solution v € W, ’,,I(Qg )3.
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More precisely, here the ellipticity of the interior symbol can be checked since py(y) > ﬁ >
0 for all y € Qp(0), x> 0 and o + %,u > 0. The Lopatinsky-Shapiro condition also can be
verified (see [2, Section 6)).

This yields that (4.20) admits a unique solution u € Wi’;(@%)g In order to prove estimate
(5.5), we apply again [9, Theorem 2.3] on the system

05 — pﬂm— a: P9(div 3) = fr,  in (0,7) x Q(0),
0 0 ~

v=0 on (0,7T) x 0Qr(0)

@\(0) = 1o in QF(O).

In particular, for any fe LP(0,T; L1(01(0))3), there exists a unique solution
v e LP(0,T; W4(Qp(0))%) n W20, T, LY(Qr(0)%)

of the above system and by the closed graph theorem, there exists a constant C'z > 0 such
that

W”Lp(o,iwzq(QF(O)):ﬂ) + H@\HWlaP(O,T7L‘1(QF(D))3) S Cf( |”0HB§,(;*1/”)(QF(0))3 + HfHLP(O,T;L‘I(QF(O))?’))’

Then we take

Fo f ifO<t<T,
T lo T <t<T,

and by the uniqueness of the solution, we note that ¥ = v for all ¢ € [0,7]. Thus the above
estimate, (5.6) and (5.8) yield (5.5). O

Next we consider system (4.22).

Proposition 5.2. With the above notation, assume T € (0,T], 9o € Bgfpl_l/p)(QF(O)) and
h e FI§71(;1/(1)/2(O, T; L9(0Qr(0))NLP(0, T; W=Y99(9Q 1 (0))) with the compatibility condition
09 1 1 1

Then for any f3 € LP(0,T; LY(2r(0))), system (4.22) admits a unique strong solution 0 €
Wg,}(Q?) Moreover, there exists a constant C' > 0, depending only on M and T, such that

1Wllwzs@n) < C(”%”BSS‘”WQF(O)) T Msllzrozzs@eon + 1l g0 z0000)

+ ||h||LP(O,T;Wl—l/q,q(8§2F(0)))) . (5.10)

Proof. The existence and the regularity results follow from [9, Theorem 2.3].
Since we need a constant C'in (5.10) independent of T' € (0, 7] and this fact is not explicitly
stated in [9], we provide below a short argument showing that the constant C' can indeed be

chosen to be uniform for 7" € (0, T] To this aim, we decompose ¥ in the form ¥ = U1 + 52,
where 11 solves

801 — Ay =f3  in (0,T) x Qp(0),

- PoCo
89 11
Mo on (0,T) x 9 (0), (5-11)

191(0) = 190 in QF(O),
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and 52 solves

B0y — " Ady =0 in (0,T) x Qp(0)

- PoCy
a9 12
T = on (0,T) x 904:(0), (5.12)
¥2(0) =0 in Qr(0).

Proceeding as in the proof of Proposition 5.1, we first obtain
191lwz @n) < C<|’790||335;—1/p>(QF(0)) + Hf3HLP(O,T;Lq(Qp(O)))>7 (5.13)
where the constant C' may depend on T but is independent of T'. Let us set
/f\L . h if0<t<T,
)0 #T-T<t<o.
We first verify that
he F{L-VOIX(T — T, 75 LY0Qp(0)) N LP(T — T, T; WY/41(9Q £ (0))).

Obviously h belongs to LP(T—T,T; W'=Y29(9Qp(0))). The fact that T belongs to Fé}qfl/q)/Q(T—
T,T; L1(0Q2r(0))) follows from [28, Remark 2, Section 3.4.3, p.211]. Moreover

”h"Fg}q‘l/q”?(T—T,T;Lq(aQF(o))) Al Lo -7 - 1aa o0 o))

= Hh”F,S}qfl/q>/2(0,T;Lq(OQF(D))) + HhHLP(O,T;Wlfl/qvq(aﬂF(O)))'

We consider the system

6{;9\2 — B A@Q =0 in (T—T,T) X QF(O),

—~ APO Cy 2
G =h on (T —T,T) x dr(0), (5.14)
(T =T)=0 in Qp(0).

Note that, U5 = 0 for all t € [T —T,0] and Jy = Uy for all t € [0,T]. Therefore, we have

1921l Lo o mw2a(p ) + 192 lwir0.7.La(00 (0)))

1020 -7 zw2a@ey T 1V2lwin -7 La@r o))
S Ciﬁ(Hh”F;}q*1/‘1>/2(T—'T',T;Lq(aQF(o))) + HhHLP(T—T,T;W“1/‘17‘1(8QF(0))))
< Cr (Il o020 0o oy + Pl vozwi-vasonrion)-
This completes the proof of the proposition. O
Combining Proposition 5.1 and Proposition 5.2, we obtain the following result
Theorem 5.3. Let T be an arbitrary fived given time. Let 1 < p < oo and 1 < ¢ < o©
1 1
satisfying the conditions — + — # 1 and — + — # —. Let (po,uo, Vo, lo,wo) satisfy the
P 2q p o 2q " 2 N
assumptions (5.1). Then for any (fi, f2, f3,h, 91,92) € Brpg and T € (0,T) the system

(4.19)—(4.22) admits a unique solution (p,u,?,¥,w) € Sty 4 and there exists a constant C > 0
depending on p,q, M, T and independent of T' such that

15,8, 9,2,) 52,0 < C (1l (00,0, D0, f0,w0)llz, , + 1(f1s for fos s g1 90l )+ (5:15)
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6. ESTIMATING THE NONLINEAR TERMS

In order to prepare the forthcoming fixed point argument, we provide in this section es-
timates of F1, Fa, F3,G1,G2, Hr and Hg defined in (4.11)-(4.17) where (f1, f2, f3,h, 91, 92)

are given and where (p,u,?,/¢,w) is the corresponding solution of (4.19)—(4.22) given by
Theorem 5.3.

1 1 1
Assume 2 < p < 0o and 3 < ¢ < oo satisfy — + % % X Let p’ denote the conjugate of
p q

p, i.e., % + z% = 1. We will frequently use the following immediate consequences of Holder’s
inequality.

£ ooy < T fll oo,y for all f € L"(0,T), r > p, (6.1)
£l .y < TN flwn 0.1 for all f € WP(0,T), f(0) = 0. (6.2)
In the following, when no confusion is possible, we will use the notation
|- llwrerwsa) = | - lwreo,rwsa@r0))-

We next recall three estimates which play an essential role in the remaining part of this
section. For the first two estimates we refer to the relevant literature, whereas for the third
one we provide a short proof.

Proposition 6.1. [25, Lemma 4.2] Let 1 < p,q < oo and T be any positive number. Let Q
be a smooth domain in R™. Then for any u € Wapn((0,T) x ),

t _ < C ([lu(0 . , : 6.3
558 1Ol ) < € (18O - )+ Iz o) (63)

where the constant C is independent of T .

To state the second estimate, we use the Lizorkin-Triebel space prq(O,T;X ) defined in
(3.1).

Proposition 6.2. [9, Proposition 6.4] Let 1 < p,q < oo and T be any positive number.
Let Q be a smooth domain in R™. Then for any u € Wiy ((0,T) x Q), Vulsg belongs to
Fé}qfl/q)/z(o, T; L4(0Q)) N LP(0, T; W'=249(9Q)). Moreover,

IVl paviorz 1 pooayns o mwi-vasomy < © (”“(0)”322‘1/”)(9) * ”“”Wiﬁ((omvm) ’
(6.4)
where the constant C' is independent of time T.
The third one of the estimates mentioned above is given in the following result.

Proposition 6.3. Let Uy, Uy and Us be three Banach spaces and ® : Uy x Us — Us a bounded
bilinear map. Let us assume that f € F5 (0,T;U1) and g € WHP(0,T;Us) for some s € (0,1),
p>2 and q > 3. Let us assume that g(0) = 0. If s + % < 1, then we have

Hq’(fag)”F;q(o,T;Ug) < CT&”QHWLP(O,T;UQ)Hf”F;’q(O,T;Ug)a (6.5)

for some positive constant & depending only on p,q and s and the constant C is independent
of time T.
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Proof. From the boundedness of ® and (6.2) we infer

12(f, )| oo.:05) < ClF oo romllgll o or00) < CT || o1 9l wiro.rivm)s (6.6)
since ¢g(0) = 0. Using again the boundedness of ®,

T T—t P/q
D, oy = / (/ BRI B(F(E+ R), gt + B)) — D), gD, dh) dt

p/q
C’pq/ </ R (f(t+h) = FONT g + R, dh) dt

T—t p/q
+ Cpg /0 (/0 B F ()1, gt + B) — g(8)]2, dh) dt

=1 + I.
We estimate I using (6.2)

1< Coall gl o 2y iy 0:0) < Coa T N0 iy 1 s 00

Since g € WHP(0,T; Us), by using Holder’s inequality we have
lg(t + hy ) = gt )lwy < B llgllwr e i), for all h € (0,7 —1),¢ € (0,T).
Using the above estimate and the fact that 0 < s+ 1/p < 1, we get

T T—t . ) ?/q
12 < Coallsyusorany [ 10O, ([ a7 0 an)

T a(1=1/p—s) \ "/*
< Cpallsliinirary | 15N, <( T ) at

< Cpg,s Tr(=es) ”g”wlp (0,1:U>) ”fHLp (0,T;U1)

Combining the above estimates, we obtain (6.5). O

Our aim is to estimate the non linear terms in (4.11)-(4.17):

Proposition 6.4. Let 2 < p < 00 and 3 < q < oo satisfying the condition % + i # % Let

(po, uo, Yo, Lo, wo) € 7,5 such that (2.12) holds. There exist T < 1, a constant 6 > 0 depending

only on p and q, and a constant C > 0 depending only on p,q, M,Tv such that for T € (O,T]
and fOT‘ (fla an f37 ha g1, 92) € BT,p,q satzsfymg

||(f17 f?a f37 hy g1, gZ)HBT,p,q <1
the solution of (p, 1,0, 0,&) € Stpq of (4.19)—(4.22) verifies
1(F1, F2, P, H, 61, Ga) Iy, < CT?.

