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Abstract. We consider the observability problem for non-autonomous evolution systems (i.e.,

the operators governing the system depend on time). We introduce an averaged Hautus con-
dition and prove that for skew-adjoint operators it characterizes exact observability. Next, we

extend this to more general class of operators under a growth condition on the associated evolu-
tion family. We give an application to the Schrödinger equation with time dependent potential

and the damped wave equation with a time dependent damping coefficient.

1. Introduction

In this article we consider observation properties of first order non-autonomous evolution equa-
tions of the following form:

(A,C)

 x′(t) +A(t)x(t) = 0 t ≥ 0
x(0) = x0

y(t) = C(t)x(t).

To be precise, let T > 0 and assume that for t ∈ [0,T], the operator A(t) generates a strongly
continuous contraction semigroup (e−sA(t))s≥0 on the Hilbert space H. We suppose further that
there exists a densely and continuously embedded subspace D ↪→ H such that that for all t ∈ [0,T],
D(A(t)) = D and that t 7→ A(t)v is continuously differentiable in H for every v ∈ D . These
assumptions are sufficient to guarantee the existence of an evolution family (U(t, s))0≤s≤t such
that the Cauchy problem x′(t) = A(t)x(t), x(s) = x0 (for 0 ≤ s ≤ t) admits a unique solution given
by x(t) = U(t, s)x0 (we refer to section 2 below for details). Next, we consider for each t ∈ [0,T],
a generally unbounded, closed operator C(t) : H → Y , whose restriction to D is bounded (with
respect to the stronger norm ‖.‖D). Here Y is another Hilbert space. Since for initial data x0 ∈ D ,
the solution x to (A,C) will satisfy x(t) ∈ D for each t ≥ 0, the observation y(t) is well defined
for all t ≥ 0.

The question we discuss is that of exact or final-time observability. Observability consists
of unique determination or recovery of the initial (or final) time state under the knowledge of
the observed solution y(·). In an autonomous setting this question has attracted attention for
several decades and there is rich literature on the subject. In the non-autonomous setting the
probably best known result is a result of Silverman and Meadows [28], an extension of the well-
known Kalman rank condition, that characterizes exact observability and controllability in the case
where A(t) and C(t) are matrices. Their arguments have, in turn, been adapted to certain infinite
dimensional settings, see for example [1, 2, 3]. Since this requires high regularity assumptions on
the operator function t 7→ A(t) we shall not follow this way.

Instead, our starting point is the following reformulation of the Kalman test in the autonomous
setting, going back to Hautus [13]:

(1.1) ‖Cx‖2 + ‖(λI −A)x‖2 ≥ κ‖x‖2.
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2 AVERAGED HAUTUS TEST FOR NON-AUTONOMOUS EVOLUTION EQUATIONS

In Russell and Weiss [27] this condition was suggested as a replacement for the Kalman test
for operators on infinite dimensional spaces, since its formulation is free from rank arguments.
The authors actually conjectured that (1.1) would characterize exact observability in infinite-
dimensional Hilbert spaces, showing the validity of their conjecture for bounded and invertible
operators A. Jacob and Zwart [14] then proved the named “Hautus conjecture” for diagonal
semigroup generator on a Riesz basis if the output space Y is finite dimensional. Even if the
general conjecture was later proved to be wrong∗, there exist other formulations of the Hautus (or
spectral) condition which imply exact observability. The most prominent case is when A generates
a unitary group. We refer to [20, 30] for early results with bounded observations, and [5, 22] for
successive extensions. These have subsequently been generalized (see [16]) to groups with certain
growth bounds (see also [29] for more information and references on this subject).

In this paper we will investigate possibilities to extend the Hautus condition (1.1) to a non-
autonomous, infinite-dimensional setting. A major difficulty when dealing with non-autonomous
equations is that the two-parameter evolution family U(t, s) mentioned above has no simple repre-
sentation formula in terms of the operators A(t), or their resolvents or the associated (semi)groups.

Nevertheless, it is tempting to hope for a transfer of observability or controllability concepts
for (A,C) from properties of each system

(As, Cs)

 x′(t) +A(s)x(t) = 0 t ∈ [0,T]
x(0) = x0

y(t) = C(s)x(t).

where the parameter s runs through the interval [0,T]. This is, however, hopeless in general:
indeed, consider the simple case of 2× 2 matrices

A =

(
0 1
−1 0

)
and C(t)

(
x
y

)
= cos(t)x− sin(t)y.

It is an easy exercise to see that C(t) exp(−tA)(0, 1)t = 0 for all t > 0 and so all observability
concepts fail miserably, despite the fact that for any fixed s ≥ 0 the systems (As, Cs) is (exactly)
observable, as the Kalman test shows. On the other hand, in [12, Theorem 2.4] an example of
a non-autonomous wave equation with an admissible time-dependent observation is constructed
where the non-autonomous system (A,C) is exactly observable, but none of the equations (As, Cs)
are†.

In view of these examples, it is remarkable that an “integrated” or “averaged” version of the
Hautus condition (1.1) does allow to conclude observability in certain situations. We introduce in
Section 3 the following averaged Hautus conditions

‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)eλsx
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0

eReλ.s
∥∥(λ+A(s))x

∥∥ ds
)2

for all λ ∈ C and all x ∈ D , or

‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)x
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0

∥∥(iξ +A(s))x
∥∥2

ds
)

for all ξ ∈ R and x ∈ D . These inequalities do coincide with the usual infinite-dimensional
Hautus conditions if the operators A and C are independent of t. We prove that averaged Hautus
conditions are necessary for exact observability and are sufficient when the operators A(t) are
skew-adjoint. This result is then refined in Section 4 to deal with invertible evolution families (not
necessarily unitary) under certain growth constraint, thereby generalizing former work of Jacob
and Zwart [16].

