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Abstract. We consider the maximal regularity problem for non-autonomous evolution equa-

tions {
u′(t) +A(t)u(t) = f(t), t ∈ (0, τ ]

u(0) = u0.
(0.1)

Each operator A(t) is associated with a sesquilinear form a(t; ·, ·) on a Hilbert space H. We
assume that these forms all have the same domain and satisfy some regularity assumption with

respect to t (e.g., piecewise α-Hölder continuous for some α > 1/2). We prove maximal Lp–
regularity for all u0 in the real-interpolation space (H,D(A(0)))1−1/p,p. The particular case

where p = 2 improves previously known results and gives a positive answer to a question of J.L.

Lions [16] on the set of allowed initial data u0.

1. Introduction and main results

Let H be a real or complex Hilbert space and let V be another Hilbert space with dense and
continuous embedding V ↪→ H. We denote by V ′ the (anti-)dual of V and by [· | ·]H the scalar
product of H and 〈·, ·〉 the duality pairing V ′ × V . The latter satisfies (as usual) 〈v, h〉 = [v |h]H
whenever v ∈ H and h ∈ V . By the standard identification of H with H ′ we then obtain continuous
and dense embeddings V ↪→ H h H ′ ↪→ V ′. We denote by ‖.‖V and ‖.‖H the norms of V and H,
respectively.

We are concerned with the non-autonomous evolution equation{
u′(t) +A(t)u(t) = f(t), t ∈ (0, τ ]

u(0) = u0,
(P)

where each operator A(t), t ∈ [0, τ ], is associated with a sesquilinear form a(t; ·, ·). Throughout
this article we will assume that

[H1] (constant form domain) D(a(t; ·, ·)) = V .
[H2] (uniform boundedness) there exists M > 0 such that for all t ∈ [0, τ ] and u, v ∈ V , we

have |a(t;u, v)| ≤M‖u‖V ‖v‖V .
[H3] (uniform quasi-coercivity) there exist α > 0, δ ∈ R such that for all t ∈ [0, τ ] and all

u, v ∈ V we have α‖u‖2V ≤ Rea(t;u, u) + δ‖u‖2H .

Recall that u ∈ H is in the domain D(A(t)) if there exists h ∈ H such that for all v ∈ V :
a(t;u, v) = [h | v]H . We then set A(t)u := h. We mention that equality of the form domains, i.e.,
D(a(t; ·, ·)) = V for t ∈ [0, τ ] does not imply equality of the domains D(A(t)) of the corresponding
operators. For each fixed u ∈ V , φ := a(t;u, ·) defines a continuous (anti-)linear functional on V ,
i.e. φ ∈ V ′, then it induces a linear operator A(t) : V → V ′ such that a(t;u, v) = 〈A(t)u, v〉 for
all u, v ∈ V . Observe that for u ∈ V ,

‖A(t)u‖V ′ = sup
v∈V,‖v‖V =1

| 〈A(t)u, v〉 | = sup
v∈V,‖v‖V =1

|a(t;u, v)| ≤M‖u‖V
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so that A(t) ∈ B(V, V ′). The operator A(t) can be seen as an unbounded operator on V ′ with
domain V for all t ∈ [0, τ ]. The operator A(t) is then the part of A(t) on H, that is,

D(A(t)) = {u ∈ V, A(t)u ∈ H}, A(t)u = A(t)u.

It is a known fact that −A(t) and −A(t) both generate holomorphic semigroups (e−sA(t))s≥0 and

(e−sA(t))s≥0 on H and V ′, respectively. For each s ≥ 0, e−sA(t) is the restriction of e−sA(t) to H.
For all this, we refer to Ouhabaz [22, Chapter 1].

The notion of maximal Lp–regularity for the above Cauchy problem is defined as follows:

Definition 1.1. Fix u0. We say that (P) has maximal Lp–regularity (in H) if for each f ∈
Lp(0, τ ;H) there exists a unique u ∈W 1

p (0, τ ;H), such that u(t) ∈ D(A(t)) for almost all t, which

satisfies (P) in the Lp–sense. Here W 1
p (0, τ ;H) denotes the classical Lp–Sobolev space of order

one of functions defined on (0, τ) with values in H.

Maximal regularity of an evolution equation on a Banach space E depends on the operators
involved in the equation, the space E and the initial data u0. The initial data has to be in
an appropriate space. In the autonomous case, i.e., A(t) = A for all t ∈ [0, τ ], maximal Lp–
regularity is well understood and it is also known that u0 has to be in the real-interpolation space
(E,D(A))1−1/p,p, see [8]. We refer the reader further to the survey of Denk, Hieber and Prüss [10]
and the references given therein. Note also that maximal regularity turns to be an important tool
to study quasi-linear equations, see e.g. the monograph of Amann [2].
For the non-autonomous case we consider here, we first recall that if the evolution equation is
considered in V ′, then Lions proved maximal L2–regularity for all initial data u0 ∈ H, see e.g.
[16], [25, page 112]. This powerful result means that for every u0 ∈ H and f ∈ L2(0, τ ;V ′), the
equation {

u′(t) +A(t)u(t) = f(t)
u(0) = u0

(P’)

has a unique solution u ∈W 1
2 (0, τ ;V ′) ∩ L2(0, τ ;V ). Note that this implies the continuity of u(·)

as an H–valued function, see [9, XVIII Chapter 3, p. 513]. It is a remarkable fact that Lions’s
theorem does not require any regularity assumption (with respect to t) on the sesquilinear forms
apart from measurability. The apparently additional information u ∈ L2(0, τ ;V ) follows from
maximal regularity and the equation as follows: for almost all t, u(t) ∈ V . For these t ∈ (0, τ)

Rea(t;u(t), u(t)) = −Re 〈u′(t), u(t)〉+ Re 〈f(t), u(t)〉

≤ ‖u(t)‖V ‖u′(t)‖V ′ + ‖u(t)‖V ‖f(t)‖V ′ .

Suppose now that the forms are coercive (i.e., δ = 0 in [H3]). Then for some constant c > 0
independent of t,

‖u(t)‖2V ≤ c
[
‖u′(t)‖2V ′ + ‖f(t)‖2V ′

]
. (1.1)

Therefore, u ∈ L2(0, τ ;V ) whenever u ∈W 1
2 (0, τ ;V ′) and f ∈ L2(0, τ ;V ′). If the forms are merely

quasi-coercive, we note that if u(t) is the solution of (P’) then u(t)e−δt is the solution of the same
problem with A(t) + δ instead of A(t) and f(t)e−δt instead of f(t). We apply now the previous
estimate (1.1) to u(t)e−δt and f(t)e−δt and obtain

‖u(t)‖2V ≤ c
[
‖u′(t)‖2V ′ + ‖u(t)‖2V ′ + ‖f(t)‖2V ′

]
for some constant c′ independent of t.

Note however that maximal regularity in V ′ is not satisfactory in applications to elliptic boundary
value problems. For example, in order to identify the boundary condition one has to consider
the evolution equation in H rather than in V ′. For symmetric forms (equivalently, self-adjoint
operators A(t)) and u0 = 0, Lions [16, p. 65], proved maximal L2–regularity in H under the
additional assumption that t 7→ a(t;u, v) is C1 on [0, τ ]. For u(0) = u0 ∈ D(A(0)) Lions [16,
p. 95] proved maximal L2–regularity in H for (P) provided t 7→ a(t;u, v) is C2. If the forms
are symmetric and C1 with respect to t, Lions proved maximal L2-regularity for u(0) = u0 ∈ V
(one has to combine [16, Theorem 1.1, p. 129 and Theorem 5.1, p. 138] to see this). He asked the
following problems.
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Problem 1: Does the maximal L2–regularity in H hold for (P) with u0 = 0 when t 7→ a(t;u, v)
is continuous or even merely measurable ?

Problem 2: For u(0) = u0 ∈ D(A(0)), does the maximal L2–regularity in H hold under the
weaker assumption that t 7→ a(t;u, v) is C1 rather than C2 ?