Proof. We consider T' < 1 and we assume that T € (0, T ]. The constants C' appearing in this
proof depend only on M.
From (5.15) in Theorem 5.3, we first obtain

15, @9, 6,®)|sy.,,, < C. (6.7)
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Combining (6.2) and (6.7), we deduce
15 = poll o= 0. rw a0 (o)) < CT (6.8)

and
121l oo (0,7w10y < C. (6.9)
In a similar manner, we can obtain

@l oo 0,7, 1l poe(o,m) < C, (6.10)
and combining these estimates with (6.1) yields
121l oo, w0y + 1@l oo,y + [l Lo,y < cr'r. (6.11)

Since 2 < p < oo, one has By (1 1/p)(QF(O)) s Wh4(Qp(0)). Therefore, using Proposi-
tion 6.1 and (6.7) we get

16l oo (0,75w100) + Hg”LN(O,T;WLq) <C. (6.12)

For all s € (0,1) we have by complex interpolation

(1+s)/2 (1-s)/2
[t Moy < CIEE e o T e o
and thus
s s 1+s
HUHLP(OTW1+é 9(QR(0) < CT(l )/2p|| ”Loo/(20TLq Qr(0 )||u||Lp(/()2’T;W2,q(QF(0)))'
Therefore, using (6.1), (6.7) and (6.12), we get
[Tl oo, rwr+s0) + (0]l oo rywasay < CTUT9/22 s € (0,1). (6.13)

Combining the above estimate with the fact that W52(Qp(0))) — L*(Qp(0)) for s € (3/¢,1),
we deduce

6]l e o, 7,200y + IVl Lo (0,7, 00y + V9| 1 0.T,L°) < SCTU/2 5 € (3/g,1). (6.14)

The solution of (4.8) satisfies @ € SO(3) and thus |Q(¢)] = 1 for all ¢. In particular,
|Q| < C|@| and we deduce from (6.2) and (6.7)

QI o rmexsy <C and  [|Q — I3[ poe (o rmaxsy < CTY. (6.15)
Let X be defined as in (4.9). Then

T
sup [|[VX(t,) — Isllwrap0) < C/O IV |raop 0y < CT IV oo rwiay-

te(0,7)
Now using W14(Qr(0)) < L®(Qr(0)) and (6.7) we deduce from the above estimate
sup VX (t,+) = Il Lo (0 < CT (6.16)
te(0,T)

In particular, there exists T such that
1
IVX(E) = Il L= @ro) < 5

for all 0 < t < T < T. This implies that VX(¢,-) is invertible and we can thus define
= [VX]~!. More precisely, combining

AV X(t,y) = Q)Vu(t,y),

(6.17)



and (6.7) and (6.15) we get

10:V X || Lo 0,10y < 1@ oo (0,0 IV Lo 0,75w1.0) < C,
where C' depends only on M. The above estimate and (6.16) yield

IV X lwieo,rwia@e©)) T IVXI Lo rwia@p0)) < C.

19

Since WP (0, T; W14(Qr(0))) and L>(0,T; Wh4(Qr(0))) are algebras for p > 2 and ¢ > 3,

this implies

| det VX |lywp0,m:w10(p0)) + | det VX || Lo (0.7,w 10 (927(0)))

<G,
|Cot VX [lwrw0rwrap(o)) + [CAVX || Lo 0. mmwrap(0))) < C
From (6.17), we deduce that det VX > C > 0 in (0,7) x Qz(0) and thus from

(CofVX)T,

T detVX
we deduce

1 Zl|wrw 0.0 9@p0)) T 121 Lo 0,mw 1090 0))) < C-
IVXlwrro,rwra@ro)) + IVX Lo mwra@eo) <O,
The above estimate combined with (6.15) and with (6.7) implies
1QZlwr.e 07w a0 (0))) + 1QZ | oo 0,7;w 190 (0))) < C-

We are now in position to estimate the non linear terms in (4.11)-(4.17):
Estimate of Fj.

||f1||LP(0,T;W1¢1(QF((]))) < cr'”.
Since W14(Q5(0)) is an algebra for ¢ > 3, we can write

H}_lHLP(O,T;WL‘I(QF(O))) <Cllp - PO”LOO(O,T;WM)H div ﬁHLP(O,T;Wl’q)

+ Cl|pll Lo (0, wra) |QZ — I3l oo (0,1:w1.0) [ VU] Lo (0,751,

(6.24)

Combining the above estimate with (6.9), (6.8), (6.7), (6.22) and (6.2), we deduce (6.23).

Estimate of F5.
HFZHLP(QT;WLL]) < CTl/P.
Let us recall the definition (4.12) of Fo:

. -
(F)ip .0, 0,3) = L@ x Qu)i + (1—) (0, — i P 1q - no,

Po Po
— ki) 21+ — — 0
% aylayk Zii = Ons) 21y Z aylayk Zie = Ou)
,LL Q’LL azk ,J
A Z

[(Q ZJ;C YOy oy

,u+a 0%(Qu); A+ o 0%(Qu);
lz% ayzayk ki = ki) 21, Po ZZ]: y19y; (Z0i = 01)

a+p 0 ~ T a+p (Qu); 0Z ;
+ Vu : —I3)| + AR :
po  Oyi [ @ 3)} Po T Oy Oy

(6.25)
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9 _
~rYZ (ZTV,O>

Po
e Estimate of first term of F5 : using (6.1),(6.9), (6.10) and (6.12), we have
| 2@ x Qi

Po

e Estimate of second term of F3 : using (6.7) and (6.8) we have

(- 1) o
<CoT,

e Estimate of third term of F» : using (6.7), (6.9) and (6.15)
1, &

- Rpi (ZTVf?)i

LP(0,T;L9) S CHM‘LO@(O,T;WM)H‘T’HLOO(O,T;W)WHL”(O,T;L‘?)

<oTr.

LP(0.TiL4) < Cllp = pollpee om0y |08l Lo 0,70

[(Q — I)0yul; HLP(OTLq) ClIpll oo 0,0 w 1) 1Q — I3l oo (0,1 1Tl e (0,70
<or.

e Estimate of fourth term of F» (the estimate of fifth, eighth and ninth therm of Fy are
similar)

I & G =04

< OY10yi

LP(0,T;L9)

< Ol oo, ryw2a) || Z — I3HLO<>(0’T;W1,q)||Z||L°°(0,T;W17‘1)
<cr,

by using (6.7), (6.20) and (6.2).
e Estimate of sixth and tenth term of Fy :

Fro- atp 9 [on o7 _ ’

Hpo (@ = DAd; Lr(0,75L9) H po Oy {VU‘(Q 13)} LP(0,T;L7)
< C|Q — I3l oo (0,7,r3x3) Ul Lo (0,7, 72.9)
<or'’?, (‘using (6.7) and (6.15))

e Estimate of seventh term and similarly, the eleventh term of F»: notice that for any 1 <

07y ;
J.k, 0 <3 and all y € Qp(0), ak’J (0,y) = 0. Therefore, using (6.2) we have
Y

"110Zk

0z,
el <7 <
oy 1L (0,T;L9) WL.p(0,T;L9)

Using this estimate, along with (6.7), (6.15) and (6.20) we infer

[y, 2005
T Oy O

T Z|lwrw o mwriay < CT.

L (0,T;L9)

8Z,w~’

gCHQHL%(QT)HZHLP(O,T;WL‘I)Hva“Ll’(07T;leq)ZH oy, ‘LM(OT.Lq)
gkl Y

<eTv,
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e Estimate of twelfth term of 7 :

0 g ~ _
HR% (ZTVIJ>Z,HL17(0,T;L4) < Cl9| oo, w1y | Z | oo (0,05w1.0) [V Il oo 0,1 L)
<cr'l, ( using (6.9), (6.20) and (6.12))

e Estimate of last term of F5 :

7
HR% (ZTVﬁ) HLP(OTLQ) CHpHLOO OTqu HZHLOO ()Tqu HVQ9HLP OTL‘I)

<CT'lr, ( using (6.9), (6.20) and (6.12))
We deduce (6.25) by noticing that 1/p < 1/p/.
Estimate of F3.
73]l oo mwra @m0y < CTE/2 s € (3/g,1). (6.26)
We recall that F3 is defined by (4.13). The estimate of first five terms of F3 are similar to

estimates of terms of F» and we skip their proofs. The estimate of the last two terms are
similar and we only consider one of these terms: using (6.14), (6.22) yields, for s € (3/q,1),

H[ZQ]T : VﬁHLp(O7T;LOO) < \|ZQHL00(07T’W1,q)HVﬂHLp(QT’Loo) < CT(:L*S)/QP. (627)
Using (6.22) and (6.12), we obtain
11Z2Q)" - VﬁHLm(OyT;Lq) < NZQl Lo o.7,wra) [Vl Loo 0,7,20) < C- (6.28)

where the constant C' depends only on M. Combining (6.27) and (6.28) we obtain
o T o~)\2 T o~ T o~

| == (1za" : va) | <ONZQ" : Vitl| g 7.y 112Q1 : Vitl] o 710
000 T T3

SCTU=/2P 5 € (3/g,1).
Estimate of G; and G5 .

LP(0,T;L9)

G|l 2o 0,7y + 1G2 ]| oo,y < CT?, (6.29)
where Gy and Gy are defined by (4.16) and (4.17)
We first show that

‘/395(0)

where Gy is defined by (4.15).
Using (6.13) and (6.22)

IVUZQ| oo, r:wsa) < CNZQ poo o, w10y 18l oo w1450y < CTU=9)/2 5 (14,1).

Using the trace theorem, we deduce that

/ VuzZQ@Q -n dy
0%25(0)

The other terms can be estimated similarly.
On the other hand, from (6.10),

1& % €l oo,y + 17(0)@ X &l ooy < CTY”
and combining this with (6.30), we deduce (6.29).

LP(0,T) " H/BQS(O) v gonHLP(O,T) < 0T, (6.30)

<CTU9P 5 e (1/,1).

LP(0,T)
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Estimate of Hr and Hg.