In a last section we apply our results to the Schrödinger equation with time dependent potential
and to the damped wave-equation with time-dependent damping.

∗see [15], whose example is due to a “pathological” construction on conditional bases
†Since exact observation of autonomous equations is preserved by small bounded perturbations of the generator

or of the observer, we see that one should not perceive the non-autonomous problem (A,C) as perturbation of
autonomous ones.
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Finally, we mention that other approaches on observability (or controllability) of parabolic
equations with time dependent coefficients exist (see [2, 8] and references therein). The results
there are based on Carleman estimates and are very different from our approach.

2. Preliminary results

Recall that we suppose A(t) : D → H to have a fixed domain, that t 7→ A(t)v is continuously
differentiable in H for every v ∈ D and each semigroup e−sA(t) is a contraction on H. By [24,
Sections 5.3 and 5.4] there exists a unique evolution family (U(t, s))0≤s≤t on H generated by
A(t)0≤t≤T. This evolution family satisfies the following properties.

(1) ‖U(t, s)‖ ≤Me−ω(t−s) for some ω ∈ R
(2) For all v ∈ D , ∂+

∂t U(t, s)v|t=s = −A(s)v, ∂+

∂t U(t, s)v = −A(t)U(t, s)v.

(3) For all v ∈ D , ∂
∂sU(t, s)v = U(t, s)A(s)v.

(4) U(t, s)D ⊆ D
(5) For all v ∈ D , (s, t) 7→ U(t, s)v is continuous in D for 0 ≤ s ≤ t ≤ T.

For every v ∈ D and 0 ≤ s < T the evolution equation

(2.1)

{
d
dtη(t) +A(t)η(t) = 0
η(s) = v

has a unique solution. This solution is given by η(t) = U(t, s)v. Similarly, for f ∈ L1(0,T;H),
the non-homogeneous problem

(2.2)

{
d
dtη(t) +A(t)η(t) = f(t)
η(s) = v ∈ H.

has then a mild solution given by

(2.3) η(t) = U(t, s)v +

∫ t

s

U(t, r)f(r) dr,

see e.g. [24, p.146]. If, in addition to the standing assumptions, f ∈ C1([s,T];H) then (2.2) has a
unique classical solution which coincides with the mild solution, see for example [24, Theorem 5.2,
p.146]. We associate with (A,C) the operator

(Ψs,Tx)(t) =

{
C(t)U(t, s)x t ∈ [s,T]
0 t > T

and define the following notions:

Definition 2.1 (admissible observations). Let (C(t))t∈[0,T] be a family of bounded operators in
L (D , Y ), where Y is some Hilbert space. We say that (C(t))t are admissible observations for
(A(t))t∈[0,T] if there exists a constant MT > 0 such that∫ T

s

∥∥C(t)U(t, s)x
∥∥2

dt ≤M2
T‖x‖2 ∀x ∈ D , s ∈ [0,T].

(one can also consider a weaker admissibility notion by requiring the above inequality for s = 0,
only). For a single operator C(t0) such that∫ T

0

∥∥C(t0)U(t, s)x
∥∥2

dt ≤MT‖x‖2 ∀x ∈ D

we say that C(t0) is admissible for (A(t))t∈[0,T].

For admissible observations, Ψs,T extends to a bounded operator from H to L2(s,T;Y ) which
we denote again by Ψs,T.

In this definition the norm inside the integral is taken in Y and the norm of x is taken in H.
We always use the same notation ‖ · ‖ for both, the difference will be clear from the context.

Definition 2.2. Suppose that (C(t))t is an admissible observation for (A(t))t. We say that the
system (A,C) is
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a) exactly averaged observable in time τ if the map Ψs,τ is bounded from below in the sense
that there exists a constant κτ > 0 such that for all x ∈ D∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt ≥ κτ‖x‖2.

For a given t0 ∈ [0, τ ], the system (A, C(t0)) is exactly observable at time τ if∫ τ

0

∥∥C(t0)U(t, 0)x
∥∥2

dt ≥ κτ‖x‖2.

b) final-time averaged observable in time τ if there exists a constant κτ > 0 such that∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt ≥ κτ‖U(τ, 0)x‖2 ∀x ∈ D .

As above we define final observability for the simple operator C(t0) for some t0 as∫ τ

0

∥∥C(t0)U(t, 0)x
∥∥2

dt ≥ κτ‖U(τ, 0)x‖2.

c) approximately averaged observable in time τ if ker Ψs,τ = {0} for all 0 ≤ s < τ . Again
we define approximate observability for a single operator C(t0) if (A,C(t0)) is approximate
observable in average as above.

In order to justify the use of the term ”averaged” in the previous notions of observability, we
note that it might be possible that (A,C(t0)) is not exactly (or final or approximately) observable
for some C(t0) or even for all t0 ∈ J for some subset J of [0, τ ] but (A,C) is exactly (or final
or approximately) observable in average. In order to see this, we consider the autonomous case
A(t) = A and an observation operator C such that the autonomous system is exactly (or null or
approximately) observable at time τ0. Define

C(t) =

{
C, t ∈ [0, τ0]
0, t ∈ (τ0, τ ].

Then ∫ τ

0

∥∥C(t)e−tAx
∥∥2

dt ≥
∫ τ0

0

∥∥C(t)e−tAx
∥∥2

dt ≥ κτ‖x‖2.