The problem 1 is still open although some progress has been made. We mention here Ouhabaz and
Spina [23] who prove maximal Lp–regularity for (P) when u(0) = 0 and t 7→ a(t;u, v) is α-Hölder
continuous for some α > 1

2 . More recently, Arendt et al. [3] prove maximal L2–regularity in H for{
B(t)u′(t) +A(t)u(t) = f(t), t ∈ (0, τ ]

u(0) = 0

in the case where t 7→ a(t;u, v) is piecewise Lipschitz and B(t) are bounded measurable operators
satisfying γ‖v‖2H ≤ Re [B(t)v | v]H ≤ γ′‖v‖2H for some positive constants γ and γ′ and all v ∈ H.
The multiplicative perturbation by B(t) was motivated there by applications to some quasi-linear
evolution equations.
Concerning the problem with u0 6= 0 and forms which are not necessarily symmetric, Bardos [6]
gave a partial positive answer to Problem 2 in the sense that one can take the initial data u0 in V
under the assumptions that the domains of both A(t)1/2 and A(t)∗1/2 coincide with V as spaces and
topologically with constants independent of t, and that A(·)1/2 is continuously differentiable with
values in L(V, V ′). Note however that the property D(A(t)1/2) = D(A(t)∗1/2) is not always true;
this equality is equivalent to the Kato’s square root property: D(A(t)1/2) = V . The result of [6]
was extended in Arendt et al. [3] by including the multiplication B(t) above and also weakening
the regularity of A(·)1/2 from continuously differentiable to piecewise Lipschitz. As in [6], it is also
assumed in [3] that the domains of A(t)1/2 and A(t)∗1/2 coincide with V as spaces and topologically
with constants independent of t.
We emphasize that the above results from [3, 6, 16] on maximal L2–regularity do not give any
information on maximal Lp–regularity when p 6= 2 since the techniques used there are based on a
representation lemma in (pre-) Hilbert spaces.

In the present paper we prove maximal Lp–regularity for (P) for all p ∈ (1,∞). We extend the
results mentioned above and give a complete treatment of the problem with initial data u0 6= 0
even when the forms are not necessarily symmetric. In particular, we obtain a positive answer to
Problem 2 under even more general assumptions.
Our main result is the following.

Theorem 1.2. Suppose that the forms (a(t; ·, ·))0≤t≤τ satisfy the standing hypotheses [H1]– [H3]
and the regularity condition

|a(t;u, v)− a(s;u, v)| ≤ ω(|t−s|) ‖u‖V ‖v‖V (1.2)

where ω : [0, τ ]→ [0,∞) is a non-decreasing function such that∫ τ

0

ω(t)

t3/2
dt <∞. (1.3)

Then the Cauchy problem (P) with u0 = 0 has maximal Lp–regularity in H for all p ∈ (1,∞). If
in addition ω satisfies the p–Dini condition∫ τ

0

(
ω(t)
t

)p
dt <∞, (1.4)

then (P) has maximal Lp–regularity for all u0 ∈ (H,D(A(0)))1−1/p,p. Moreover there exists a
positive constant C such that

‖u‖Lp(0,τ ;H) + ‖u′‖Lp(0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H) ≤ C
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

In this theorem, (H,D(A(0)))1−1/p,p denotes the classical real-interpolation space, see [26, Chapter
1.13] or [17, Proposition 6.2].
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We wish to point out that Y. Yamamoto∗ states a result which resembles to our previous theorem
in the setting of operators satisfying the so-called Acquistapace-Terreni conditions on the corre-
sponding resolvents. Unfortunately the proofs in his paper present inaccuracies at several places,
see for example the proof of Lemma 4.3 at the beginning of page 306, the end of the proof of
Proposition 2 at page 307 and a poorly justified estimate after formula (5.5) on page 310 in the
proof of Lemma 3.4.

We have the following corollaries.

Corollary 1.3. Under the assumptions of the previous theorem, the Cauchy problem (P) with
u0 = 0 has maximal L2–regularity in H. If in addition ω satisfies∫ τ

0

(
ω(t)
t

)2

dt <∞, (1.5)

then (P) has maximal L2–regularity for all u0 ∈ D((δ + A(0))1/2). In addition, there exists a
positive constant C such that

‖u‖W 1
2 (0,τ ;H) + ‖A(·)u(·)‖L2(0,τ ;H) ≤ C

[
‖f‖L2(0,τ ;H) + ‖u0‖D((δ+A(0))1/2)

]
.

Obviously, if A(0) is accretive then A(0)1/2 is well defined and D((δ +A(0))1/2) = D(A(0)1/2).
This corollary solves Problem 2 even under more general conditions than conjectured by J.L. Lions

Corollary 1.4. Assume that additionally to the standing assumptions [H1]– [H3] that the form
a(t; ·, ·) is piecewise α–Hölder continuous for some α > 1/2. That is, there exist t0 = 0 < t1 < ... <
tk = τ such that on each interval (ti, ti+1) the form is the restriction of a α–Hölder continuous
form on [ti, ti+1]. Assume in addition that at the discontinuity points, we have D((δ+A(t−j ))1/2) =

D((δ + A(t+j ))1/2). Then the Cauchy problem (P) has maximal L2–regularity for all u0 ∈ D((δ +

A(0))1/2) and there exists a positive constant C such that

‖u‖W 1
2 (0,τ ;H) + ‖A(·)u(·)‖L2(0,τ ;H) ≤ C

[
‖f‖L2(0,τ ;H) + ‖u0‖D((δ+A(0))1/2)

]
.

In this corollary, A(t−j ) is the operator associated with the extension of the form at the left of

point tj . Similarly for A(t+j ).

We mention that Fuje and Tanabe [12] constructed an evolution family associated with the non-
autonomous problem considered here when the form a(t; ·, ·) is α–Hölder continuous for some
α > 1/2. This is of independent interest but it is not clear if one obtains maximal regularity from
any property of the corresponding evolution family.
Now we explain briefly the strategy of the proof. A starting point is a representation formula for
the solution u (recall that u exists in V ′ by Lions theorem), which already appeared in the work
of Acquistapace and Terreni [1], namely

u(t) =

∫ t

0

e−(t−s)A(t)(A(t)−A(s))u(s) ds

+

∫ t

0

e−(t−s)A(t)f(s) ds+ e−tA(t)u0.

(1.6)

This allows us to write A(t)u(t) = (QA(·)u(·))(t) + (Lf)(t) + (Ru0)(t), where

(Qg)(t) :=

∫ t

0

A(t)e−(t−s)A(t)(A(t)−A(s))A(s)−1g(s) ds

(Lg)(t) := A(t)

∫ t

0

e−(t−s)A(t)g(s) ds and (Ru0)(t) := A(t)e−tA(t)u0.

Condition (1.3) allows us to prove invertibility of the operator (I−Q) on Lp(0, τ ;H). The operator
L is seen as a pseudo-differential operator with an operator-valued symbol. We prove an L2-
boundedness result for such operators in Section 4, see Theorem 4.1. For operators with scalar-
valued symbols, this result is due to Muramatu and Nagase [19]. We adapt their arguments to our

∗see “Solutions in Lp of abstract parabolic equations in Hilbert spaces”, J. Math. Kyoto Univ. 33 (1993),

no. 2, 299–314.
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setting of operator-valued symbols. This theorem is then used to prove L2(0, τ ;H)-boundedness
of L. In order to extend L to a bounded operator on Lp(0, τ ;H), for p ∈ (1,∞), we look at
L as a singular integral operator with an operator-valued kernel. We show that both L and its
adjoint L∗ satisfy the well known Hörmander integral condition. Finally, we treat the operator
R by taking the difference with A(0)e−tA(0)u0 and using the functional calculus for accretive
operators on Hilbert spaces. In order to handle this difference we use (1.4), the remaining term,
t 7→ A(0)e−t A(0)u0 is then in Lp(0, τ ;H) if and only if u0 ∈ (H,D(A(0)))1−1/p,p.
Although most of the arguments outlined here use heavily the fact that H is a Hilbert space, the
strategy justifies some hope that the results extend to other situations such as Lq–spaces. One
would then hope to prove Lp(Lq) a priori estimates for parabolic equations with time dependent
coefficients. In the last section of this paper we give some applications and prove Lp(L2)–a priori
estimates.

Maximal regularity may fail even for ordinary differential equations, letting H = R. We illustrate
this by an example which is essentially taken from Batty, Chill and Srivastava [7].

Example 1.5. Consider ϕ(t) = |t|−1/p. Then ϕ in Lq,loc(R) for 1 ≤ q < p but ϕ 6∈ Lp([0, ε]) for
ε > 0. Chose a dense sequence (tn) of [0, 1] and a positive, summable sequence (cn). Define
a(t) := 1 +

∑
cnϕ(t − tn). Then a ∈ Lq([0, 1]) for 1 ≤ q < p but a 6∈ Lp(I) for any interval

I ⊂ [0, 1]. Consider the non-autonomous equation{
x′(t) + a(t)x(t) = 1

x(0) = 0
(1.7)

Then by variation of constants formula, x(t) =
∫ t

0
exp
(
−
∫ t
s
a(r) dr

)
ds. Since a(r) ≥ 0,

|a(t)x(t)| = a(t)

∫ t

0

exp
(
−
∫ t

s

a(r) dr
)

ds

≥ a(t)

∫ t

0

exp
(
−
∫ 1

0

a(r) dr
)

ds = Ct a(t).