S
1 -l o072 7. ooy 1 10w -nagony) < O (6:31)

d
s - ll pasvarrz o o pagons o) n Lo mwi-aasoy S €T (6:32)

where Hp and Hg are defined by (4.14).

Recall that, Hp = (Is—Z T )Vd. Using (6.7), (6.20) and (6.2), and recalling that W4(2x(0))
is an algebra we first obtain

HHF : ”HLp(o,T;Wlfl/q(aQ)) S CHHFHLP (0,T;W1La(Q5(0)))
S CH(I3_ZT HLOO 0,T;W1La(Qp (0 HVﬂHU’ (0,1sWha(Qr(0)))
<or.
To estimate the Lizorkin-Triebel norm of H F n, we shall use Proposition 6.3 with parameter
s=(1-1/q)/2 : for Uy = Uz = LI(ON), Uy = W Y49(9Q) and ®(f,g) = f-g. Since

3 < q < oo, W'=449(9Q) < L>®(d) and so the hypothesis of the proposition on ¢ are met.
Since 2 < p < oo, we also have s + 1/p < 1. We write

)
Heloo - n =3 |G = Zix) 5| (L yns (), € 00
ik %
By Proposition 6.2 and (6.7), there exists a constant C' depending only on M such that
“Y . <C
H Oy " HFzﬁ}q‘l/Q)/z(o,T;Lq(aQ))
for all 1 < j,k < 3. On the other hand, using (6.20), one has

‘leP(O,T;Wl—l/qvq((?Q)) < CH‘SM ~Zjk ‘Wl’p(07T§W1’q(QF(O)))

where the constant C' depends only on M. Finally (6;, — Z;x) (0,y) =0 for all 1 < j,k < 3.
From Proposition 6.3 we obtain

10,k = Zjk <C,

[#rloq -l og-v072(0 7 pagomy) < O

The estimate of Hg - n is similar. O

Proposition 6.5. Let 2 < p < 0o and 3 < ¢ < oo satisfying the condition % + % #* %

Let (po, uo, Vo, Lo, wo) € I, such that (2.12) holds. There exists T < 1, a constant § > 0

depending only on p and q, and a constant C > 0 depending only on p,q, M, T such that for
T € (0, T] we have the following property: for (f1 3, 12,07, g,93) € Bropg satisfying

H(fl f27f37h]791792)”Bqu < 1)

Jor j =1,2, let (77,6 ,09, 09,557 be the solution of (4.19)—(4.22) corresponding to the source
term (flaf27f37hja,91792) Let us set

Fl=FR@,@,0,0,&), Fl=FR@, o0 0,5, Fl=FK@pw 9 0,6)
Hi" = HF(ﬁ]>aJ?5]7ZJ7&j)7 Hfs’ = Hs(ﬁj?a]>5jvz]7w])77{] = 11897'[% + ]1895(0)%%
gj gl(ﬁ]’aj’{gj’@’w])? g% ZQQ(ﬁjaﬂjagjaZjan)a
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Then
< CT°.

T,p,q

| - 727 - R - FH -2 G - G361 - 6B)

Proof. The proof of this proposition is similar to the proof of Proposition 6.4 and we only
give here some few ideas. From (5.15) in Theorem 5.3, we first obtain

||(ﬁ17171’1§1,zl7@1) - (Z)Qaa2a52az2aa32)”$1p,q
<O 3. f3.00 91, 00) = (2. 13, 03,02, 08 63| s, - (6:33)
Combining (6.2) and (6.33), we deduce

(P W ghgd) — (52 B3 b2 )
(6.34)

15" = 5%l s (0.7 0))) < CT

In a similar manner, we can obtain
6" = &2 oo o1y + 168 = €| Lo 0,7
<SCTM(f f3. 850 ab.g3) = (713, 13,02, 08 93) || g, - (6:35)

Since 2 < p < oo, one has Bgy(pl_l/p)(Qp(O)) — Wh4(Qp(0)). Therefore, using Proposi-
tion 6.1 and (6.33) we get

@' — @ oo o ey + 19" = 92| oo 0,1 w10)
<C|(f fo f5. 00 0t 90) = (F2 13 130, 01, 0) || g, - (6:36)

Proceeding as in the proof of Proposition 6.4, we can then deduce
@' — @ oo, 1,100y + VT — V& | o011y + vt — Vg2”LP(O,T,L°°)
<CT(l_S)/sz(fllaf217f31’h1’g%7.g%)_(f127f227f327h2ag%agg)HBT’p,q’ s € (3/‘1’1)' (637)

Let us denote by Q' and Q? the solution of (4.8) associated with @', @2. Then Q' — Q?
satisfies

Q)= (@ -@)A@) +@AG -F) wOD.
(@1 =@*) (0) =0,
and thus from (6.10), (6.35) and Gronwall’s lemma, we obtain
Q" — @l ormsns) < CT|| (7L £, £ 1 gk gd) — (7. 13, B3 02 )5, (6:39)
Let X!, X2 be defined as in (4.9) with (Q!,%') and (Q?,4?). Then
V(X' -XH)=(Q'-Q*) Va' +Q°V (a' —u®), V(X'-X?)(0,-)=0.
and from (6.7), (6.15), (6.33) and (6.39) we get
10:V(X = X?)[| o010
<1Q" = Q| oo 0,1 IV | oo w10y + Q| Loe oy IV (@' — @) || 1o, 7 w10

< CH(fllvféluf?}ahlagig%) - (f127f22)f‘3?7h27g%7.g§)HBT,p7q'

The above estimate yields
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V(X" = X2 [wreorwra@e o))
<O Fo fs. b g1, 00) = (L 130302 7. 3, -

the above estimate and (6.2) yield

V(X" = X?)| oo 0,mw 1902 (0))
<SCTYW||(fL 13, f3. 0 ot o) — (R 13 1302, 08 0D |, -

The rest of the proof runs as the proof of Proposition 6.4. O

Part 3. Global in Time Existence
7. LINEARIZATION AND LAGRANGIAN CHANGE OF VARIABLES

In this section, we slightly modify the change of variables introduced in Section 4 and we
rephrase the global existence and uniqueness result in Theorem 2.2 in terms of the functions
issued from this change of variables. The reason of this modification is that, here we need to
linearize the system around the constant steady state (p,0,4,0,0). More precisely, define

Alty) = pt, X(ty) — 5, alt,y) = Q (t)u(t, X(t,y)), (7.1)
I(t,y) =0, X(t,y) =9,  p=Rpv, (7.2)
() =Q '(Ma(t),  &(t)=Q '(Hw(t), (7.3)

for (t,y) € (0,00) x Qp(0), where X has been defined as in (4.1).
Then (p,u, 9, ¢, w) satisfies the following system

8tﬁ+ﬁdiv17:}"1 in (0,00) X QF(O),

Bt — div oy(p, 1, V) = Fo in (0,00) x Qp(0),

80 — L AD + R—ﬂdivﬂ:fg in (0, 00) x Qx(0),
PCv Cy

u=0 on (0,00) x 0L,

U=0+Txy on (0,00) x 9Qg(0) (7.4)

@:”H-n on (0,00) x 0Q2r(0),

on

EZ: —m ! o1(p, u, 5)71 dy + Gy t € (0,00)

dt 9924(0)

d _ -

—w = —J(O)_l/ y X oy(p,u,9)n dy + Ga t € (0,00)

dt 995(0)

p(0) =po—p, w(0)=muy, (0)=1p—9 in Qp(0),

00) =4y, @(0) = wo,
where

~ 2 _ RI_. - JONN RN
oi(p,u,¥) = %D&W— <j divu — B;?p - Rz?) Is, D(u)= §(Vu + val), (7.5)
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Q=QAW®), QO)=1I (7.6)

and
t
X(ty) =y +/ Q(s)u(s,y) ds, and VY (,X(t,y) = [VX]"'(t,y), (7.7
0
for every y € Qp(0) and t > 0. Using the notation

Z(t,y) = (Zighijez = VX (tY) (t =0, y € Qp(0)), (7.8)

the remaining terms in (7.4) are defined by
Fu(p,1,0,0,8) = —pdivii— (p+p) (2" — Is) : Vi (7.9)

(F2)i7,,9,0,3) = - @w < Q)+ 50 - "7 ((Q - 1,

Vi _ Rﬁ(

Cy

e P~ R/~ _~ —_
Fo(p1,0,0.3) = = Lo — — (5 + 50 + p) [ZQ]T
p Cup

K o9 07y,
+— > 7 J (Zi1 — O1k) Z15
gz " Oy o Z 3yk8yz b = Ouk) Z1g

1ZQ)" ) . Vi

iy

wizQ)'|, (7.11)

H(p, 0,9, 0,3) = LooHr + Loaso Hs
He(p,0,9,0,3) = (Is — Z)VI, Hs(p,u,0,0,5) = (Is — (ZQ) ")V, (7.12)

Go(p.5.0.0.5) =2 [Vi(2Q - 1) + [(2Q)T - 1) (V)]
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+ % ((12Q)T - k) : Vi) Is + Rpils, (7.13)
~ o~ m . ~
gl(p7u>19>€7w) = _f(w X f) _/ Gon dv,
P 005(0)
Go(p, 0,0, 0, &) = @w X & —/ y x Gon dn. (7.14)
P 005(0)

Using the above change of variables, Theorem 2.2 can be rephrased as follows.

1 1 1
Theorem 7.1. Let 2 < p < oo and 3 < g < oo satisfying the condition — + % # 3 Assume
_ p q
that (2.1) is satisfied. Let p > 0 and ¥ > 0 be two given constants. Then there exists ng > 0
such that, for all n € (0,m0) there exist two constants oo > 0 and C > 0 such that, for all

§ € (0,00) and for any (po, uo, Yo, Lo, wo) belongs to I, satisfying
1

—_— po dx = p, 7.15
12r(0)] Jag(0) (7.15)

and
|(po — B, w0, Yo — U, o, wo)|lz,., <9, (7.16)

the system (7.4) - (7.13) admits a unique solution (p,7,?,0,%) with

151 £ (0,000 (2 (0))) F 1€7VBllwrn (0,00: 20 (2 (0))) + €708 160,005 L0021 (0))
1€ @l oo sz ac@r)2) + 16" 04 (0 0esa@0)%) 1€ T e 52010 1 019
+ (17000 Lo 0 00519 (2 (0))) + €7V | oo 00;La(20 (0)) + €7 V2| Lo 0,005 9(02 (0))
190 e 00582017 @ oy 167 10,0012

+ 1€ Bl wrp(oorsy < CO. (7.17)

Moreover, X € L°(0,00; W4(Q2r(0)))2 N WH>(0, 00; WH(Qr(0))) and X(t,-) : Qp(0) —
Qr(t) is a Ct-diffeormorphim for all t € [0, 00).