Hence the averaged observability property for (A,C(t)) at time τ holds but the system (A,C(t0)) is
not observable for t0 ∈ (τ0, τ ] at any time. The same observation is valid for null and approximate
average observability.

To avoid confusion, we mention that in [21] the notion of “averaged control” is considered. This
however refers to systems of the form

x′(t) +A(ω)x(t) = B(t)u(t)

where the operator A(ω) depends on a random variable ω ∈ (Ω,P). The authors discuss determin-
istic controls that will steer the ω-depending solution in P-average to some target. Such approach
is entirely unrelated to our work.

Along with (A,C) we consider a controlled evolution equation. First, we recall the following:
one can construct an extrapolation space H−1 and extrapolated operators A−1(t) such that the
following diagram commutes

H H−1(t)

D H

A−1(t)

A(t)

i i

One way to realize H−1(t) is to take the completion of H with respect to a resolvent norm
‖(λ−A(t))−1x‖H or via its identification with D(A(t)∗)′. For all this we refer to [9, Chapter II.5].

In order to keep the abstract setting simple we will suppose for the rest of this section that
D(A(t)∗) =: D∗ is independent of time as well, and that the respective graph norms are equivalent
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with constants independent of t. Note that if for all t ∈ [0,T], A(t) = A(0) +Rt with a bounded
operator on H, then A(t)∗ = A(0)∗ +R∗t with domain D∗ := D(A(0)∗) independent of t.

Let U be another Hilbert space and let B(t) : U → H−1 is bounded for each t ∈ [0,T]. We
consider in H−1 the evolution equation

(A,B)

{
x′(t) +A(t)x(t) = B(t)u(t) t ∈ [0,T]
x(s) = 0.

Since the mild solution is of the form (2.3), we have for 0 ≤ τ ≤ T the naturally associated
operator

(2.4) Φs,τu =

∫ τ

s

U(τ, r)B(r)u(r) dr (τ ≤ τ)

to (A,B).

Definition 2.3 (admissible controls). Let (B(t))t∈[0,T] be a family of bounded operators in L (U ;H−1).
We say that (B(t))t are admissible controls for (A(t))t∈[0,T] if there exists a constant MT > 0 such
that the solution x to (A,B) satisfies x(t) ∈ H and for all s ∈ [0,T)∥∥∥∫ T

s

U(T, r)B(r)u(r) dr
∥∥∥2

≤M2
T

∥∥u∥∥2

L2(s,T;U)

for all u ∈ D(0,T;U) (one can also consider a weaker admissibility notions by requiring the above
inequality for s = 0, only).

Let us consider the retrograde final-value problem

(2.5)

{
z′(t)−A(t)∗z(t) = 0
z(T) = zT.

Observe that for x ∈ D and x∗ ∈ D∗,

d
dt 〈x, U(T, t)∗x∗〉 = d

dt 〈U(T, t)x, x∗〉 = −〈U(T, t)A(t)x, x∗〉 = 〈x,−A(t)∗U(T, t)∗x∗〉

so that z(t) = U(T, t)∗zT solves the retrograde equation (2.5) on [s,T] for all 0 ≤ s < T.

Lemma 2.4. The family (B(t))t∈[0,T] are admissible controls for (A(t))t∈[0,T] if and only if the
family (B(t)∗)t∈[0,T] are admissible observations for the retrograde equation (2.5).

Proof. The following calculation is standard.

sup
‖u‖2≤1

∥∥∥∫ T

s

U(T, r)B(r)u(r) dr
∥∥∥ = sup

‖u‖2≤1

sup
‖x∗‖≤1

∣∣∣∫ T

s

〈U(T, r)B(r)u(r), x∗〉dr
∣∣∣

= sup
‖x∗‖≤1

sup
‖u‖2≤1

∣∣∣∫ T

s

〈u(r), B(r)∗U(T, r)∗x∗〉dr
∣∣∣

= sup
‖x∗‖≤1

(∫ T

s

∥∥B(r)∗U(T, r)∗x∗
∥∥2

dr
)1/2

. �

Definition 2.5. Let (B(t))t be admissible controls for (A(t))t∈[0,T]. We say that (A,B) is
a) Exactly averaged controllable in time τ if for any s ∈ [0, τ) and xs, xτ ∈ H, there exist

u ∈ L2(s, τ ;U) such that the mild solution x satisfies x(s) = xs and x(τ) = xτ .
This definition coincides with the usual one in the autonomous case, that is, given two states
xs, xτ ∈ H we find a control u such that the solution takes the value xs at the initial time
t = s and the value xτ at time t = τ .

b) approximately averaged controllable in time τ if for any 0 ≤ s < τ and any xs, xτ ∈ H
and ε > 0, there exist u ∈ L2(0, τ ;U) such that x(s) = xs and ‖x(τ)− xτ‖ < ε.

c) averaged null controllable in time τ if for every 0 ≤ s < τ and every xs ∈ H, there exist
u ∈ L2(s, τ ;U) such that the mild solution x satisfies x(s) = xs and x(τ) = 0.
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Since the mild solution is given by

x(t) = U(t, s)xs +

∫ t

s

U(t, r)B(r)u(r) dr

it is clear that in order to obtain exact averaged controllability it suffices to consider the case
where x(s) = 0.