Therefore, for 0 < α < β ≤ 1 we have |a(t)x(t)| ≥ αC a(t) on [α, β] which implies that (1.7)
cannot have maximal Lp–regularity.
On the other hand, if we replace the constant function 1 by f we obtain

|a(t)x(t)| = a(t)|
∫ t

0

f(s) exp
(
−
∫ t

s

a(r) dr
)
|ds

≤ a(t)

∫ t

0

|f(s)|ds ≤ Ca(t)‖f‖Lq

on [0, 1] and this shows that (1.7) has maximal Lq-regularity for q < p.
Notice however, that letting p=2 this example is not a counterexample to the questions we raise,
since our standing hypothesis [H2] is not satisfied here.
Observe also that the operators in this example are all bounded and commute. Thus, these last
two properties are not enough to obtain maximal L2-regularity for non-autonomous evolution
equations.

2. Preparatory lemmas

In this section we prove most of the main arguments which we will need for the proofs of our
results. The only missing argument here concerns boundedness of pseudo-differential operators
with operator-valued symbols which we write in a separate section for clarity of exposition. We
formulate our arguments in a series of lemmata.
Throughout this section we will suppose that [H1]– [H3] are satisfied. Let µ ∈ R and set v(t) :=
e−µtu(t). If u satisfies (P), then v satisfies the evolution equation{

v′(t) + (µ+A(t)) v(t) = f(t)e−µt

u(0) = u0.
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In addition, v ∈W 1
p (0, τ ;H) if and only if u ∈W 1

p (0, τ ;H). This shows that we may replace A(t)
(resp. A(t)) by A(t) + µ (resp. A(t) + µ). Therefore, we may suppose without loss of generality
that δ=0 in [H3]. In particular, we may suppose that A(t) and A(t) are boundedly invertible by
choosing µ > 0 large enough. We will do so in the sequel without further mentioning it.
It is known that −A(t) generates a bounded holomorphic semigroup on H. The same is true
for −A(t) on V ′. We write this explicitly in the next proposition in order to point out that the
constants involved in the estimates are uniform with respect to t. The arguments are standard and
can be found e.g. in [22, Section 1.4]. Denote by Sθ the open sector Sθ = {z ∈ C∗ : |arg(z) < θ}
with vertex 0.

Proposition 2.1. For any t ∈ [0, τ ], the operators −A(t) and −A(t) generate strongly continuous
analytic semigroups of angle π/2− arctan(M/α) on H and V ′, respectively. In addition, there exist
constants C and Cθ, independent of t, such that

(a) ‖e−z A(t)‖B(H) ≤ 1 and ‖e−zA(t)‖B(V ′) ≤ C for all z ∈ Sπ/2− arctan(M/α),

(b) ‖A(t)e−sA(t)‖B(H) ≤ C
s and ‖A(t)e−sA(t)‖B(V ′) ≤ C

s ,

(c) ‖e−sA(t)x‖V ≤ C√
s
‖x‖H and ‖e−sA(t)φ‖H ≤ C√

s
‖φ‖V ′ ,

(d) ‖(z −A(t))−1x‖V ≤ Cθ√
|z|
‖x‖H for z /∈ Sθ and fixed θ > arctan(M/α).

(e) All the previous estimates hold for A(t) + µ with constants independent of µ for µ ≥ 0.

Proof. Fix t ∈ [0, τ ]. By uniform boundedness and coercivity,

|Ima(t;u, u)| ≤M‖u‖2V ≤ M/αRea(t;u, u). (2.1)

This means thatA(t) has numerical range contained in the closed sector Sω0
with ω0 = arctan(M/α).

This implies the first part of assertion (a), see e.g. [22, Theorem 1.54]. Let u ∈ V and set
ϕ = (λ+A(t))u ∈ V ′. Then

〈ϕ, u〉 = λ‖u‖2H + a(t;u, u)

and so coercivity yields

‖u‖2V ≤ 1
αRea(t;u, u) ≤ 1

α

(
| 〈ϕ, u〉 |+ |λ|‖u‖2H

)
≤ 1

α

(
‖ϕ‖V ′‖u‖V + |λ|‖u‖2H

)
.

(2.2)

We aim to estimate |λ|‖u‖2H against ‖u‖V ‖ϕ‖V ′ . Since the numerical range of a(t; ·, ·) in contained

in Sω0
we have

dist(λ,−Sω0) ‖u‖2H ≤
∣∣∣λ+ a(t; u

‖u‖ ,
u
‖u‖ )

∣∣∣ ‖u‖2H
≤
∣∣〈(λI +A(t))u, u〉

∣∣ ≤ ‖u‖V ‖ϕ‖V ′ .
Now let θ > ω0 and λ 6∈ Sθ. Then dist(λ,−Sω0

) ≥ |λ| sin(θ−ω0) and therefore

|λ|‖u‖2H ≤ 1
sin(θ−ω0)‖u‖V ‖ϕ‖V ′

as desired. From this and (2.2) it follows that

‖u‖V ≤ 1
α

(
1 + 1

sin(θ−ω0)

)
‖(λ+A(t))u‖V ′ (2.3)

uniformly for all λ 6∈ Sθ, θ > ω0. This implies that (λ +A(t)) is invertible with a uniform norm

bound on S{
θ , θ > ω0. This is equivalent to −A(t) being the generator of a bounded analytic

semigroup on V ′. The bound is independent of t. This proves assertion (a).
Assertion (b) follows from the analyticity of the semigroups (e−sA(t))s≥0 on H and (e−sA(t))s≥0

on V ′ and the Cauchy formula as usual.
For assertion (c), observe that for x ∈ H

α‖e−sA(t)x‖2V ≤ Rea(t; e−sA(t)x, e−sA(t)x)

= Re
[
A(t)e−sA(t)x | e−sA(t)x

]
H

≤ C
s ‖x‖

2
H .

The second inequality in (c) follows by duality.
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The estimate (d) follows in a a natural way from (a) and (c) by writing the resolvent as the Laplace
transform of the semigroup. Finally, in order to prove assertion (e), we notice that for a constant
µ ≥ 0 we have

‖e−z (A(t)+µ)x‖H ≤ ‖e−z A(t)x‖H ,

for all z ∈ Sπ/2− arctan(M/α). The same estimate also holds when replacing the norm of H by the
norm of V or the norm of V ′. Now we use the Cauchy formula to obtain (b) for A(t)+µ. Assertion
(d) for A(t) + µ follows again by the Laplace transform. The other estimates are obvious. �

Finally we mention the following easy corollary of the proposition.

Corollary 2.2. Let ω : R→ R+ be some function and assume that

|a(t;u, v)− a(s;u, v)| ≤ ω(|t−s|)‖u‖V ‖v‖V

for all u, v ∈ V . Then

‖R(z,A(t))−R(z,A(s))‖B(H) ≤ cθ
|z|ω(|t−s|)

for all z /∈ Sθ with any fixed θ > arctan(M/α).

Proof. Observe that for u, v ∈ V ,∣∣[R(z,A(t))u−R(z,A(s))u | v]H
∣∣

=
∣∣[R(z,A(t))(A(s)−A(t))R(z,A(s))u | v]H

∣∣
=
∣∣[A(s)R(z,A(s))u |R(z,A(t))∗v]H − [A(t)R(z,A(s))u |R(z,A(t))∗v]H

∣∣
=
∣∣a(s;R(z,A(s))u,R(z,A(t))∗v)− a(t;R(z,A(s))u,R(z,A(t))∗v)

∣∣
≤ cθ
|z| ω(|s−t|) ‖u‖H ‖v‖H ,

where we used Proposition 2.1(d). �

Next we come to a formula for the solution u of (P’) in V ′. Recall that u exists by Lions’ theorem
mentioned in the introduction. This formula already appears in Acquistapace-Terreni [1]. Fix
f ∈ C∞c (0, τ ;H) and u0 ∈ H.

Lemma 2.3. For almost every t ∈ (0, τ), we have, in V ′,

u(t) =

∫ t

0

e−(t−s)A(t)(A(t)−A(s))u(s) ds

+

∫ t

0

e−(t−s)A(t)f(s) ds+ e−tA(t)u0.

(2.4)

Proof. Recall that u ∈W 1
2 (0, τ ;V ′) by Lions’ theorem and hence u has a continuous representative.