8. SOME BACKGROUND ON R SECTORIAL OPERATORS

In this section, we recall some definitions and results on maximal LP-regularity and R-
boundedness. In what follows, we use Rademacher random variables, that is symmetric
random variables with value in {—1,1}. We first recall the notion of R-boundedness.

Definition 8.1 (R-bounded family of operators). Let X and )’ be Banach spaces. A family
of operators T C L(X,)) is called R—bounded if there exist p € [1,00) and a constant C' > 0,
such that for any integer N > 1, any T1,...Tn € T, any independent Rademacher random
variables r1,...,ry, and any x1,...,zy € X,

N ) 1/p N ) 1/p
B rimaf | <o B3
jz::lrj JTj v jz::lrjxj X

The smallest constant C' in the above inequality is called the Rp-bound of 7 on L(X,)) and
is denoted by R, (7). As usual we denote by E the expectation.
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For more information on R-boundedness we refer to [7, 8, 19] and references therein. In
particular, it is proved in [8, p.26] that this definition is independent of p € [1, 00).
We also recall some useful properties (see Proposition 3.4 in [8]):
Ry(S +T) < Ry(S) + Ry(T), Ry(ST) < Ry(TIR,(S). (5.1)
For any 8 € (0,7), we write

Yig ={A € C\{0} | [arg(A)] < B}

We now come to the second central definition.

Definition 8.2 (sectorial and R-sectorial operators). Let A be a densely defined closed linear
operator on a Banach space X with domain D(A). We say that A is a sectorial operator of
angle T € (0,7) if for any § € (1,7), Lr—p C p(A) and

Rg={AA—A)": xeX, g}
is bounded in L(X). In that case, we write
Mg(A) = sup [|AA = A) 7).
)\6277—[3

Analogously, we say that A is a R-sectorial operator of angle T if A is a sectorial operator of
angle T and if for any B € (7,7), Rg is R-bounded. We denote R, 3(A) the Ry-bound of Rg.

One can replace in the above definitions Rg by
Rg={AA-A)"': xex, 5},

In that case, we denote the uniform bound and the R-bound by M, 3(A) and 75,;5(14).
The importance of R-sectorial operators is explained by the following result:

Theorem 8.3 (Weis). Let X be a UMD Banach space and A a densely defined, closed linear
operator on X. Then the following assertions are equivalent

(a) Forany T e R, f € LP(0,T;X)
W =Au+f in (0,T), u(0)=0 (8.2)
admits a unique solution u satisfying the above equation almost everywhere and such

that Au € LP(0,T; X).
(b) A is R-sectorial of angle T < 7/2.

This result is due to [32] (see also [8, p.45]). We recall that X’ is a UMD Banach space if the
Hilbert transform is bounded in LP(R; X) for p € (1,00). In particular, the closed subspaces
of L1(Q) for ¢ € (1,00) are UMD Banach spaces. We refer the reader to [3, pp.141-147] for
more information on UMD spaces.

We can also add an initial condition in (8.2) and consider the following system:

W =Au+f in (0,00), u(0)=up. (8.3)

Corollary 8.4. Let X be a UMD Banach space, 1 < p < oo and let A be a closed, densely
defined operator in X with domain D(A). Let us assume that A is a R-sectorial operator of
angle T < 7/2 and that the semigroup generated by A has negative exponential type. Then
for every ug € (X, D(A))1_1/pp and for every f € LP(0,00; X), Eq. (8.3) admits a unique
solution in LP(0,00; D(A)) N WP(0, 00; X).
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Proof. The proof follows from the above theorem, [11, Theorem 2.4] and [27, Theorem 1.8.2].
U

In view of the above results, it is natural to consider the perturbation theory of R-
sectoriality. The following result was obtained in [18, Corollary 2].

Proposition 8.5. Let A be a R-sectorial operator of angle T on a Banach space X and let
B € (1,m). Let B be a linear operator on X such that D(A) C D(B) and

[Bz|x < allAz|x + bjz]|x, (8.4)

— _ —1
for some a,b > 0. Ifa < (Mﬁ(A)Rpﬂ(A)) then A+ B — X is R-sectorial for each

o g = MRy 5(A)
1— aMs(A)R, 5(A)

9. LINEARIZED FLUID-STRUCTURE INTERACTION SYSTEM

_ In this section we study the fluid-structure system linearized around (p,0,9,0,0), p > 0,
¥ > 0. More precisely, we consider the following linear system

Op+pdivu =0 in (0,00) x Qp(0),

Oru — divoy(p,u,9) =0 in (0,00) x Qp(0),

am—f A19+R—19divu:0 in (0,00) x Qp(0),
pCy Cy

u=Cl+wxy on (0,00) x 025(0) (9.1)

u=20 on (0,00) x 04,

o0

o = 0 on (0,00) x 9N (0),

iﬂ =-—m! o(p,u,9)n dy t € (0,00)

dt 995(0)

Ge==00" [ yxatuomdy t € (0,00)

dt 9925(0)

p(0) = po, u(0) =uo, ¥(0)="o in Qr(0),

6(0) = Eo, w(O) = Wwo,

where
o(p,u, V) = QPMDU + (i divu — B;ﬂp - Rﬂ) I3, D(u)= %(Vu + Vvaul). (9.2)

Our aim is to show that the linearized operator is R-sectorial in a suitable functional space.
In order to do this, we first consider the case of a linearized compressible Navier-Stokes-Fourier
system without rigid body and we use Proposition 8.5 in order to deal with the equations for
the rigid body.



29

9.1. Linearized compressible Navier-Stokes-Fourier system. In this subsection we dis-
cuss some properties of the generator of the semigroup describing the linearization around an
equilibrium state of the Navier-Stokes-Fourier system. Most of these properties follow from
the corresponding linearized compressible Navier-Stokes system and of the heat equation, and
in this case we just provide the appropriate references. Our contribution is to show that the
coupling terms can be seen as perturbations and thus tackled using either direct estimates or
abstract perturbation results for R-sectorial operators.
Let us set

X = Wh(Qp(0)) x LYQp(0))* x L(Qp(0)) (9.3)
and consider the operator Ap : D(Ar) — X defined by

D(Ar) = {(mu,ﬁ) € WH(Qp(0)) x W(Qr(0))? x W1(Qr(0)) |

9
u="0 on 9Qp(0), o _ 0 on 8QF(O)},
on
0 —pdiv 0
RO_ p a+p_ .
e —A+—Vd —RV
Ap = 7 7 Ep v : (9.4)
0 L A
Cy pCy

Let us first study some properties of the operator Ap.

Theorem 9.1. Assume 1 < q¢ < oo. Then there exists v9 > 0 such that Ap — vy is an
R-sectorial operator in X of angle < /2.

Proof. We first define

D(A) = {u e W (0r(0) [u=00n00p(0)}, Au=LA+ T‘v div,  (9.5)
and
K

’D(Ag) = {19 S WQ’q(QF(O)) | % =0on 891:‘(0)} , Ay = A. (9.6)

v

From [8, Theorem 8.2], there exists 79 € R such that Ay — 7y is R-sectorial of angle
< 7/2. Using [13, Theorem 2.5], we also obtain the existence of v, € R such that A, — v, is
R-sectorial of angle < 7/2.

In particular there exist v and 5 < 7/2 such that,

Rp{AMA—A) "t Ney+ 8,5} <oo, Rp{AuA—A,) ' Nev+S, 5} <oo, (9.7)

and

Rp{AMAN—4y) t: Neqy+ S, 5} <oo (9.8)
respectively in £(L9(Qr(0))3) and L£(L4(Q2r(0))). We deduce from the properties (8.1) that
Ry {diviA — A,) ' Aev+ S5} < o0 (9.9)

in L(LY(2p(0))3, WH4(Qp(0))).
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We rewrite the operator Ag in the form Ap = A% + Bp, with

0 0 0
0 —pdiv 0 RY
A=o A, 0| adBr=|"5 0 RV
0 0 A 9
v 0 —}j— div. 0

Some standard calculation shows that for A € v+ X, _g,

I —pdiv(\ — A,)~! 0
MM —AD)t=(0 AAT—A4,)7! 0
0 0 A — Ag)~!

Using again the properties (8.1), we deduce from the above formula and from (9.7)-(9.9)
that

Rpy{AMA—A}) ' Aev+S, 5} <o

in £(X).
Now for all (p,u,?) € D(Ar) we have
p
Br ;L < C (llpllwraar ) + lullwia@p) + 19llwra@r o)) - (9.10)
X

Using the compactness of the embedding W24(Qx(0)) — W14(Qp(0)) and a classical result
(see [26, Chapter 3, Lemma 2.1]), we deduce that for any ¢ > 0, there exists C'(6) > 0 such
that for all f € W24(Qr(0))

[ fllwraeo)) < Ollfllw2aeo) + CONfllLa@r0)):

Applying the above estimate to (9.10) we obtain, for every 6 > 0, there exists C() > 0 such
that

p p P
Br | u <oA% | u +C0) ||| v
V) |l V) |l V) |l
Therefore applying Proposition 8.5 we complete the proof of the theorem. g

Now we want to show that the operator Ar is invertible in a suitable subspace of X'. For
this purpose we consider the following problem

(pdivu = f; in Qr(0),
RV
—gAu— ai—'uV(div u)+ —Vp+RVI = fo in Qp(0),
p p_ P
K RY . ‘ (9.11)
——AY+ —divu = f3 in Qr(0),

PCy Co

u =20 on Qp(0), 09

By integrating the first and the third equations of (9.11) and by using the boundary condi-
tions, we see that we need to impose the following compatibility conditions on f; and fs:

/ fldfl'—/ f3 dx =0.
Qr(0) Qr(0)
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We thus define
14,(926(0)) = {f € LYQp(0) | [ fdo= o} , (9.12)
Qr(0)

and
X = [WH(Qp(0)) N LE(Qr(0))] x LI(Qr(0))* x LE, (2#(0)). (9.13)

Since X, is invariant under (etAF )t>0 the operator Ap may be restricted to X,,. The part of
Ap in X, is the restriction of Ar to the domain D(Ar) N Xy, ([30, Definition 2.4.1]).