Proposition 2.6. Let B(t) ∈ L (U,H−1) be a family of admissible controls for (A(t))t∈[0,T].
Then

a) Exact averaged controllability for (A,B) in time τ is equivalent to exact averaged observabil-
ity of the retrograde final-value problem (2.5) with the observation operators C(t) = B(t)∗.

b) Approximate averaged controllability for (A,B) in time τ is equivalent to approximate aver-
aged observability of the retrograde final-value problem (2.5) with the observation operators
C(t) = B(t)∗.

c) Averaged null controllability for (A,B) in time τ is equivalent to averaged observability of
z(s), 0 ≤ s < τ where z is the solution of the retrograde final-value problem (2.5) with the
observation operators C(t) = B(t)∗.

Proof. First note that (Φ∗s,τzs)(t) = B(t)∗U∗(τ, t)zs for t ∈ [s, τ ]. For simplicity we extend this
function by zero for other values of t. Exact averaged controllability for (A,B) at τ is equivalent
to range(Φs,τ ) = H for all s. Since these operators are bounded, the latter property is equivalent
to the fact that their adjoints Φ∗s,τ is bounded from below on L2(s, τ ;H), i.e., there exists κs,τ
such that ∫ τ

s

‖B(t)∗U(τ, t)∗zs‖2 dt ≥ κs,τ‖zs‖2

for all zs ∈ D∗. Approximate averaged controllability is equivalent to range(Φs,τ ) being dense
for all s ∈ [0, τ), or, equivalently, the respective adjoints being injective. Finally, averaged null
controllability in time τ is equivalent to range(U(τ, s)) ⊂ range(Φs,τ ) for all 0 ≤ s < τ . Applying
[29, Proposition 12.1.2], averaged null controllability is equivalent to

‖U(τ, s)∗zτ‖2 ≤ δ2‖Φ∗s,τzτ‖2 = δ2

∫ τ

s

∥∥B(t)∗U(τ, t)∗zτ
∥∥2

dt

for some constant δ > 0. But U(τ, s)∗zτ = z(s) where z(·) is the solution of the retrograde
equation (2.5). �

3. The averaged Hautus test: skew-adjoint operators

Throughout this section, the family of operators (A(t))0≤t≤T is as before. Let C(t)0≤t≤T be a
family of bounded operators from D to a Hilbert space Y . In the autonomous case A(t) = A and
C(t) = C for all t, it is well known that for admissible C the exact observability of the system
(A,C) implies the so-called Hautus test (or spectral condition)

(3.1) ‖x‖2 ≤ m2‖Cx‖2 +M2‖(iξ +A)x‖2

for some positive constants m and M and all ξ ∈ R and x ∈ D(A). There is also another condition
with λ ∈ C in place of iξ, see below. In the general non-autonomous situation we introduce an
integrated (or averaged) version of this test. We also study, as in the autonomous case, when the
averaged Hautus test is necessary and/or sufficient for averaged observability. We start with the
”necessary” part.

Proposition 3.1. Suppose that (C(t)) is admissible for (A(t)). If the system (A,C) is exactly
averaged observable at time τ > 0 then there exist positive constants m and M such that:

(AH.1) ‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)eλsx
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0

eReλ·s‖(λ+A(s))x‖ds
)2

for all λ ∈ C and all x ∈ D ,

(AH.2) ‖x‖2 ≤ m2
(

1
τ

∫ τ

0

∥∥C(s)x
∥∥2

ds
)

+M2
(

1
τ

∫ τ

0

∥∥(iξ +A(s))x
∥∥ds

)2
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for all ξ ∈ R and x ∈ D .

Remark 3.2. If C(s) = C for all s then (AH.1) can be rewritten as:

(AH.3) ‖x‖2 ≤ e2τRe(λ)−1
2τRe(λ) m2‖Cx‖2 +M2

(
1
τ

∫ τ

0

eReλ·s∥∥(λ+A(s))x
∥∥ds

)2
If, in addition, A(s)=A then both assertions coincide with the classical Hautus (or spectral) con-
ditions. We call the conditions (AH.1) and (AH.2) averaged Hautus tests.

Proof. The proof is similar to the autonomous case. We start from d
ds

(
eλsC(t)U(t, s)x

)
=

λeλsC(t)U(t, s)x+ eλsC(t)U(t, s)A(s)x for x ∈ D . Integrating on [0, τ ] yields

eλtC(t)x− C(t)U(t, 0)x =

∫ t

0

C(t)U(t, s)(A(s) + λ)xeλs ds.

Hence,∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt ≤ 2

∫ τ

0

∥∥C(t)xeλt
∥∥2

dt+ 2

∫ τ

0

∥∥∥∫ t

0

C(t)U(t, s)(λ+A(s))xeλs ds
∥∥∥2

dt.

Since (A,C) is exactly averaged observable on [0, τ ], the left hand side is bounded below by m0‖x‖2
for some constant m0 > 0. We estimate the second term on the right hand side

I :=

(∫ τ

0

∥∥∥∫ t

0

C(t)U(t, s)(λ+A(s))xeλs ds
∥∥∥2

dt

)1/2

= sup

{∣∣∣∫ τ

0

∫ t

0

〈
C(t)U(t, s)(λ+A(s))xeλs, g(t)

〉
H

dsdt
∣∣∣ : ‖g‖L2(0,τ ;H) ≤ 1

}
= sup
‖g‖L2

≤1

∣∣∣∣∫ τ

0

〈
(λ+A(s))x eλs,

∫ τ

s

U(t, s)∗C(t)∗g(t) dt
〉
H

ds

∣∣∣∣
≤ sup
‖g‖L2

≤1

(∫ τ

0

∥∥(λ+A(s))x eλs
∥∥
H

∥∥∥∫ τ

s

U(t, s)∗C(t)∗g(t) dt
∥∥∥
H

ds
)
.