Fix t ∈ (0, τ) such that D(A(t)) = V (recall that this is true for almost all t). Set v(s) :=
e−(t−s)A(t)u(s) for 0 < s ≤ t < τ . Recall that −A(t) generates a bounded semigroup e−sA(t) on
V ′, see Proposition 2.1 (b). Since u ∈ W 1

2 (0, τ ;V ′), v has a distributional derivative in V ′ which
satisfies

v′(s) = A(t)e−(t−s)A(t)u(s) + e−(t−s)A(t)(f(s)−A(s)u(s))

= e−(t−s)A(t)(A(t)−A(s))u(s) + e−(t−s)A(t)f(s).

Using the fact that u ∈ L2(0, τ ;V ), it follows that v ∈W 1
2 (0, τ ;V ′). Hence

v(t)− v(0) =

∫ t

0

v′(s) ds =

∫ t

0

e−(t−s)A(t)(A(t)−A(s))u(s) ds+

∫ t

0

e−(t−s)A(t)f(s) ds.

This gives (2.4) by observing that v(t) = u(t) and v(0) = e−tA(t)u0. �
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Lemma 2.4. Suppose (1.3). Then for almost all t ∈ [0, τ ]

A(t)u(t) = (QA(·)u(·))(t) + (Lf)(t) + (Ru0)(t)

in V ′, where

(Qg)(t) :=

∫ t

0

A(t)e−(t−s)A(t)(A(t)−A(s))A(s)−1g(s) ds (2.5)

and

(Lf)(t) := A(t)

∫ t

0

e−(t−s)A(t)f(s) ds and (Ru0)(t) := A(t)e−tA(t)u0. (2.6)

Proof. As in the proof of the previous lemma, we fix t ∈ (0, τ) such that V = D(A(t)). It is
enough to prove that each term in the sum (2.4) is in V . Observe that by analyticity, e−tA(t)u0 ∈
D(A(t)) = V . In passing we also note that since u0 ∈ H, A(t)e−tA(t)u0 = A(t)e−t A(t)u0.
Concerning the first term, we recall that u(s) ∈ V for almost all s (note that u ∈ L2(0, τ ;V )).
Therefore, e−(t−s)A(t)(A(t)−A(s))u(s) ∈ V for almost every s < t by the analyticity of the
semigroup generated by −A(t). In addition,

‖A(t)e(t−s)A(t)(A(t)−A(s))u(s)‖V ′ ≤ C
t−s‖(A(t)−A(s))u(s)‖V ′

= C
t−s sup
‖v‖V =1

|a(t;u(s), v)− a(s;u(s), v)|

≤ C
t−s ω(t−s)‖u(s)‖V .

Note that the operator

H : h 7→
∫ t

0

ω(t−s)
t−s h(s) ds (2.7)

is bounded on Lp(0, τ ;R) for all p ∈ [1,∞]. The reason is that the associated kernel (t, s) 7→
1[0,t](s)

ω(t−s)
t−s is integrable with respect to each variable with a uniform bound with respect to the

other variable as can be seen easily from (1.3). Recall again that ‖u(·)‖V ∈ L2(0, τ ;R). Hence

s 7→ 1[0,t](s) · A(t)e−(t−s)A(t)(A(t)−A(s))u(s)

is in L1(0, τ ;V ′). Therefore, for every ε > 0∫ t−ε

0

e−(t−s)A(t)(A(t)−A(s))u(s) ds ∈ D(A(t))

and the fact that A(t) is a closed operator gives

A(t)

∫ t−ε

0

e−(t−s)A(t)(A(t)−A(s))u(s) ds =

∫ t−ε

0

A(t)e−(t−s)A(t)(A(t)−A(s))u(s) ds.

Since

s 7→ 1[0,t](s) · A(t)e−(t−s)A(t)(A(t)−A(s))u(s) ∈ L1(0, τ ;V ′),

we may let ε→ 0 and obtain
∫ t

0
e−(t−s)A(t)(A(t)−A(s))u(s) ds ∈ D(A(t)) and

A(t)

∫ t

0

e−(t−s)A(t)(A(t)−A(s))u(s) ds =

∫ t

0

A(t)e−(t−s)A(t)(A(t)−A(s))u(s) ds.

Finally, the equality (2.4) and the fact that u(t) ∈ V for almost all t yields∫ t

0

e−(t−s)A(t)f(s) ds ∈ D(A(t)).

This proves the lemma. �

Recall the definition of the operator L,

Lf(t) = A(t)

∫ t

0

e−(t−s)A(t)f(s) ds.
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Let f ∈ C∞c (0, τ ;H) and denote by f0 its extension to the whole of R by 0 outside (0, τ). Observe

that f0 is then in the Schwarz class S(R;H). We denote for Fourier transform of f0 by Ff0 or f̂0.
Clearly, ∫ t

−∞
e−(t−s)A(t)f0(s) ds = 1

2π

∫ t

−∞
e−(t−s)A(t)

∫
R
eisξ f̂0(ξ) dξ ds

Now, exponential stability of (e−sA(t))s≥0 and the fact that f0 ∈ S(R;H) allows us to use Fubini’s
theorem, giving∫ t

−∞
e−(t−s)A(t)

∫
R
eisξ f̂0(ξ) dξ ds =

∫
R

(∫ t

−∞
e−(t−s)(iξ+A(t)) ds

)
f̂0(ξ)eitξ dξ

=

∫
R

(iξ +A(t))−1f̂0(ξ)eitξ dξ.

It follows that ∫ t

−∞
e−(t−s)A(t)f0(s) ds = 1

2π

∫
R
(iξ +A(t))−1f̂0(ξ)eitξ dξ. (2.8)

Observe that the right hand side of (2.8) converges in norm (as a Bochner integral) and that the
same holds for ∫

R
A(t)(iξ +A(t))−1f̂0(ξ)eitξ dξ

since f̂0 ∈ S(R;H). Thus, both terms in (2.8) take values in D(A(t)). This shows that for
f ∈ C∞c (0, τ ;H), (Lf)(t) is a well-defined function taking pointwise values in H. Hille’s theorem
(see e.g. [11, II.2, Theorem 6]) then allows us to take the closed operator A(t) inside the integral
which finally gives the representation formula

Lf(t) = F−1
(
ξ 7→ σ(t, ξ)f̂0(ξ)

)
(t), (2.9)

that allows us to see L as a pseudo-differential operator with operator-valued symbol

σ(t, ξ) =

 A(0)(iξ +A(0))−1 if t < 0
A(t)(iξ +A(t))−1 if 0 ≤ t ≤ τ
A(τ)(iξ +A(τ))−1 if t > τ

(2.10)

Lemma 2.5. Suppose that in addition to our standing assumptions [H1]- [H3] that (1.2) holds
with ω : [0, τ ]→ [0,∞) a non-decreasing function such that∫ τ

0

ω(t)2

t dt <∞. (2.11)

Then L is a bounded operator on L2(0, τ ;H).

Proof. We prove the Lemma by verifying the conditions of Theorem 4.1 below. Let σ(t, ξ) be
given by (2.10). We need to prove that ∥∥∂kξ σ(t, ξ)

∥∥
B(H)

≤ c 1

(1+ξ2)
k/2
, (2.12)∥∥∂kξ σ(t, ξ)− ∂kξ σ(s, ξ)

∥∥
B(H)

≤ c ω(t−s)
(1+ξ2)

k/2
, (2.13)

for k = 0, 1, 2. For k = 0, (2.12) is just the sectoriality of A(t), see Proposition 2.1 whereas (2.13)
is precisely Corollary 2.2. Observe that a holomorphic function that satisfies

‖f(z)‖ ≤ C 1
|z|

on the complement of a sector of angle θ will automatically satisfy

‖f (k)(z)‖ ≤ Cθ,k C 1
|z|k+1

on the complement of strictly larger sectors, simply by Cauchy’s integral formula for derivatives.
Conditions (2.12) and (2.13) follow therefore for all k ≥ 1. �

Next we prove that the operator L extends to a bounded operator on Lp(0, τ ;H).