Theorem 9.2. The part of Ap in X, is invertible in X,,: for every (fi, fo, f3) € X, the
system (9.11) admits a unique solution (p,u,?) € D(Ar) N Xy, satisfying
Iollwrar ) + lullwza@po) + 19lw2e@p0)
< ClAllwra@r) + | f2lLa@r o) + 1 f3lla@poy).  (9-14)

Proof. Replacing divu = f1/p in the third equation of (9.11) yields

K

pey

A = f3 — ijl in Qr(0), 99 =0 on 9Qp(0).
DPCy on

Since f1, f3 € L (Qr(0)), by the standard elliptic theory (see for instance [29, chapter 3]),
the above system admits a unique solution ¥ € W24(Q(0)) N L}, (Qr(0)) and we have the
estimate

19]lw2.a(0m0)) < CUlfillwra@po) + [1f3llLa@r(0))- (9.15)
Then, we are reduced to solve the Stokes type system
pdivu = f1, in Qr(0),
A aut T9p = 7, in 0r(0)

p p
u =0 on INp(0),

with fy, = fo — RV + “;;“v f1. In particular, fo € LY(Qp(0))3 with

1f2llzor ) < CUfillwraro) + 12l La@eo) + 19lw2ap0))- (9.16)
From [13, Theorem 2.9(1)], the above system admits a unique solution
(p,u) € WH(Qp(0)) N LE,(2r(0)] x W4(Qr(0))°
satisfying the estimate
Ipllwrap ) + llullwza@p o) < C (I fillwrap o) + I1F2llLa@r0))2) - (9-17)
The proof follows from the estimates (9.15) - (9.17). O
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9.2. Rewriting (9.1) in an operator form. Let us consider the following problem

—pAus + RIVps =0 in Qp(0), divus =0 in Qg(0),
us =¥+ w x yon 0g(0), us =0 on 09, (9.18)

/ ps dy = 0.
Qr(0)

Lemma 9.3. Let ({,w) € C* x C3 and let {e;} denote the canonical basis in C3. Then the
solution (ps,us) of (9.18) can be expressed as follows

3 6 3 6
ps =Y LiPi+ ) wisP, us=) LU+ Y wisUs (9-19)
i=1 i=4 i=1 i=4

where (Ui, P;), i =1,2,--- 6 solves the following systems
(— i AU; + RIVP; = 0 in Qp(0),
divU; =0 in Qp(0),
U;=0, on0Q,
U; = e; on 00p(0), (i=1,2,3), (9.20)
Ui=-ei—3 xy on IQpr(0), (i=4,5,6),

/ F; dy = 0.
\ /Qr(0)

Moreover,
/ Ul(p57u570)n d7
995(0) _A (5 )
y x o1(ps, us, 0)n dy “
9Q5(0)
where
2
A j=— DU; : DU; dx. (9.21)
1Y QF(O)
Proof. See [16, Chapter 5]. O
Let us set

Z =WhH(Qp(0)) x W31(Qp(0))® x W24(Qr(0)) and Y = X x C3 x C3.
We introduce the Dirichlet operator Dy € £(C? x C3; Z) defined by

/ Ps
Ds< ): us |, (9.22)
w
0
where (ps, us) is the solution of the system (9.18). In view of Lemma 9.3, the operator Dq
can also be defined as
' P, P - Pg '
b ()-(0 88 (0). 0
0O 0 --- 0
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where (U;, P;), i =1,2,--- ,6 are the solutions of the systems (9.20). Let us recall the operator
(Ap,D(Ap; X)) introduced in Section 9.1. By Theorem 9.1 we know that, the operator Ap
generates a C? semigroup on X. It is well-known that, the operator Ar has an extension,
also denoted by Ap, such that Ap € L(X,D(A}.)"), where A}, denotes the adjoint operator
of Ap and D(A}.)" denotes the dual of D(A},) (see [12, Chapter 2, Section 5]). Let us now
briefly describe, how to rewrite system (9.1) as an evolution equation. All the details can be
found in [21].
We introduce the operator Arg : D(Aprs) — Y defined by

P
D(Ars) = { (p,u. 9, t,w) € Zx C*x C* | Ap | u —AFDS(£>€X :

9 w
_ (Ar —ApDq
where C' € L(Z,C3 x C?) is defined by
p —-m~! oi(p,u, 9)n dy
Clul = 42s(0) : (9.25)
b) \=10 [ yxatpum
905(0)

Proposition 9.4. Let 1 < p < co and 1 < q < oo. Let £ € WHP(0,00;C?), w €
WP(0,00;C3), p € WIP(0,00; WH(Qr(0))), u € Wip(QF)? and 9 € Wiy (QF). Then
(p,v,9,0,w) is a solution of the system (9.1) if and only if

p p pEO; Po
u U u(0 UQ

di 9| =Ars | 9| DA xC*xC? [90) | =[] (9.26)
Ele ¢ £(0) l
w w w(0) wo

We skip the proof since it is standard. We end this subsection by recalling an equivalence
of norms in D(Apg) (see [21, Lemma 1.24]).

Lemma 9.5. The map
(p,u, 9, 6,w) = [[(p,u, )| z + [| (€, w)l|cs xcs
or equivalently the map
(0 u, D, 4, 0) = [l pllwra@p o) + llullwza@e) + 19wz ) + [€llcs + llwlies
is a norm on D(Apg) equivalent to the graph norm.
9.3. R-sectoriality of the operator Agg. In this subsection we prove the following theorem

Theorem 9.6. Let 1 < ¢ < co. Then there exists v3 > 0 such that Apg—y3 is an R-sectorial
operator in Y of angle < /2.

Proof. We write Apg in the form Ars = Args1 + Brs where

Arp —ApD, 0 0
-AFS,1:<0F g >, BFS:<C 0)-
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Observe that
— -1 _ _ -1
AN — Apgy) ! = (AW OAF) (M A;) AFDS> |

Therefore by Theorem 9.1 and (8.1), there exists v such that Apg; — 7 is R-sectorial.

Using standard trace result on Sobolev spaces (see, for instance [1, Theorem 5.36, p.164])
and the definition (9.2) of o;, we obtain that for any s € (1/¢,1) there exists a constant C
such that

lo1(p, w, D) La(oag0)) < CUlPlwsa@p) +ullwitsa@po) +wsa@po)) ((p,u,9) € Z).

Now, combining the above estimate with the definition (9.25) of the operator C, we deduce
that that for any s € (1/q, 1) there exists a constant C' such that for any (p,u,?) € Z,

Clu < Cllpllwsapo) + lullwitsa@po) + 19lwsa@po))-
v C3xC3
Since the embedding W4(Qr(0)) < W*9(Qr(0)) is compact for s € (1/q,1), we obtain
that for any ¢ > 0 there exists C'(§) > 0 such that

p
Clu <Ol (p,u, W)z + C(6)[|(ps u, V) -
v C3xC3
By Lemma 9.5, this implies that for any § > 0 there exists C'(0) > 0 such that

P P
o) U u
Clu <O ||Arsqa | Y +C6) ||| v
V) |l cswes l 14
“/ lly “/ lly
Therefore the proof follows from Proposition 8.5. O

9.4. Exponential stability of the semigroup ‘75, The aim of this subsection is to show
the operator Apg generates an analytic semigroup of negative type in a suitable subspace of
Y. Let us set

Vi = Xy x C3 x C3,
where X, is defined as in (9.13). One can check that the space ), is invariant under
(e?Ars)~o. We prove the following theorem

Theorem 9.7. Let 1 < q < oco. Then the part of Aps in Y, generates an exponentially
stable semigroup (eAFS)i>o on V. In other words, there exist constants C' > 0 and 19 > 0
such that

16475 (po, wo, Do, £o,w0) " [|y,,, < Ce™™" || (po, wo, Do, Lo, w0) " l[y,n (9.27)
for all (po, ug, Vo, £o,wo) " € Vim.
We consider the following resolvent problem
Ap+pdivu = f1, in Qg (0),
Au — div oy(p, u, V) = fa, in Qp(0),
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M = a0+ B v = £, in 0p(0), (9.28)
PCy Cy
00
u=/¢+wxyonds(0) u=0on 0, I =0 on 0Qr(0),
M=—m! o(p,u,9)n dvy + g1,
925(0)

Aw = —J(O)lf y X oy(p,u,9)n dy + go.
995(0)

We want to show that the set {A € C | Re A > 0}, i.e. the entire right half plane is contained
in the resolvent set of part of Apg in Y,,. This will be achieved in two steps. In the first step
we show that 0 belongs to the resolvent of part of Apg in V,,. In the second step, we show
that the set {A € C\ {0} | 0 < Re A} is contained in the resolvent of part of Apg in V.

Remark 9.8. If A = 0, integrating the first and third equations of (9.28) and using the
boundary conditions of u and ¥ we obtain

/ f dyz/ f dy = 0.
Qr(0) Qr(0)

Therefore in order to show Aps generates an erponentially stable semigroup it is necessary
to consider Vo, instead of ).