By Lemma 2.4 and the admissibility assumption of (C(t)), there exists a constant Kτ > 0 such
that

I ≤ Kτ

∫ τ

0

∥∥(λ+A(s))xeλs
∥∥ds = Kτ

∫ τ

0

∥∥(λ+A(s))x
∥∥eReλ.s ds.

and (AH.1) follows. The second assertion is obtained from the first one by taking λ = iξ. �

Now we study the converse. In the autonomous case, i.e., A(s) = A and C(t) = C, it is well
known that condition (AH.2) implies the exact observability if the single operator A is skew-
adjoint. We extend this result to our more general situation.

Theorem 3.3. Suppose that A(t) ∈ L (D ;H) be a family of skew-adjoint operators generating
an evolution family U(t, s)0≤s≤t≤T. Suppose that the differences Ds(t) = A(t) − A(s) of the
operators A(t) are admissible observations for U(t, s) with a constant, say N(s). Assume that
C(t) ∈ L (D ;Y ) is a family of admissible observation operators and that the second averaged
Hautus condition (AH.2) holds with positive constants m and M . Then, if for some r > 0 and
τ ∈ [0,T]

(3.2)
τ2

2
− (1+r)

2 π2M2 > (1+r−1)M2

∫ τ

0

N(s)2 ds

then the exact averaged observability estimate

(3.3) 1
τ

∫ τ

0

∫ τ

0

∥∥C(s)U(t, 0)x
∥∥2

dtds ≥ κτ
m2 ‖x‖2

holds for all x ∈ D . In particular, if C(s) = C is constant, then the system (A,C) is exactly
observable in time τ , i.e, for all x ∈ D ,∫ τ

0

∥∥CU(t, 0)x
∥∥2

dt ≥ κτ
m2 ‖x‖2.
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Remark 3.4. a) The theorem states that the system is exactly observable at time τ > τ∗

where

τ∗ = inf{τ ∈ [0,T] :
τ2

2
− (1+r)

2 π2M2 > (1+r−1)M2

∫ τ

0

N(s)2 ds for some r > 0}.

The observation time τ > πM is the best known one in the case that A(t) = A generates
a unitary group. Our condition (3.2) recovers this since in the autonomous case N(s) = 0
for all s > 0, so that we may chose r > 0 as small as we wish.

b) If A(t) = A+R(t) where R(t) ∈ L (H) the admissibility of differences Ds(t) = R(t)−R(s)
is obvious. Hence for R ∈ L2([0,T]; L (H)) with sufficiently small norm will ensure the
applicability of our result.

c) If we assume additionally that ‖C(s) − C(t)‖ ≤ L|t − s|α for some positive constants α
and L we obtain that for L small enough, the system (A,C) is exactly averaged observable.
Indeed, we have from (3.3)

κ‖x‖2 ≤ 2

∫ τ

0

∫ τ

0

∥∥(C(s)− C(t))U(t, 0)x
∥∥2

dsdt+ 2

∫ τ

0

∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dsdt

≤ 2L

∫ τ

0

∫ τ

0

|t− s|2α dsdt‖x‖2 + 2τ

∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt

=
2Lτ2α+2

(2α+ 1)(α+ 1)
‖x‖2 + 2τ

∫ τ

0

∥∥C(t)U(t, 0)x
∥∥2

dt.

d) We have assumed in the theorem that A(t) are skew-adjoint operators in order to have
U(t, s) is a unitary operator on H. The proof of the previous theorem works under the
weaker assumption that

K0‖x‖ ≤ ‖U(t, 0)x‖ ≤ K1‖x‖, x ∈ H
for some positive constants K0 and K1. The statement of the theorem still holds with
different a different observation time τ∗ (depending additionally on K0 and K1).

Proof of Theorem 3.3. We proceed in a similar way as in the autonomous case. Let τ > 0,
ϕ ∈ H1

0 (0, τ) and x ∈ D . For t, s ∈ [0, τ ], let h(t) := ϕ(t)U(t, 0)x and f(t, s) := h′(t) + A(s)h(t).
Note that h and f(., s) can be extended continuously by zero outside (0, τ) since ϕ ∈ H1

0 (0, τ). We

write f̂(ξ, s) for the partial Fourier transform of f with respect to the first variable, and observe
that

f̂(ξ, s) =

∫
R
e−itξf(t, s) dt =

∫
R
e−itξh′(t) dt+

∫
R
e−itξA(s)h(t) dt = iξĥ(ξ) +A(s)ĥ(ξ)

where we use the fact that each operator A(s) is closed in order to have Â(s)h(ξ) = A(s)ĥ(ξ). We

apply (AH.2) with z0 = ĥ(ξ) to obtain

‖ĥ(ξ)‖2 ≤ m2

τ

∫ τ

0

∥∥C(s)ĥ(ξ)
∥∥2

ds+ M2

τ

∫ τ

0

∥∥(iξ +A(s))ĥ(ξ)
∥∥2

ds

= m2

τ

∫ τ

0

∥∥C(s)ĥ(ξ)
∥∥2

ds+ M2

τ

∫ τ

0

∥∥f̂(ξ, s)
∥∥2

ds.

We integrate over all ξ ∈ R and use Plancherel’s theorem together with the fact that C(s)ĥ(ξ) =
̂C(s)h(ξ) to deduce

(3.4)

∫ τ

0

∥∥h(t)
∥∥2

dt ≤ m2

τ

∫ τ

0

∫ τ

0

∥∥C(s)h(t)
∥∥2

dtds+ M2

τ

∫ τ

0

∫ τ

0

∥∥f(t, s)
∥∥2

dtds.