Lemma 2.6. Under the assumptions of the previous lemma the operator L is bounded on Lp(0, τ ;H)
for all p ∈ (1,∞).
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Proof. The operator L is a singular integral operator with operator-valued kernel

K(t, s) = 1{0≤s≤t≤τ}A(t)e−(t−s)A(t),

where 1 denotes the indicator function. We prove that both L and L∗ are of weak type (1, 1)
operators and we conclude by the Marcinkiewicz interpolation theorem together with the previous
lemma that L is bounded on Lp(0, τ ;H) for all p ∈ (1,∞). It is known (see, e.g. [24, Theorems
III.1.2 and III.1.3]) that L (respectively L∗) is of weak type (1, 1) if the corresponding kernel
K(t, s) satisfies the Hörmander integral condition. This means that we have to verify∫

|t−s|≥2|s′−s|
‖K(t, s)−K(t, s′)‖B(H) dt ≤ C (2.14)

and ∫
|t−s|≥2|s′−s|

‖K(s, t)−K(s′, t)‖B(H) dt ≤ C (2.15)

for some constant C independent of s, s′ ∈ (0, τ). Note that the above mentioned theorems in [24]
are formulated for integral operators on Lp(R;H) instead of Lp(0, τ ;H); however it is known that
Hörmander’s integral condition works on any space satisfying the volume doubling condition, see
[24, page 15].
First consider the integral in (2.14). When s ≤ s′ and 2|s′−s| > τ the integral vanishes. When
0 ≤ s ≤ s′ ≤ t ≤ τ and 2s′−s ≤ τ , using that the semigroup (e−sA(t))s≥0 generated by −A(t) is
bounded holomorphic, with a norm bound independent of t, we have for some constant C∫

|t−s|≥2|s′−s|
‖K(t, s)−K(t, s′)‖B(H) dt

=

∫ τ

2s′−s
‖A(t)e−(t−s)A(t) −A(t)e−(t−s′)A(t)‖B(H) dt

=

∫ τ

2s′−s

∫ s′

s

‖A(t)2e−(t−r)A(t) dr‖B(H) dt

≤ C
∫ τ

2s′−s

∫ s′

s

1
(t−r)2 dr dt = C

∫ τ

2s′−s

[
1

t−s′ −
1
t−s

]
dt

= C
[
log t−s′

t−s

]t=τ
t=2s′−s

≤ C log 2.

When s′ < s and 3s − 2s′ > τ , the integral (2.14) vanishes. When s′ < s and 3s − 2s′ < τ , a
similar calculation to the above shows that the integral is bounded by C log(3/2).
We now consider (2.15). When s ≤ s′, as above, we may assume that 3s−2s′ > 0, since otherwise
the integral in (2.15) vanishes. We have∫

|t−s|≥2|s′−s|
‖K(s, t)−K(s′, t)‖B(H)dt

=

∫ 3s−2s′

0

‖A(s)e−(s−t)A(s) −A(s′)e−(s′−t)A(s′)‖B(H) dt

≤
∫ 3s−2s′

0

‖A(s)e−(s−t)A(s) −A(s)e−(s′−t)A(s)‖B(H) dt

+

∫ 3s−2s′

0

‖A(s)e−(s′−t)A(s) −A(s′)e−(s′−t)A(s′)‖B(H) dt =: I1 + I2.

The first term I1 is handled exactly as in the proof of (2.14). For the second term I2, we write by
the functional calculus

A(s)e−(s′−t)A(s) −A(s′)e−(s′−t)A(s′) = 1
2πi

∫
Γ

ze−tz
[
R(z,A(s))−R(z,A(s′))

]
dz

where Γ is the boundary of an appropriate sector Sθ. We apply Corollary 2.2 to deduce

‖A(s)e−(s′−t)A(s) −A(s′)e−(s′−t)A(s′)‖B(H) ≤ C
∫ ∞

0

re−(s′−t)r cos θ ω(s′−s)
r dr
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≤ C ω(s′−s)
s′−t .

Therefore, ∫ 3s−2s′

0

‖A(s)e−(s′−t)A(s) −A(s′)e−(s′−t)A(s′)‖B(H) dt

≤ C
∫ 3s−2s′

0

ω(s′−s)
s′−t dt ≤ C

∫ τ

0

ω(r) dr
r = C ′,

where we used the fact that ω is non-decreasing and s′−s ≤ s′−t to write the second inequality.
Finally, the integral (2.15) in the case s′ < s is treated similarly. Remark: A similar reasoning for
the weak type (1, 1) estimate for L and L∗ appears in [13, p. 1051]. �

Now we study the operator R.

Lemma 2.7. Assume (1.4). Then there exists C > 0 such that for every u0 ∈ (H,D(A(0)))1−1/p,p:

‖Ru0‖Lp(0,τ ;H) ≤ C‖u0‖(H,D(A(0)))1−1/p,p
.

Proof. Recall that the operator R is given by (Rg)(t) = A(t)e−t A(t)g for g ∈ H. Let

(R0g)(t) := A(0)e−t A(0)g.

We aim to estimate the difference (R − R0)g. Let Γ = ∂Sθ with θ ∈ (ω0, π/2) and ω0 is as in the
proof of Proposition 2.1. Then, for v ∈ V , the functional calculus for the sectorial operators A(t)
and A(0) gives〈

A(t)e−t A(t)g −A(0)e−t A(0)g, v
〉

= 1
2πi

∫
Γ

〈
ze−tz

[
R(z,A(t))−R(z,A(0))

]
g, v
〉

dz

= 1
2πi

∫
Γ

〈
ze−tzR(z,A(t))

[
A(0)−A(t)

]
R(z,A(0))g, v

〉
dz

= 1
2πi

∫
Γ

〈
ze−tz

[
A(0)−A(t)

]
R(z,A(0))g,R(z,A(t))∗v

〉
dz

= 1
2πi

∫
Γ

ze−tz a(0;R(z,A(0))g,R(z,A(t))∗v)− a(t;R(z,A(0))g,R(z,A(t))∗v) dz.

Now, taking the absolute value it follows from Proposition 2.1(d) that

|〈(Rg −R0g)(t), v〉| ≤ Cα
2π

∫
Γ

ω(t)|z|e−tRe(z)‖R(z,A(0))g‖V ‖R(z,A(t))∗v‖V |dz|

≤ Cα,θ
2π ω(t)‖g‖H‖v‖H

∫
Γ

e−tRez |dz|

≤C ′ ω(t)
t ‖g‖H‖v‖H .

Since this true for all v ∈ H we conclude that

‖(Ru0)(t)− (R0u0)(t)‖H ≤ C ′ ω(t)
t ‖u0‖H . (2.16)

From the hypothesis (1.4) it follows thatRu0−R0u0 ∈ Lp(0, τ ;H). On the other hand, sinceA(0) is

invertible, it is well-known that A(0)e−t A(0)u0 ∈ Lp(0, τ ;H) if and only if u0 ∈ (H,D(A(0)))1−1/p,p

(see Triebel [26, Theorem 1.14]). Therefore, Ru0 ∈ Lp(0, τ ;H) and the lemma is proved. �

3. Proofs of the main results

Proof of Theorem 1.2. Assume first that u0 = 0 and let f ∈ C∞c (0, τ ;H). From Lemma 2.4 it is
clear that

(I −Q)A(·)u(·) = Lf(·). (3.1)
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Recall that L is bounded on Lp(0, τ ;H) by Lemma 2.6. We shall now prove that Q is bounded on
Lp(0, τ ;H). Let g ∈ C∞c (0, τ ;H). By Proposition 2.1 we have

‖(Qg)(t)‖H ≤
∫ t

0

C
t−s‖e

−(t−s)A(t)/2(A(t)−A(s))A(s)−1g(s)‖H ds

≤
∫ t

0

C′

(t−s)3/2 ‖(A(t)−A(s))A(s)−1g(s)‖V ′ ds.

Since ‖A(t)x‖V ′ = sup‖v‖V =1 |a(t;x, v)|, we use the regularity assumption (1.2) to bound Qg
further by

‖(Qg)(t)‖H ≤
∫ t

0

C′

(t−s)3/2 ω(t−s) ‖A(s)−1g(s)‖V ds. (3.2)

Now we estimate ‖A(s)−1g(s)‖V . By coercivity

α‖A(s)−1g(s)‖2V ≤ Rea(s;A(s)−1g(s),A(s)−1g(s))

= Re〈A(s)A(s)−1g(s),A(s)−1g(s)〉

= Re
[
g(s) | A(s)−1g(s)

]
H

≤ ‖g(s)‖2H‖A(s)−1‖B(H).

We obtain from (3.2) that

‖(Qg)(t)‖H ≤
∫ t

0

C′

(t−s)3/2 ω(t−s) ‖A(s)−1‖1/2B(H)‖g(s)‖H ds. (3.3)

Now, once we replace A(t) by A(t)+µ, (3.2) is valid with a constant independent of µ ≥ 0 by
Proposition 2.1(e). Using the estimate

‖(A(s) + µ)−1‖B(H) ≤ 1
µ ,

in (3.3) for A(s)+µ we see that

‖(Qg)(t)‖H ≤ C′√
µ

∫ t

0

ω(t−s)
(t−s)3/2 ‖g(s)‖H ds.