Theorem 9.9. Let 1 < g < oo and A =0. Then for every (f1, f2, f3,91,92) € Ym the system
(9.28) admits a unique solution (p,u,,l,w) € D(Aps) NV satisfying the estimate

Iollwrap0) T lullw2a@p ) T lw2a@po) + I1ellcs +llwlics < Cll(f1, f2s f3,91,92) 1y
(9.29)

Proof. When X\ = 0 it is easy to see that (9.28) is equivalent to
Ars(p,u,9,6,w)" = (f1, fa, f3,91,92) -

Thus to prove the theorem, we first show that the operator Apg is invertible. One can easily
check that, if the operators Arp and CD; are invertible then the operator Arg is invertible
and its inverse is given by the formula

1 (AR = Ds(CDys)"'CARY Ds(CDs)7!
Fs —(CDs)'CAL! (CD,)™*

We know that Ap is invertible on X, (Theorem 9.2). Thus to complete the proof we need to
verify that C'D; is an invertible matrix. From Lemma 9.3, we can see that

_ a1 . ml 0
CDs=-M""A where M= < 0 J(O)> . (9.30)
Since the matrix A is self-adjoint and positive, we deduce the result. O

Theorem 9.10. Assume 1 < ¢ < oo and A € C\ {0}, with ReX > 0. Then for any
(f1, f2, f3,91,92) € Vm, the system (9.28) admits a unique solution (p,u,V,l,w) € D(Arg) N
Y satisfying the estimate

Iollwra@r ) + lellw2a@po) + 19llw2a@po) + 1€lcs + |wllcs
< C|(f1s f25 f3: 91, 92) |y - (9.31)
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1
Proof. Let us fix A € C\ {0}, with Re A > 0. By setting p = X(fl —pdivu), the system (9.28)

can be rewritten as

A —diveoy(u, ) = ]?2, in Qr(0),
0
A — pi AV + Jz—divu = f3, in Qp(0),
v ( 829

u=~0+wxyonds(0) u=0ondQ, 8—n:00n 00r(0), (9.32)
M = —777,71 &\)\(u, 29) n dv + §1

005(0)
o = —J(O)—l/ y x & (u, 0)n dy + G

09Q5(0)

where

8)\<u, 19) = ?D(U) + <; (CY + R)\19p) divu — Rﬁ) 13,

~

RV N RV
fo=fo—-=Vfi, gi=|g+m 1/ findy |,
AD AD Joas(0)

. RV
g = (g2+J(O) 1/\/ y X fin d’y)-
P JoQs(0)

If (f1, f2, f3,91,92) € Vm, the above formulas imply that (fg,/g\l,@) c Lq(QF(()))3 % C3 x C3.
We introduce the following notation:

Z = W2(Qp(0)? x (W29(Qp(0) N LE,(Qr(0)), X = LY(Qp(0))* x L, (2 (0))
Y =X xC3xC3
e D, € L(C?x C* Z) and E, € L(C? x C?; Z) defined by

=~ (4 Us ¢ @Vﬂ
DS = 3 ES = P 3 )
w 0 w
0
where (ps, us) is the solution of the system (9.18).
e A, defined by

)

D(A,) = {(u,ﬁ) €Z|u= gi =0 on aQF(O)}

_/u div o (u, 9) " R
A = D(A)).
A(lﬁ‘) Sno - B i | <z9> € Dldy
pe c

e C\ € L(Z,C3 x C3) defined by

—m~! ox(u,?)n dy

A (g) _ 095(0)
—J(0)~? / y X ox(u,¥)n dy
90s(0)
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e A, defined by

D) = { (w0, tw) € Zx T x| Ay () - DD, () < 7.

With the above notation, we can write (9.32) as

u f2
v I3
M —-A =\|2°1. 9.33
(- (| =12 (9.3
w 92

Proceeding as in Theorem 9.6, one can show that there exists X > 0 such that M\ — Ay is
invertible. Consequently, we write (9.33) as

u fo
T+ - NG =AY [ V] = Gr -y gf (9.34)
ad [

and since (XI — Ay)~! is a compact operator, in view of the Fredholm alternative theorem,
the existence and the uniqueness of a solution of system (9.34) are equivalent.
Assume (u, ¥, ¢, w) € D(A)) satisfies

(M — AN (u, 9, £, w)T =0. (9.35)
We first show that (u,9) € W2(Qp(0))? x W22(Qg(0)). If ¢ > 2, this is a consequence of
Holder’s estimates. Assume 1 < ¢ < 2. In that case, we can write (9.35) as
M — A (u, 9, €, W) =X=N(u, 9, £, w)" (9.36)
and since W24(Qp(0)) — L2(Qp(0)), we deduce from the invertibility of A — A, that
(u,9) € W22(Qp(0))® x W22(Qr(0)). We then rewrite (9.35) as
A —divoy(u,d) =0, in Qp(0),

K

9
AV + R—divu =0, in Qr(0),

) — —
pev ‘v 99
u=/L+wxyonds(0) u=00n00, - =0ond0k(0), (9.37)
M=—m! ox(u,9) n dy
9Q5(0)
dw = —J(0)7! y x ox(u, V)n dy.
09Q5(0)

Multiplying the first equation of (9.37) by , the second equation by ¥J, the forth equation
by ¢ and the fifth equation by @, we deduce after integration by parts,

Re)\/ luf? dy + 2"/ D) dy + (O‘ + W)/ | divuf? dy
Qr(0) P Jaro) p RY Qr(0)
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Re X ¢,

/ 9|2 dy + “/ (VI dy + Re Am|f|*> + Re(AJ(0)w - @) = 0. (9.38)
Q7 (0) pY Jar(0)

Using
| divul? < 3|D(u)|?,
Re A > 0 and (2.3), we obtain
/ D)2 dy+/ VP2 dy < 0.
Qr(0) Qr(0)
The above estimate and the fact that (u,?,¢,w) € D(Ay) imply that u =9 =4l =w=0. O
Proof of Theorem 9.7. By virtue of Theorem 9.9 and Theorem 9.10, we deduce
{AeC; ReX >0} C p(Apg).
Moreover, Theorem 9.6 yields the existence of Cy > 0 such that for any A € 3 + ¥X;_g, with
B3 < 7T/2,
I = Ars) 2@y < Cr-
Since
{AeC; ReA >0} \ [y3 + Erp;]
is a compact set, we deduce the existence of C' > 0 such that for any A € C with ReA > 0

1A = Ars) "l £y < C-
This yields that
{AeC; ReA> —n} C p(Ars),
for some n > 0. Applying standard results on analytic semigroups (see, for instance, Proposi-

tion 2.9 in [4, p.120]), we deduce the exponential stability of the semigroup generated by the
part of Apg in Vp,. O

10. MAXIMAL LP-L? REGULARITY FOR THE LINEARIZED FLUID-STRUCTURE SYSTEM

In this section, we study the maximal LP-L? regularity of the system (9.1) with source
terms and boundary terms. More precisely, we consider the following system

Op + pdivu = fi in (0,00) x Q£(0),

Oyt — div oy (p, 0, 0) = fo in (0,00) x Qz(0),
8t5—p’;jA5+129div€l:f3 in (0,00) x Qr(0),

u=0 on (0,00) x 08,
U=0+Txy on (0, 00) x 9Q(0) (10.1)
% =h on (0,00) x 02r(0),

A7 o177, 9)n dy + g1 t e (0,00),

dt 995(0)

i&? = —J(O)l/ y % oy(p, 0, 0)n dy + g t € (0,00)

dt 2Q5(0)

p(0)=po—p, u(0)=up, Y(0)=1v9—7 in Qr(0),



39

E(O) = EQ, (:)(0) = Wwo-

We want to combine Corollary 8.4 and Theorem 9.7. However the latter is stated in V,,,
that is with the constraints that some quantities have to be with zero mean-value. As a
consequence, we introduce the following standard decomposition: for any f € L'(Qg(0)),

f=fm+ favm with / Jm dy =0, favg = ’QF(O)’_l/ f(y) dy. (10'2)
Qr(0) Qr(0)

We use the same decomposition and the same notation for a function in L'(9Qg(0)). The
next result is the main result of this section. We recall that By, ;4 and S p q are defined in
(3.2) and (3.3).
Assume 1 < p < 0o and 1 < ¢ < oo satisfying the conditions
1 1 1 1 1
p+2q751, p+2q7é2' (10.3)
We set

Tpq = {(ﬂo,uO,ﬁovﬁovwo) | po € WHI(Qp(0)) N LL (Q2r(0)), ug € B2)/P(Qp(0))?,

9o € BXIP)(Qp(0)), Lo € R?, wy € R3}, (10.4)
and we introduce the space of initial data

1 1
cc — f - . 2 1,
Tpq=Ipa 1 P + 2

Tpa = {(po,uo,ﬁg,ﬁg,wo) € Tpgluo=00n09Q, up(y) =lo+woxy ye€ 895(0)}

'f1<1+1<1
g Lot b
2 p 2

Ty = {(Po,uo,ﬁo,foawo) € Tpg | uo=00n 09, up(y) =Llo +wo xy y € Ms(0),

1

0% 1
— <z
2g 2

1

The above definition is well-defined due to the trace theorem for Besov spaces (see, for instance
[28, p.200]).

Theorem 10.1. Let 1 < p < oo and 1 < q < oo satisfying (10.3). Let p >0 and 9 > 0 and
n € (0,m0), where ng is the constant introduced in Theorem 9.7. Then for any

(PO — P, U, 190 - 57 EO? WO) S jpc,((:]
and for any (f1, f2, f3,h, g1, 92) € e*”(')Boo,nq with (f1.avgs f3,av9: Pavg) € L*(0,00)3, the sys-
tem (10.1) admits a unique solution (p,u, ¥, ¥, w) with
(P Uy O, 6,0) € €S s (Pavgs Davg) € LZ(0,00)2. (10.5)

Moreover, there exists a positive constant Cp, depending only on p,q and n such that

|7 G .90, £

n Hen(-)(atﬁavg,atﬂavg)

+ | Pangs T

Soo,p,q LOO(O’OO)Q Lp([)7oo)2
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g CL( H(,OO - ﬁa ’LL(),190 _57 607&)0)“,_7;,41 + Hen(-)(fhf27f37h791792)H

BOO,P»Q
- (Fr.av9s F3a09: hawg)ll 1o ocys ) (10:6)

Proof. Let us first consider the case 1 = 0. We consider the following heat equation

1 r1 K 1 k|0Qr(0)] .
- A = - avg — 77}%11 ) Q
o™ 4 1l TR f3 = f3,avg Genar() e (0,00) x Qr(0)
1
%fl —h on (0, 00) x 2x(0),
e (0) =g — 0 on Qr(0),

with ¢/ > 0. Using (f1, fa2, f3, h, 91, 92) € Bsop,q and applying Proposition 6.4 in [9] (taking
¢ > 0 large enough), we deduce that the above system admits a unique solution ¢! €
W2y (QE). Moreover, we have the estimate

”901HW(,2;§(Q§O) < C(Hf3”LP(O,OO;L‘I(QF(O)))+HhHFzg}q—l/Q)/Q(O,OO;Lq(aQF(O)))nLP(O,OO;Wl—1/!1#1(8917(0)))
+ 90 =Dl 2117 0y )+ (10-7)
Standard calculation on the above system yields
OtPavg T 1 Pavg = 0, Pang(0) = Vo,avg — V.