We estimate the last term on the right hand side as follows∫ τ

0

∫ τ

0

∥∥f(t, s)
∥∥2

dtds

=

∫ τ

0

∫ τ

0

∥∥h′(t) +A(s)h(t)
∥∥2

dtds
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=

∫ τ

0

∫ τ

0

∥∥ϕ′(t)U(t, 0)x− ϕ(t)A(t)U(t, 0)x+ ϕ(t)A(s)U(t, 0)x
∥∥2

dtds

≤ (1+r)τ

∫ τ

0

∥∥U(t, 0)x
∥∥2|ϕ′(t)|2 dt+ (1+r−1)

∫ τ

0

∫ τ

0

∥∥(A(t)−A(s))U(t, 0)x
∥∥2|ϕ(t)|2 dtds.

for all r > 0. By skew-adjointness,

(3.5)
d

dt

∥∥U(t, s)x
∥∥2

= −2Re〈A(t)U(t, s)x, U(t, s)x〉 = 0

for x ∈ D and so U(t, s) is unitary for 0 ≤ s ≤ t ≤ T. Since Ds(t) = A(t)−A(s) is admissible for
U(t, s) with constant N(s)∫ τ

0

∫ τ

0

∥∥f(t, s)
∥∥2

dtds ≤
∥∥x∥∥2

(
(1+r)τ

∫ τ

0

|ϕ′(t)|2 dt+ (1+r−1)‖ϕ‖2∞
∫ τ

0

N(s)2 ds

)
.

and so (3.4) implies

‖x‖2
∫ τ

0

∣∣ϕ(t)
∣∣2 dt ≤ m2

τ

∫ τ

0

∫ τ

0

∥∥C(s)U(t, 0)x
∥∥2
ϕ(t)2 dtds

+
∥∥x∥∥2

M2

(
(1 + r)

∫ τ

0

|ϕ′(t)|2 dt+ 1+r−1

τ ‖ϕ‖2∞
∫ τ

0

N(s)2 ds

)
.

Observe that this inequality is invariant under scalar multiplications of ϕ. We may therefore
suppose without loss of generality that ‖ϕ‖∞ = 1. Then (3.3) holds with

κτ = κτ (ϕ) =
(∫ τ

0

∣∣ϕ(t)
∣∣2 dt− (1+r)M2

∫ τ

0

∣∣ϕ′(t)∣∣2 dt− (1+r−1)M
2

τ

∫ τ

0

N(s)2 ds
)
.

We want to chose ϕ such that the constant κτ (ϕ) is positive. Taking the normalized first eigen-
function of the Dirichlet Laplacian on (0, τ), i.e., ϕ(t) := sin

(
tπ
τ

)
, we maximize κ(ϕ) and obtain,

as desired, (3.3) with

κτ =
(τ

2
− (1+r)π2M2

2τ − (1+r−1)M
2

τ

∫ τ

0

N(s)2 ds
)
.

By our hypotheses (3.2) κτ > 0 which ensures exact observation. �

4. The averaged Hautus test: a more general class of operators

In this section we extend Theorem 3.3 to a more general class of operators. More precisely, we
consider operators A(t) for which the corresponding evolution family U(t, s) is not necessarily an
isometry but satisfies an estimate of the form

(4.1) keα(t−s)‖x‖ ≤ ‖U(t, s)x‖ ≤ Keβ(t−s)‖x‖, x ∈ H
for some constants k,K, α and β. This question was considered in the autonomous case A(t) = A
and C(t) = C by Jacob and Zwart [16]. Note however, even in this autonomous case, the result
is very much less precise than in the case of unitary groups. In particular, the minimal time for
observability obtained in [16] is 1

β−α . This value becomes large as α and β are close and this is

not consistent with the result on unitary groups. The proof in [16] is based on optimal Hardy
inequalities. In our general setting of non-autonomous equations, we give a very short proof and
obtain a better minimal observability time.

Let us first make a basic remark on evolution families U(t, s)0≤s≤t. Given U(t, s) which is

exponentially bounded, i.e., ‖U(t, s)x‖ ≤ Keβ(t−s)‖x‖. If in addition each U(t, s) is invertible
then writing V (t) := U(t, 0) gives

V (t) = U(t, 0) = U(t, s)U(s, 0) = U(t, s)V (s) ⇐==⇒ U(t, s) = V (t)V (s)−1.

Then I = V (t)V (t)−1 gives ‖x‖ ≤ Keβt‖V (t)−1x‖ and so ‖V (t)−1x‖ ≥ 1
K e
−βt‖x‖ so that

(4.2) keα(t−s)‖x‖ ≤ ‖U(t, s)x‖ ≤ Keβ(t−s)‖x‖.
holds for α = −β and k = 1

K . If A is ’shifted’, i.e., replaced by A+ω, this symmetry α = −β will
break, and we will therefore use only (4.2) for some constants k,K > 0 and α ≤ β.
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Theorem 4.1. Let A(t)0≤t≤τ ∈ L (D ;H) be a family of operators generating an evolution family
U(t, s) and let 0 < k ≤ K and α < β be such that (4.2) holds. We denote by ω := β −α. Suppose
that the differences Ds(t) = A(t) − A(s) of the operators A(t) are admissible observations for
U(t, s) with a constant, say N(s).