It remains to see that the operator S defined by

Sh(t) :=

∫ t

0

ω(t−s)
(t−s)3/2h(s) ds

is bounded on Lp(0, τ ;R). Observe that S is an integral operator with kernel function (t, s) 7→
1[0,t](s)

ω(t−s)
(t−s)3/2 . Hence by assumption (1.3) it is integrable with respect to each of the two vari-

ables with uniform bound with respect to the other variable. This implies that S is bounded on
L1(0, τ ;H) and on L∞(0, τ ;H) and hence bounded on Lp(0, τ ;H).

It follows that Q is bounded on Lp(0, τ ;H) with norm of at most C′′√
µ for some constant C ′′. Taking

then µ large enough makes Q strictly contractive such that (I−Q)−1 is bounded by the Neumann
series. Then, for f ∈ C∞c (0, τ ;H), (3.1) can be rewritten as

A(·)u(·) = (I −Q)−1Lf(·).

For general u0 ∈ (H,D(A(0)))1−1/p,p we suppose in addition to (1.3) that (1.4) holds. Lemma 2.7
shows that Ru0 ∈ Lp(0, τ ;H). As previously we conclude that

A(·)u(·) = (I −Q)−1(Lf +Ru0),

whenever f ∈ C∞c (0, τ ;H). Thus taking the Lp norms we have

‖A(·)u(·)‖Lp(0,τ ;H) ≤ C‖(Lf +Ru0)‖Lp(0,τ ;H).

We use again the previous estimates on L and R to obtain

‖A(·)u(·)‖Lp(0,τ ;H) ≤ C ′
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.
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Using the equation (P) we obtain a similar estimate for u′ and so

‖u′(·)‖Lp(0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H) ≤ C ′′
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

We write u(t) = A(t)−1A(t)u(t) and use one again the fact that the norms of A(t)−1 on H are
uniformly bounded we obtain

‖u(t)‖Lp(0,τ ;H) ≤ C1‖A(·)u(·)‖Lp(0,τ ;H) ≤ C2

[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

We conclude therefore that the following a priori estimate holds

‖u‖Lp(0,τ ;H) + ‖u′‖Lp(0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H)

≤ C
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
, (3.4)

where the constant C does not depend on f ∈ C∞c (0, τ ;H).
Now let f ∈ Lp(0, τ ;H) and (fn) ⊂ C∞c (0, τ ;H) be an approximating sequence that converges
in Lp and pointwise almost everywhere. For each n, denote by un the solution of (P) with right
hand side fn. We apply (3.4) to un − um and we see that there exists u ∈ W 1

p (0, τ ;H) and
v ∈ Lp(0, τ ;H) such that

un
Lp−−→ u u′n

Lp−−→ u′ and A(·)un(·) Lp−−→ v (3.5)

By extracting a subsequence, we may assume that these limits hold in the pointwise a.e. sense as
well. For a fixed t, the operator A(t) is closed and so v(·) = A(·)u(·). Passing to the limit in the
equation

u′n(t) +A(t)un(t) = fn(t)

shows that

u′(t) +A(t)u(t) = f(t)

for a.e. t ∈ (0, τ). On the other hand, by Sobolev embedding, (un) is bounded in C([0, τ ];H) and
hence u(0) = u0 since un(0) = u0 by the definition of un. We conclude that u satisfies

u′(t) +A(t)u(t) = f(t) u(0) = u0

in the Lp sense. This means that u is a solution to (P). Moreover, (3.4) transfers from un to u.
The uniqueness of the solution u follows from the a priori estimate (3.4) as well. �

Proof of Corollary 1.3. The result follows from Theorem 1.2 and the observation that

(H,D(A(0)))1/2,2 = [(H,D(A(0))]1/2 = D((δ +A(0))
1/2),

see e.g. [17, Corollaries 4.37 and 4.30]. �

Proof of Corollary 1.4. By the definition of maximal regularity, one may modify the operators
A(t), 0 ≤ t ≤ τ , on a set of Lebesgue measure zero. Therefore, we may assume without loss of
generality that the mapping t 7→ a(t;u, v) is right continuous. We may assume again that the
operators A(·) are all invertible. We apply Corollary 1.3 to the evolution equation{

u′j(t) +A(t)uj(t) = f(t) t ∈ (tj , tj+1)

uj(tj) = uj−1(tj),

since it is obvious that the assumed α-Hölder continuity for some α > 1/2 implies both (1.3) and
(1.5). The solution uj is in W 1

2 (tj , tj+1;H) provided the initial data satisfies

uj(tj) := uj−1(tj) ∈ D(A(tj)
1/2).

Note that the endpoint uj−1(tj) is well defined since uj ∈ C([tj , tj+1];H) by [9, XVIII Chapter
3, p. 513]. In order to obtain a solution u ∈ W 1

2 (0, τ ;H), we glue the solutions uj . That is, we

set u(t) = uj(t) for t ∈ [tj , tj+1]. What remains then to prove is that u(tj) ∈ D(A(tj)
1/2), where

u ∈W 1
2 (0, τ ;V ′) is the solution in V ′ given by Lions’ theorem.

Fix one of the discontinuity points tj and consider the autonomous equation

v′(s) +A(t−j )v(s) = f(s), v(0) = 0.
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By maximal regularity ofA(t−j ), its solution v(s) =
∫ s

0
e−(s−r)A(t−j ) f(r) dr satisfies v(s) ∈ D(A(t−j ))

for almost all s. Choose a sequence (sn) converging to tj from the left such that v(sn) ∈ D(A(t−j )).

Since A(t−j ) is an accretive and sectorial operator it has a bounded H∞-calculus of some angle

< π/2. Hence A(t−j ) and its adjoint admit square-function estimates of the form:∫ ∞
0

‖A(t−j )
1/2e−r A(t−j )x‖2H dr ≤ C‖x‖2H for all x ∈ H,

see e.g. [18, Section 8]. It follows that∫ sn

0

∥∥A(t−j )
1/2e−(tj−r)A(t−j )f(r)

∥∥
H

dr

=

∫ sn

0

sup
‖h‖H≤1

[
f(r) |A(t−j )∗

1/2
e−(tj−r)A(t−j )∗h

]
H

dr

≤
∥∥f∥∥

L2(0,τ ;H)
sup
‖h‖H≤1

(∫ sn

0

∥∥A(t−j )∗
1/2
e−(tj−r)A(t−j )∗h

∥∥2

H
dr
)1/2

≤ C
∥∥f∥∥

L2(0,τ ;H)
.

(3.6)

Thus, (3.6) implies that the sequence (v(sn))n≥0 is bounded in the Hilbert space D(A(t−j )1/2).
It has a weakly convergent subsequence. By extracting a subsequence, we may assume that
(v(sn))n≥0 converges weakly to some v in D(A(t−j )1/2). But the continuity of the solution v(·)
implies that v(sn) tends also to v(tj) in H. Therefore,

v(tj) =

∫ tj

0

e−(tj−r)A(t−j ) f(r) dr ∈ D(A(t−j )
1/2).

In particular, ∫ tj

tj−1

e−(tj−r)A(t−j ) f(r) dr ∈ D(A(t−j )
1/2). (3.7)

On the other hand, as in the proof of Lemma 2.3, we have for all t > tj−1

u(t)− e−(t−tj−1)A(t)u(tj−1)

=

∫ t

tj−1

e−(t−s)A(t)(A(t)−A(s))u(s) ds+

∫ t

tj−1

e−(t−s)A(t)f(s) ds.
(3.8)

By analyticity of the semigroup e−sA(t−j ) it follows that e−(tj−tj−1)A(t−j )u(tj−1) ∈ D(A(t−j )1/2).

Now we prove that
∫ tj
tj−1

e−(tj−s)A(t−j )(A(t−j )−A(s))u(s) ds ∈ D(A(t−j )1/2). It is enough to prove

that ∫ tj

tj−1

A(t−j )
1/2e−(tj−s)A(t−j )(A(t−j )−A(s))u(s) ds ∈ H. (3.9)

To this end, let h ∈ H be such that ‖h‖H ≤ 1. By Proposition 2.1, (c), we have

‖A(t−j )∗
1/2
e−(tj−s)A(t−j )∗h‖V ≤ C|tj − s|−1 (3.10)

Thus, since the form is Cα on (tj−1, tj), we have for every small ε > 0∣∣∣〈∫ tj−ε

tj−1

A(t−j )
1/2e−(tj−s)A(t−j )(A(t−j )−A(s))u(s) ds, h〉

∣∣∣
=
∣∣∣∫ tj−ε

tj−1

a(tj ;u(s), A(t−j )∗
1/2
e−(tj−s)A(t−j )∗h)− a(s;u(s), A(t−j )∗

1/2
e−(tj−s)A(t−j )∗h) ds

∣∣∣
≤ C

∫ tj−ε

tj−1

|tj − s|α‖u(s)‖V ‖A(t−j )∗
1/2
e−(tj−s)A(t−j )∗h‖V ds

≤ C ′
∫ tj

tj−1

|tj − s|α−1‖u(s)‖V ds.
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Taking the supremum over all h ∈ H of norm we obtain

‖
∫ tj−ε

tj−1

A(t−j )
1/2e−(tj−s)A(t−j )(A(t−j )−A(s))u(s) ds‖H ≤ C ′′‖u‖L2(0,τ ;V ).