Thus @4, () = (90,009 — 9)e #t and Pang € L7(0,00) for any 1 < r < oo. Next, we define

[ K[0Qp(0)] )
() = /0 <f3,avg(5) + mh«wy(s) +u %lwg(s)> ds.

Since f3.q4vg, Pavg, goclwg € LY(0,00), we obtain p? € L*(0, ).
Integrating the first equation of (10.1) in Qx(0) and using the boundary condition of u, we
deduce that pg.g is solution of the following system

OtPavg = fravg t € (0,00), Pavg(0) =0. (10.8)
As fi avg belongs to L'(0,00) we have Pavg € L>(0,00). We set
F=9—' -
Then system (10.1) is transformed into the following system for (py,, @, @,Z@):
Opm +pdivii= f in (0,00) x Qp(0),
Ayt — divoy(pm, 4, @) = fo  in (0,00) x Qp(0),

- ~ RV o~
op — ;A4p+ —divu=f3 in (0,00) x Qp(0),

PCy Cy
u=0on (0,00) x9N, u=~+wxyon (0,00)x INg(0) (10.9)
95
% — 0 on (0,00) x 9p(0),
d ~ ~ o~ ~ ~
—(=—m™} o1(Pm,u, p)n dy+q1, te€(0,00)

dt 9925(0)
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—w = —J(O)l/ y X o1(pm,u, o)n dy + g2, te€ (0,00)

pm(o) = po— P ﬂ(O) = UQ, &(0) =0, in QF(O)a

where
]?1 =fi— fl,avg7 J}VQ = fo— valy E’) = NI(‘Pl - ‘Pclwg)

g1=g1+ m‘lR/ p'ndy, Go=go+ J(O)_lR/ y x p'n dv,
95(0) 9Q5(0)
and Where we recall that o; is defined by (9 2) Usmg that (f1, f2, f3,h, 91,92) € Boop,q and

that ¢! € Wq,p (QL)), one can show that (fl fg, fg,gl,gg) belongs to LP(0, 00; V).

From Theorem 9.6 and Theorem 9.7, we know that Apg generates an analytic exponential
stable semigroup on ), and is a R-sectorial operator on )Y,. Moreover, by hypothesis
of Theorem 10.1, we have (pyp — p, ug, 0,4y, wo) € (Vm,D(Ars) ﬂ)}m)l_lmp. Therefore by
Corollary 8.4, the system (10.9) admits a unique solution

(P 1, 3, £,3) € LP(0,00, D(Aps) (1 V) NW(0,00 V) © Scpg-
We recover (10.5) and (10.6) by remarking that

Um = [15_{— (p}m 5(11)9 = 902 + sozlwg'

The case n > 0 can be reduced to the previous case by multiplying all the functions by e
and using the fact that Apg + 1 is a R-sectorial operator with negative type. O

11. ESTIMATES OF THE NONLINEAR TERMS

In this section, we are going to estimate the nonlinear terms Fi, Fa, F3, H, G1 and G defined
n (7.9) - (7.14).
. . L. 11 1 ,
Throughout this section we assume 2 < p < oo and 3 < ¢ < oo satisfy — + % %+ 3 Let p
p q
1 1
denote the conjugate of p, i.e., — + — = 1. In the following, when no confusion is possible,
p D
we use the notation
I lwreorwsay = | - lwreorwsea@r ()

Let us fix n € (0,79), where 79 is the constant introduced in Theorem 9.7. and we introduce
the following ball

S ={(pudta)|@eud e <.
where

W@m&a

&2

)Hs — H(en(-)lgm’en(da’ 09, 10 g enl) Hs
50,9,

+ ”ﬁavgy ~angL°°(O,oo)2 + ”677 )6tpavg; € (‘)atgangLP(O,oo)% (111)

and where we use the notation (10.2).
Let us first show that X be defined as in (7.7) is a C!-diffeomorphism.
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Lemma 11.1. Let X be defined as in (7.7). Then there exists a constant C'x > 0, depending
only on p,q,n and Qr(0) such that, for every (p,u,d,¢,0) € Sz, we have

VX = I3[ Lo ((0,00)x 2 (0)) + [IVX = I3[ Lo (0,00w190) < OxE, (11.2)
X (1) = X(y)| 2 (1= Cxe)lyr — w2 (y1,y2 € Qp(0)). (11.3)
In particular for every e € (0, ﬁ) and for every (p,u, 5,27,(7)) € S., we have
1
IVX = L]l Lo~ ((0,00) x 2 (0)) < 5- (11.4)

Proof. From the definition of X we obtain

VX — I3 Lo ((0,00)x 2 (0)) < CIVX = I3]| Loo (0,000 10(02(0))

< c/ e~ eVt ) wrepo) dt
0
o N a0
-p'n "u
C </0 e dt) le™ ully21or)

1/y'
(7)<

where C' depends only on Qg (0). The proof of (11.3) is similar. This completes the proof of
the lemma. g

N

From now on we assume that

€0 :min{l,zéx}, (11.5)

where C'x is the constant in Lemma 11.1.
In the following lemma we estimate some other norms of VX and [VX]~! that we need to
estimate the nonlinear terms.

Lemma 11.2. Let X be defined as in (7.7) and Z defined by (7.8). Then there exists a
constant C' > 0 depending only on p,q,n and Qp(0) such that, for every € € (0,e0) and for

every (p, u, 5,2,@) € S., we have
| det(VX — Is)]| oo (0,00 1) + [| Cof (VX — I3)][ oo (0,00;719)
+1Z = I3l oo (0,00:w 10y + 10V X || Lo (0,00w10) + 106(Z = 13) | Lo (0,005w1:0)
+ 12 = Isllcarwt (0 comrray < Ce. - (11.6)
Proof. The estimates of det(VX — I3) and Cof (VX — I3) follow from Lemma 11.1 and from

the fact that the space L>(0, 00; W14(Qr(0))) is an algebra for ¢ > 3.
From (11.4), we deduce that det VX > C > 0 in (0,00) x Qp(0) and thus from

~ Cof(VX)
~ det(VX)

we obtain

1Z]| oo (0,001 (22 (0))) < C-
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Therefore,
1Z = I3[ oo (0,00;w10) < 1 2] oo (0,000 (2 (0))) VX = I3[ Loo (0,00;w1.0) < C.
Next notice that,
HVX(t,y) =Q(t)Vul(t,y).
Therefore
10V X || 1o (0,00 1) < 1€V Lo 0,00510) < Ce.
We also have
o0MZ —I3)=Z =-VX Y oVX)VX = -Z(0,VX)Z.
Thus
||at(Z - I3)HLP(D,OO;W17(1) < ||Z||%w(07m;wl,q)HathHLp(O’OO;WI,q) < Ce.
Finally, by Holder’s inequality we have
to
(Z = 13)(t2,-) = (Z = I3)(t1, ") [y < / 10:(Z — 13)(s, ) lw.a

t1
< |t — Y7104 Z = I3) | Logo,comrray < Celty — o] 7.
This completes the proof of the lemma. ([l

Now we are in a position to estimate the nonlinear terms in (7.9) - (7.14). More precisely,
we prove the following

Proposition 11.3. Let g be the constant defined as in (11.5). Then there exists a constant
Cn depending only on p, q,n, Qr(0) such that for every e € (0,e0) and for every (p,u, ¥, £,0) €
S, we have

H (1O 1, 1) Fy, 1)y, 103, 100Gy | 10 Gy) H

0,p,9q

< 2
L1(0,00)3 X CNE .

4P P Hang)|

Proof. The constants C appearing in this proof depend only on p,q,n,Q2r(0) and are inde-
pendent of €. s N
For every (p,u,9,¢,w) € S., we have
Hﬁ”L"O(O,oo;leq) < Hen(‘)ﬁmHL"o(O,oo;leq) + HﬁaUQHLOO(O,oo)
< Ol Bl ooy + [ang o000 < Ce. (117)
Since 2 < p < oo, using the the following continuous embedding
W (Q%) = L(0,00; B2 /P (Q5(0))) = L>(0, 00; WH9(Q1(0))),

we can similarly deduce that

@l oo (0,00:w10)3 + [[9]] oo (0,00;10) < C. (11.8)
Using the fact that L (Qg(0)) — W14(Qp(0)) for ¢ > 3 it is easy to see that

13 L2 (0,00:Lo (2 (0))) + IV Lo (0.00:L0 @ (0))) + VO] Lr (0.00:Lo0 (2 (0))) < CE- (11.9)
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Let @ be defined as in (7.6). Then
1Q — I3||L°°(O,00;R3><3) < ||Q||L°°(O,OO;R3X3)||en(‘)a3||L°°(0,oo;R3)/O e "ds
< Gz <C 11.1
< EHG Wllwr(0,00:r3) < Ce. (11.10)

Now we estimate the nonlinear terms in (7.9) - (7.14).
Estimates of F1 and Fi gug-

1" Fi |l Lo 0.seswria) + 1 F1aug 21 (0.00) < O™ (11.11)
Let us recall
(P, 0, 0,0) = —e™(p+p)(Z" — I3) : Vi — " pdiv.
Using the Lemma 11.2 and estimates (11.7)-(11.9), we obtain

|—em@+ (2" - 1) : Vi - enpaival

LP(0,00;W1:4)
SN+l o0 0cimra) ‘ZT a IgHL‘X’(O,OO;WLq) ’e"(')Vﬁ‘ LP(0,00;W14)
1Pl 0.00m1) )e"(')divﬂ‘ LP(0,00;W19)
< Ce2
We have
1 — - 1 — .~
F1avg = T1r0)] QF(O)(P+ﬁ)(ZT —1I3) : Vu dy — 19R(0)] /QF(O) pdivu dy.