Let C ∈ L (D ;Y ) satisfy the averaged Hautus condition (AH.3). We let

(4.3) τ∗ :=
√

π3

1−e−2π
4MK
k .

Suppose that

(4.4) ω <

√
1−e−2π

π
k

4MK as well as

∫ τ∗

0

N(s)2 ds < π2

2 K
2.

Then the system (A,C) is exactly observable in any time τ ≥ τ∗, i.e., for τ ≥ τ∗ we have∫ τ

0

∥∥CU(t, 0)x
∥∥2

dt ≥ κτ
m2

∥∥x∥∥2 ∀x ∈ H

for some constant κτ > 0.

Proof. Observe that exact (averaged) observability is invariant under spectral shifts (replacing A
by A+ω), which in turn allows to assume β = 0 and α = −ω for ω = β − α > 0.

We follow the lines of the proof of Theorem 3.3 until (3.5). Using (4.2) instead of unitary
evolution family leads to consider a new function

κτ (ϕ) =
(
k2

∫ τ

0

∣∣ϕ(t)
∣∣2e−2ωt dt− 2M2K2

∫ τ

0

∣∣ϕ′(t)∣∣2 dt− 2M2

τ

∫ τ

0

N(s)2 ds
)
.

where, again, we normalize ‖ϕ‖∞ = 1, and chose r = 1. Now, it is not clear what is the optimal
function ϕ to be chosen, so we take ϕ(t) = sin(π/τt) as in the proof of Theorem 3.3. It follows
that κτ (ϕ) > 0 is equivalent to

(4.5) k2π2 1−e−2ωτ

4ω(π2+ω2τ2) −
π2

τ M
2K2 > 2M2

τ

∫ τ

0

N(s)2 ds.

Obviously, the left hand side is bounded from below by π2

τ M
2K2 if

k2π2 1−e−2ωτ

4ω(π2+ω2τ2) ≥ 2× π2

τ M
2K2

or
τ2 1−e−2ωτ

ωτ(π2+ω2τ2) ≥
8M2K2

k2 .

By tedious elementary calculus, we see that f(x) := 1−e−2x

x(π2+x2) is strictly decreasing on R+. Con-

sequently, for any chosen λ > 0, the condition ωτ ≤ λ implies f(ωτ) ≥ f(λ) > 0. This amounts
that for λ > 0, we look for τ such that

8M2K2

k2 ≤ τ2f(λ) and τ < λ
ω .

This double inequality for τ can only have a solution if

8M2K2

k2 < f(λ)λ2

ω2 .

Optimizing on λ > 0 suggests the choice λ = π that gives the spectral height condition

8M2K2

k2 < 1−e−2π

2πω2 or ω <

√
1−e−2π

π
k

4MK

that we now decide to impose by (4.4). It guarantees that we can find some τ satisfying

16π3M2K2

(1−e−2π)k2 ≤ τ
2 < π2

ω2 ,

notably τ = τ∗ =
√
π3/(1−e−2π) 4MK

k , which is (4.3). Then a sufficient condition for κτ > 0 and
hence exact observability can be read off (4.5):∫ τ

0

N(s)2 ds < π2

2 K
2

which is the second condition in (4.4). �
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5. Applications to the wave and Schrödinger equations with time dependent
potentials

In this section we give applications of our results to observability of the Schrödinger and wave
equations both with time dependent potentials. We also consider the damped wave equation with
time dependent damped term. Before considering these examples we explain the general idea.
It is based on a perturbation argument. We perturb a given operator A0 by time dependent
operators R(t). For each fixed t, the Hautus condition carries over from A0 to A0 + R(t). Then,
by integrating with respect to t we obtain an averaged Hautus test for time dependent family
(A0 +R(t)). We note however that the perturbation argument which allows to obtain the Hautus
condition for A0 +R(t), for fixed t, is done at the expense of assuming rather restrictive conditions
on the size of R(t). For this reason we do not obtain precise results in our examples and additional
investigations must be carried out. The sole advantage of our strategy in this section lies in its
simplicity.

Let A0 be the generator of unitary group on H. We assume that C : D(A0) → Y is an
admissible operator and such that the system (A0, C) is exactly observable at time τ0. Therefore
the Hautus test is satisfied by the operators A0 and C. Now let R(t)0≤t≤T be a family of uniformly
bounded operators on H. By classical bounded perturbation result (see, e.g., [9, Theorem 9.19])
the operators given by A(t) = A0+R(t), t ∈ [0,T], generate an evolution family U(t, s) on H.
Note that for every x ∈ H

(5.1) e−β(t−s)‖x‖ ≤ ‖U(t, s)x‖ ≤ eβ(t−s)‖x‖

with β = supt∈[0,τ ] ‖R(t)‖. Indeed, one has for every x ∈ D(A0), Re〈(A0 + R(t))x, x〉 =

Re〈R(t)x, x〉 and hence

−β‖x‖2 ≤ Re〈(A0 +R(t))x, x〉 ≤ β‖x‖2.

We apply this with U(t, s)x at the place of x and obtain

−β‖U(t, s)x‖2 ≤ 1
2
∂
∂t

∥∥U(t, s)x
∥∥2 ≤ β‖U(t, s)x‖2.

We integrate and obtain (5.1). Note that if Re〈R(t)x, x〉 = 0, then U(t, s) is unitary.
Let now x ∈ D(A0) and ξ ∈ R. The Hautus test for (A0, C) gives

‖x‖2 ≤ m2‖Cx‖2 +M2‖(iξ +A0)x‖2

≤ m2‖Cx‖2 + 2M2‖(iξ +A0 +R(s))x‖2 + 2M2‖R(s)‖2‖x‖2.