Since this is true for all ε > 0 we obtain (3.9). We conclude from this, (3.7) and (3.8) that
uj−1(tj) = u(tj) ∈ D(A(t−j )1/2). Finally, the latter space coincides with D(A(t−j )1/2) = D(A(t+j )1/2)
by the assumptions of the corollary. �

4. Operator-valued pseudo-differential operators

Given a Hilbert space H, our aim in this section is to prove results on boundedness on L2(Rn;H)
for pseudo-differential operators with minimal smoothness assumption on the symbol. The main
results we will show here were proved in [19] in the scalar case (i.e. H=C), see also [4]. The
operator-valued version follows the lines in [19] and we give the details here for the sake of com-
pleteness. Let us mention the paper [14] where results on Lp–boundedness of pseudo-differential
operators with operator-valued symbols are proved even when H is not a Hilbert space. We do not
appeal to the results from [14] in order to avoid assuming continuity and concavity assumptions
on the function ω in Theorem 1.2.
Let H be a Hilbert space on C, with scalar product [· | ·]H and associated norm ‖ · ‖H .

σ : Rn × Rn → B(H)

be bounded measurable. We define for f in the Schwartz space S(Rn;H)

Tσf(x) := 1
(2π)n

∫
Rn
σ(x, ξ)f̂(ξ)eixξ dξ.

where we write f̂ for the Fourier transform of f . We shall also use the notation |ξ| for the Euclidean

distance in Rn and write henceforth 〈ξ〉 :=
√

1 + |ξ|2. For the rest of this section, we will ignore
the normalisation constant in the definition of the Fourier transform.

Theorem 4.1. Suppose that there exists a non-decreasing function ω : [0,∞)→ [0,∞) such that

‖∂αξ σ(x, ξ)‖B(H) ≤ Cα〈ξ〉−|α|

and
‖∂αξ σ(x, ξ)− ∂αξ σ(x′, ξ)‖B(H) ≤ Cα〈ξ〉−|α|ω(|x− x′|)

for all |α| ≤ [n/2] + 2 and some positive constant Cα. Suppose in addition that∫ 1

0

ω(t)2 dt
t <∞,

then Tσ is a bounded operator on L2(R;H).†

Proof. Let ϕ ∈ C∞(Rn) be a non-negative function with support in the unit ball such that∫
Rn ϕ(x) dx = 1. Fix a constant δ ∈ (0, 1) and define the symbols

σ1(x, ξ) :=

∫
Rn
ϕ(y)σ(x− y

〈ξ〉δ
, ξ) dy

and
σ2(x, ξ) := σ(x, ξ)− σ1(x, ξ).

It is clear that

σ1(x, ξ) =

∫
Rn
ϕ(〈ξ〉δ(x− y))σ(y, ξ)〈ξ〉nδ dy

and one checks that

‖∂βx∂αξ σ1(x, ξ)‖B(H) ≤ cα,β〈ξ〉−|α|+δ|β| ≤ cα,β〈ξ〉−δ(|α|−|β|) (4.1)

and
‖∂αξ σ2(x, ξ)‖B(H) ≤ cαω(〈ξ〉−δ)〈ξ〉−|α| (4.2)

†In [13], L2(R;H)–boundedness of Tσ is claimed for symbols σ : R×R→ B(H) that admit a bounded holomor-

phic extension to a double sector of C in the variable ξ, without any kind of regularity in the variable x.
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for |α| ≤ [n2 ] + 2 and all β. Using (4.2) we conclude by the next theorem that Tσ2 is bounded on
L2(Rn;H). The boundedness of Tσ1

on L2(Rn;H) follows from (4.1) and Theorem 1 in [20]. Note
that it is assumed there that the symbol is C∞ but the estimate needed in Theorem 1 is exactly
(4.1) with |α| ≤ [n2 ] + 2. �

Theorem 4.2. Let δ ∈ (0, 1) and w : [0, 1] → R+ be a non-decreasing measurable function
satisfying ∫ 1

0

ω(t)2 dt
t <∞.

If a bounded strongly measurable symbol σ : Rn × Rn → B(H) satisfies

‖∂αξ σ(x, ξ)‖B(H) ≤ Cα〈ξ〉−α ω(〈ξ〉−δ) (4.3)

for |α| ≤ κ := [n/2] + 1, then Tσ is bounded on L2(Rn;H).

Proof. Let ϕ be a non-negative C∞c function satisfying ϕ(ξ) = 1 for |ξ| ≤ 2 and ϕ(ξ) = 0 for
|ξ| > 3. Then we may rewrite

σ(x, ξ) = ϕ(ξ)σ(x, ξ) + (1−ϕ(ξ))σ(x, ξ) = σ1(x, ξ) + σ2(x, ξ)

and treat both parts separately. For the first part, let f ∈ S(Rn;H) and h ∈ H. Then

[(Tσ1
f)(x) |h]H =

∫
Rn
eix·ξ

[
σ1(x, ξ)f̂(ξ) |h

]
H

dξ

=

∫
Rn

[
f(y) |

∫
Rn
ei(x−y)·ξσ1(x, ξ)∗hdξ

]
H

dy

=:

∫
Rn

[f(y) |K(x, x−y)]H dy.

By Plancherel’s theorem,∫
Rn
‖〈z〉2κK(x, z)‖2 dz ≤

∑
|α|≤2κ

cα

∫
Rn
‖zαK(x, z)‖2 dz

=
∑
|α|≤2κ

cα

∫
Rn
‖∂αξ σ1(x, ξ)∗h‖2 dz =: C1‖h‖2,

where C1 is finite due to the support of σ1. By the Cauchy-Schwarz inequality,

‖Tσ1f‖2L2(Rn;H)

=

∫
Rn

sup
h∈H,‖h‖≤1

∣∣∣∫
Rn

[f(y) |K(x, x−y)]H dy
∣∣∣2 dx

≤
∫
Rn

sup
h∈H,‖h‖≤1

(∫
Rn
〈x−y〉−2κ‖f(y)‖2H dy

)(∫
Rn
‖〈x−y〉2κK(x, x−y)‖2H dy

)
dx

≤ C1

∫
Rn

∫
Rn
〈x−y〉−2κ dx ‖f(y)‖2H dy = C1C2‖f‖2L2(Rn;H).

Thus, Tσ1 is bounded on L2(Rn;H).

Next we show boundedness of Tσ2 . Recall that supp(σ2) ⊂ {(x, ξ) : |ξ| ≥ 2}. Let φ ∈ C∞c such
that supp(φ) ⊆ [1, 2] and

∫∞
0
|φ(t)|2 dt

t = 1. Let f ∈ S(Rn;H) and h ∈ H.

[(Tσ2f)(x) |h]H =

∫
Rn
eix·ξ

[
σ2(x, ξ)f̂(ξ) |h

]
H

dξ

=

∫ ∞
0

∫
Rn
eix·ξφ(|tξ|)2

[
f̂(ξ) |σ2(x, ξ)∗h

]
H

dξ dt
t

=

∫ 1

0

∫
Rn

[
eix·ξφ(|tξ|)f̂(ξ) |φ(|tξ|)σ2(x, ξ)∗h

]
H

dξ dt
t

=

∫ 1

0

∫
Rn

[
t−nei

x/t·ξφ(|ξ|)f̂(ξ/t) |φ(|ξ|)σ2(x, ξ/t)∗h
]
H

dξ dt
t .
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Recall that φ ∈ S(R), so that by Plancherel’s theorem

[(Tσ2f)(x) |h]H =

∫ 1

0

∫
Rn

[K1(t, x, z) |K2(t, x, z)]H dz dt
t ,

where K1 and K2 are the respective Fourier transforms

K1(t, x, z) =

∫
Rn
t−nei(

x/t−z)·ξφ(|ξ|)f̂(ξ/t) dξ =

∫
Rn
ei(x−tz)·ξφ(|tξ|)f̂(ξ) dξ

and

K2(t, x, z) =

∫
Rn
e−iz·ξφ(|ξ|)σ2(x, ξ/t)∗hdξ.