We estimate the first term of Fi 4,4 as follows

/’ G+7)(2" - L) : Vi dy
Qr(0)

L1(0,00)

<17+ Il £ ((0,00) xm (o 1 (Z T = I3)”L°°((O,oo)><QF(O))/ / |Vl dydt
0 Qr(0)

< Olp + 2l Lo (0,000 1:9) ‘ZT - I3H /0 e e |Vt )l Lap(o)) dt

oo 1/p
< Ce </ e Pt dt) Hen(')Vﬁ‘
0

The other estimate can be obtained similarly.
Estimates of F2, F3 and F3 qug-

L0 (0,00;W14)

< Ce2.
LP(0,00;L9 (27 (0)))

€™ Fall o 0,00;20) + €7 Fsll 1o 0,00;0) + 1 Fsavgll11(0,00) < O (11.12)

The proof is similar to the proof of (11.11). Note that the terms of F5 and F3 are at least

quadratic functions of p, u, ¥, Z ' — I3 and Q — I3. Therefore using Lemma 11.2 and estimates
(11.7) - (11.10), we obtain (11.12).
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Estimates of Hp and Hg.

le" ) Hp - Ml g 1-1/072(0 o pagan))nrr 0,00 wi-1/aa(any) T I HFavgllL1(0,00)

. 2
1l " 110720 s La(@as o) P00 i-1/aaoag (o)) T IS avgllzr0.00) < O
(11.13)
Recall that N
eMHp =™ (I3 — ZT)VW.

Using Lemma 11.2 and estimates (11.8)-(11.9), we first obtain

He"< Iy — 27) w‘

LP(0,00;W1=1/2:4(5Q2))
<[ - 2TVl
Lr(0,00;W54(Q2r(0)))
<c|m-27)| He” o < 02
L2 (0,00;W1:4(Qp (0 L2 (0,00;Wh1(2F(0)))
We write
" o 00
" Hrplog -n = Z (Ojk — Zji)e o (t,y)ni(y), ye .
jk

We know e € Wg,}(@%") Thus by [9, Proposition 6.4]

ﬂtgﬁ( < e yor ey < Ce, for bk =1,2,3,

k10| g1-1/0/2 g oo 1o (00
Also from Lemma 11.2 we have
105 = Zia) loallcrrv o seyaws-1/aacom) HZ - 3‘ i oeorwia@ron S O

Therefore by [28, Theorem 2.8.2(ii)], we obtain

) .
Hen Hr nH (1—1/q)/2(0’oo;LQ(8Q))
<cy A 165 = Z3) ol o ey -+ mncomy
Yk 10 FLY/D/2(0 0,10 (502)
< Cs .

The other estimates can be obtained similarly.
Estimates of G; and Gs.

< Cet (11.14)
LP(0,00)

Hen(')gl‘

[

LP(0,00)
The proof is easy and left to the reader. O

Proposition 11.4. Let g be the constant defined as in (11.5). Let us set
F=F@,@,0,0,0), F=FR@w 900, F=FR@a o)
Hyp=Hp(p @, 0, 0,&), My =Hs(p @, 0. 0,&), W = LooH}, + Looso)Hh
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Gl = G W,V 0. &), Gy =Go(p W,V 0, 5),
Then there ezists a constant Cl;, > 0 depending only on p,q,n,2r(0) such that for every for
every € € (0,e0) and for all (p*,u', 9!, ¢4, &Y) € S. and (p?,u?, 92, 0%,0%) € S, we have

|0 (7 -7 7 - B A - R - w6l - G0 - 63|

+ H (‘Fll,avg - ]:12,(11)9? ~Ffﬂl,avg - 'F32,avg7 Htlwg - H?wg) HLl(O,oo)3

< Clipg

(a0 PG — R 9P| L (1Ls)
Proof. The proof of this proposition is similar to the proof of Proposition 11.3 O

12. PROOF OF THE GLOBAL EXISTENCE THEOREM

This section is devoted to the proof of Theorem 2.2 and Corollary 2.3. First we prove a
global existence theorem for (7.4) - (7.13). More precisely, we prove the following theorem,
which implies Theorem 7.1.

1 1 1
Theorem 12.1. Let2 < p < o0 and 3 < g < oo satisfying the condition 7—1—2— # 3 Assume
p q

that (2.1) is satisfied. Let p > 0 and 9 > 0 be two given constants and n € (0,1), where no
s the constant introduced in Theorem 9.7. Then there exists a constant €9 > 0 such that, for
all e € (0,€0) and for any (po, uo, Vo, fo,wo) belongs to I, satisfying

1 / q _
T po dz =D,
12 (0)] Ja, 0

and
€

20y’
where Cp, is the continuity constant appearing in Theorem 10.1, the system (7.4) - (7.13)

H(IOO - ﬁv uo, 190 - 57 gOv“-’O)HI;,ﬂ g

admits a unique solution (p,u,,l,w) with

t~ t~ tq ty  mt~ ~ 9
[ 5.9 T P+ g

Soo,p.q ’LOO(O’OO)

tg ~ t
+ Hen 8tpavga e’ a7&19a'ug

<e.
LP(0,00)2

Moreover, X € L°(0,00; W24(Q2p(0)))2 N WH%(0, 00; WH(Qr(0))) and X(t,-) : Qp(0) —
Qr(t) is a Ct-diffeormorphim for all t € [0, 0).

1 1
g{) = min €0, 5 y (12.1)
2C,CnN QCLClip

where €q is defined as in (11.5) and Cf, Cnx and Cj;;, are the constants appearing in Theo-

rem 10.1, Proposition 11.3 and Proposition 11.4 respectively. Let us choose € € (0,&p) and

(o,v,0,k,7) € Se, where S; is defined as in (11.1). We consider the following problem
op + pdivu = Fi(o,v,p,k,7), in (0,00) x Qr(0),

Ou — div oy(p,u,9) = Fa(o,v, 0, k,7), in (0,00) x Qpr(0),

Proof. Let us set
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0 — :{ AV + R—ﬂdivfl: Fs(o,v,0,k,7), in (0,00) X Qp(0),

pCy Cy
i=0on(0,00) X U="L{+uxyon (0,00)x Ig(0) (12.2)
09 09
e =Hr(o,v,p,k,7)-n on (0,00) x 09, e Hs(o,v,0,k,7)-n on (0,00) x 902s(0),
Sl=—n [ @@ dy+ Giloyvp k), tE (0,00)
dt 985(0)

—w = J(O)_l/ y X oy(p,u,9)n dy + Ga(o,v,p,k,7), te€(0,00)
dt 995(0)

ﬁ(o) =po— P, U(O) = Uuop, Q9(0) = 190 - ga in QF(O)v
E(O) = €0, OJ(O) = Wwo-
We are going to show, the mapping

N (o,0,0,k,7) = (5,0,0,6,5)

where (p, u, 5, Z, w) is the solution to the system (12.2), is a contraction in S.. Since (o,v,0,k,T) €
S., we can apply Theorem 10.1 and Proposition 11.3 to the system (12.2) and using (7.16)
we obtain

H(ﬁ, u, 5725)“8 < (g H(po — P, ug, Y — Y, KO’WU)HIp,q + CLOne? < e

Thus N is a mapping from S. to itself for all € € (0,&p).
Let (o!,v!, ¢kl 7Y and (02,02, 0% k2,72) belong to S.. For j = 1,2, we set
N (o7, 07,00,k 19) = (p7, a7, 97,7, &7). Using Theorem 10.1 and Proposition 11.4, we obtain

H(’Ol ~1 191 7 ol - (2 192 72 @2>HS

< CLCupe || (o', 01, 0" BN 7Y = (02,07, 0 K2, 72) || (12.3)

Using the definition of £y one can easily check that the mapping A is a contraction in :9;.
This completes the proof of the theorem. O

Proof of Theorem 2.2. Let (p,u,9,¢,&) be the solution of (7.4) - (7.13) constructed in The-
orem 12.1. Since X(t,-) is C'— diffeomorphism from Qg(0) into Qp(t), we set Y(¢,-) =
X~1(t,-) and for x € Qp(t), t >0
p(t,x) = p(t,Y (1)) +p, ult,x) = QU)u(t, Y (t,2)), I(t,x) =d(t,Y (t,2)) +7,
a(t) = QL(1), w(t) = Q(I(H), (12.4)
We can easily check that (p,u,?,a,w) solves the original system (2.2) - (2.9) satisfying the

estimate (2.14). By choosing dy sufficiently small, from (2.14) it is easy to see that p(t,z) > g

for all (¢t,z) € (0,00) x Qp(t). Finally from (2.5) and (2.14), we obtain
v
dist(Qs(t), 25(0)) < [la(t)|les + Q) — Lsllrsxslyl < 5 forall £ >0,

for sufficiently small dy. Therefore, dist(Q2g(t),0) > v/2 for all t € [0, c0). O
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Proof of Corollary 2.3. The first estimate obviously follows from (2.14). To prove (2.15) we
integrate the density equation (2.2) over Qg (¢) and using the boundary conditions and (2.13)

we obtain

1
—_ pt,z) de =P t>0).
2 0] S (t>0)

Since dist(25(t), 9Q) > v/2 and Qg(t) has smooth boundary for every ¢ € [0, 00), by Poincaré-
Wirtinger inequality we obtain

Ip(t, ) = PllLaar@)) < ClVPllLa@p@), (12.5)

where the constant C' can be chosen uniformly with respect to ¢ (see for instance [6, Theorem
1]). Thus we have

17 (p = D) w12 000w ra(@r () < Clle™Vollwro(oseiLap () < CO.
and consequently (2.15) follows. O
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