Now, by the Cauchy-Schwarz inequality,∣∣[(Tσ2f)(x) |h]H
∣∣2

=
∣∣∣∫ 1

0

∫
Rn

[
〈z〉−κK1(t, x, z) | 〈z〉κK2(t, x, z)

]
H

dz dt
t

∣∣∣2
≤
(∫ 1

0

∫
Rn

∥∥〈z〉−κK1(t, x, z)
∥∥2

H
dz dt

t

)(∫ 1

0

∫
Rn

∥∥〈z〉κK2(t, x, z)
∥∥2

H
dz dt

t

)
.

Observe that 〈z〉κK2(t, x, z) = F
(
(I−∆ξ)

κ/2φ(|ξ|)σ2(x, ξ/t)∗h
)
(z). Recall that φ ∈ C∞c (R) has its

support in [1, 2], so that, for |ξ| ≥ 1, and using the growth assumption (4.3) on derivatives of σ,∣∣∂βξ φ(|ξ|)| ≤ C 〈ξ〉−|β| ≤ C∥∥∂γξ σ2(x, ξ/t)∗h
∥∥ ≤ C ′ t−|γ| ‖h‖ (|ξ/t|−|γ|ω(|ξ/t|−δ)

)
≤ C ′′‖h‖ω(t+δ).

Note that we used here the monotonicity of ω. The Dini type condition on ω then gives∫ 1

0

∫
Rn

∥∥〈z〉κK2(t, x, z)
∥∥2

H
dz dt

t ≤ C
′′‖h‖2H

∫ 1

0

∫
1≤|ξ|2≤2

ω(t+δ)2 dξ dt
t =: C2‖h‖2H .

We conclude by observing that, again by Plancherel,∫
Rn

sup
h∈H,‖h‖≤1

∣∣[(Tσ2
f)(x) |h]H

∣∣2 dx

≤ C2

∫
Rn

∫ 1

0

∫
Rn
〈z〉−2κ

∥∥K1(t, x, z)
∥∥2

H
dz dt

t dx

= C2

∫ 1

0

∫
Rn
〈z〉−2κ

∫
Rn

∥∥K1(t, x, z)
∥∥2

H
dx dz dt

t

= C ′2

∫ 1

0

∫
Rn
〈z〉−2κ

∫
Rn
|φ(|tξ|)|2‖f̂(ξ)‖2H dξ dz dt

t

≤ cnC ′2
∫
Rn
‖f̂(ξ)‖2H

∫ ∞
0

|φ(|tξ|)|2 dt
t dξ

= cnC
′
2

∫
Rn
‖f̂(ξ)‖2H dξ.

Therefore, Tσ2
and hence Tσ are bounded on L2(Rn;H). �

5. Examples

In this section we discuss some examples and applications of our results. We shall focus on two
simple but relevant linear problems which involve elliptic operators. Note that following [3], we
may also consider quasi-linear evolution equations. Our maximal regularity results can be used to
improve some results in [3] on existence of solutions to quasi-linear problems in the sense that we
assume less regularity with respect to t of the coefficients of the equations. We shall not pursue
this direction here.
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5.1. Elliptic operators. Define on H = L2(Rd,dx) the sesquilinear forms

a(t;u, v) =

d∑
k,j=1

∫
Rd
akj(t, x)∂ku∂jv dx for u, v ∈W 1

2 (Ω).

We assume that akj : [0, τ ]× Rd → C such that:

akj ∈ L∞([0, τ ]× Rd) for 1 ≤ k, j ≤ d,

and

Re

d∑
k,j=1

akj(t, x)ξkξj ≥ ν|ξ|2 for all ξ ∈ Cd and a.e. (t, x) ∈ [0, τ ]× Rd.

Here ν > 0 is a constant independent of t.
It is easy to check that a(t; ·, ·) is W 1

2 (Rd)-bounded and quasi-coercive. The associated operator
with a(t; ·, ·) is the elliptic operator given by the formal expression

A(t)u = −
d∑

k,j=1

∂j (akj(t, .)∂ku) .

In addition to the above assumptions we assume that for some constant M and α > 1/2

|akj(t, x)− akj(s, x)| ≤M |t− s|α for a.e. x ∈ Rd and all t, s ∈ [0, τ ]. (5.1)

By the Kato square root property, it is known that D(A(0)1/2) = W 1
2 (Rd), see [5]. Therefore,

applying Corollary 1.4 we conclude that for every f ∈ L2(0, τ ;H) the problem{
u′(t)−

∑d
k,j=1 ∂j (akj(t, .)∂ku(t)) = f(t), t ∈ (0, τ ]

u(0) = u0 ∈W 1
2 (Rd)

has a unique solution u ∈W 1
2 (0, τ ;H) ∩ L2(0, τ ;W 1

2 (Rd)).

5.2. Time-dependent Robin boundary conditions. We consider here the Laplacian on a
domain Ω with a time dependent Robin boundary condition

∂νu(t) + β(t, .)u = 0 on Γ = ∂Ω, (5.2)

for some function β : [0, τ ] × Γ → R. This example is taken from [3]. The difference here is that
we assume less regularity on β and also that we can treat maximal Lp–regularity for p ∈ (1,∞)
whereas the results in [3] are restricted to the case p=2.
Let Ω be a bounded domain of Rd with Lipschitz boundary Γ = ∂Ω and denote by σ the (d−1)-
dimensional Hausdorff measure on Γ. Let β : [0, τ ] × Γ → R be a bounded measurable function
which is Hölder continuous w.r.t. the first variable, i.e.,

|β(t, x)− β(s, x)| ≤M |t− s|α (5.3)

for some constants M , α > 1/2 and all t, s ∈ [0, τ ], x ∈ Γ. We consider the symmetric form

a(t;u, v) =

∫
Ω

∇u∇v dx+

∫
Γ

β(t, .)uv dσ, u, v ∈W 1
2 (Ω). (5.4)

The form a(t; ·, ·) is W 1
2 (Ω)-bounded and quasi-coercive. The first statement follows from the

continuity of the trace operator and the boundedness of β. The second one is a consequence of
the inequality ∫

Γ

|u|2 dσ ≤ ε‖u‖2W 1
2

+ cε‖u‖2L2(Ω), (5.5)

which is valid for all ε > 0 (cε is a constant depending on ε). Note that (5.5) is a consequence
of compactness of the trace as an operator from W 1

2 (Ω) into L2(Γ, dσ), see [21, Chap. 2 § 6,
Theorem 6.2].
The operator A(t) associated with a(t; ·, ·) on H := L2(Ω) is (minus) the Laplacian with time
dependent Robin boundary conditions (5.2). As in [3], we use the following weak definition of the
normal derivative. Let v ∈ W 1

2 (Ω) such that ∆v ∈ L2(Ω). Let h ∈ L2(Γ, dσ). Then ∂νv = h
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by definition if
∫

Ω
∇v∇w +

∫
Ω

∆vw =
∫

Γ
hw dσ for all w ∈ W 1

2 (Ω). Based on this definition, the
domain of A(t) is the set

D(A(t)) = {v ∈W 1
2 (Ω) : ∆v ∈ L2(Ω), ∂νv + β(t)v|Γ = 0},

and for v ∈ D(A(t)) the operator is given by A(t)v = −∆v.
Observe that the form a(t; ·, ·) is symmetric, so that W 1

2 (Ω) = D(A(0)1/2). From Corollary 1.4 it
follows that the heat equation

u′(t)−∆u(t) = f(t)

u(0) = u0 u0 ∈W 1
2 (Ω)

∂νu(t) + β(t, .)u = 0 on Γ

has a unique solution u ∈ W 1
2 (0, τ ;L2(Ω)) whenever f ∈ L2(0, τ ;L2(Ω)). This example is also

valid for more general elliptic operators than the Laplacian.

Note that in both examples we have assumed α-Hölder continuity in (5.1) and (5.3). We could
replace this assumption by piecewise α-Hölder continuity as authorised by Corollary 1.4.
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mathematischen Wissenschaften, Bd. 111, Springer-Verlag, Berlin, 1961.

[17] Alessandra Lunardi, Interpolation theory (second edition), Edizioni della Normale, Pisa, 2009.

[18] Alan McIntosh, Operators which have an H∞ functional calculus, Miniconference on operator theory and
partial differential equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14,

Austral. Nat. Univ., Canberra, 1986, pp. 210–231.

[19] Tosinobu Muramatu and Michihiro Nagase, L2-boundedness of pseudo-differential operators with non-regular
symbols, Can. Math. Soc. Conference Proceedings, Vol. 1 (1981) 135-144.



20 BERNHARD H. HAAK AND EL MAATI OUHABAZ

[20] Tosinobu Muramatu, On the boundedness of a class of operator-valued pseudo-differential operators in Lp

spaces, Proc. Japan Acad. 49 (1973), 94–99.
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