Integrating on [0, τ ] with respect to s gives

‖x‖2 ≤ m2‖Cx‖2 + 2M2
(

1
τ

∫ τ

0

∥∥(iξ +A0 +R(s))x
∥∥2

ds
)

+ 2M2
(

1
τ

∫ τ

0

∥∥R(s)
∥∥2

ds
)
‖x‖2.

Suppose in addition that there exists τ1 > 0 and µ < 1 such that for τ ≥ τ1

(5.2) 2M2
(

1
τ

∫ τ

0

∥∥R(s)
∥∥2

ds
)
≤ µ.

Then

(5.3) (1− µ)‖x‖2 ≤ m2‖Cx‖2 + 2M2
(

1
τ

∫ τ

0

∥∥(iξ +A0 +R(s))x
∥∥2

ds
)
.

Note that we could also replace iξ by λ ∈ C and obtain the Hautus test (AH.3). Next we assume
that C is admissible for the unitary group etA0 generated by A0. That is there exists a constant
Kτ > 0 such that

(5.4)

∫ τ

0

∥∥CetA0x
∥∥2

dt ≤ Kτ‖x‖2, x ∈ D(A0).
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We prove that C is admissible for (A0 +R(t)). In order to do so, we start from Duhamel’s formula‡

(5.5) U(t, s)x− e(t−s)A0x =

∫ t

s

e(t−r)A0R(r)U(r, s)x dr.

We use (5.4) so that∫ τ

0

∥∥CU(t, s)x
∥∥2

dt ≤ 2

∫ τ

0

∥∥Ce(t−s)A0x
∥∥2

dt+ 2

∫ τ

0

∥∥∥∫ t

s

Ce(t−r)A0R(r)U(r, s)x dr
∥∥∥2

dt

≤ 2Kτ‖x‖2 + 2τ

∫ τ

s

∫ τ

r

∥∥Ce(t−r)A0R(r)U(r, s)x
∥∥2

dtdr

≤ 2Kτ‖x‖2 + 2τKτ

∫ τ

s

‖R(r)U(r, s)x‖2 dr ≤ K ′τ‖x‖2,

where we use the fact that the operators R(r) are uniformly bounded and U(t, s) is exponentially
bounded.
We have admissibility of C and the averaged Hautus test (5.3). Now we conclude either by Theorem
3.3 or Theorem 4.1 that, as soon as µ in (5.2) is small enough, we have exact observability of the
system (A0 + R(.), C) at time τ > τ∗ for some τ∗ > 0. Note that (5.2) always holds for τ large
enough, if R(t) = 0 for t ≥ t0 for some t0 > 0.

In the sequel we give two examples that fit in the framework described here.

The Schrödinger equation. Let Ω be a bounded domain of Rd with a C2-boundary Γ. Let Γ0

be an open subset of Γ satisfying the geometric optics conditions in [4]. By [29, Theorems 6.7.2
and 7.5.1] the Schrödinger equation

(5.6)

 z′(t, x) = i∆z(t, x) (t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H2(Ω) ∩H1

0 (Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ

satisfies the double inequality

(5.7) κ2
τ‖z0‖2H1

0 (Ω) ≤
∫ τ

0

∫
Γ0

| ∂z∂ν (t, x)|2dσ dt ≤ K2
τ ‖z0‖2H1

0 (Ω)

for every τ > 0. Let C0 be the normal derivative ∂
∂ν on Γ0, Y = L2(Γ0, dσ), H = H1

0 (Ω) and
A0 = ∆D the Laplacian with Dirichlet boundary conditions. The previous inequality then reads
as admissibility (with constant Kτ ) and exactly observability (with constant κτ ) in time τ of the
system (A0, C0). It follows that (A0, C0) satisfies the Hautus condition with m =

√
2τκτ and

M = τ
√
κτMτ .

Let now R(t)f = iV (t, .)f where V (t, .) ∈W 1,∞(Ω) is a real-valued potential. We assume that

2M2

(
1

τ

∫ τ

0

‖V (t, .)‖2W 1,∞(Ω) dt

)
< 1

for all τ larger than some τ1. This means that (5.2) is satisfied and hence the averaged Hautus
condition holds for (i(∆D+V (t)), C0). We then conclude by Theorem 3.3 that the non-autonomous
system (i(∆D + V (t)), C0) is exactly observable in time τ > τ∗ for τ∗ given in Theorem 3.3. In
other words, (5.7) is satisfied for the solution of the Schrödinger equation with time dependent
potential

(5.8)

 z′(t, x) = i∆z(t, x) + iV (t)z(t, x) (t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H2(Ω) ∩H1

0 (Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ.

This generalizes results on autonomous perturbations of ∆ by V (t, x) = V (x) which can be found
in [29, Sections 7.3, 6.7 ].

‡in order to prove this formula one takes the derivative of f(r) := e(t−r)A0U(r, s)x for s ≤ r ≤ t and then
integrate from s to t.
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The wave equation. Let again Ω be a bounded smooth domain of Rd. We consider the wave
equation

(5.9)

 z′′(t, x) = ∆z(t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H1

0 (Ω), z′(0, .) = z1 ∈ L2(Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ.

Let Γ0 be an open subset of the boundary Γ. Observability for the wave equation with the
Neumann observation operator C = ∂

∂ν |Γ0
holds under geometrical conditions on Γ0. One of the

well known condition is that for some x0 ∈ Rd,

Γ0 ⊇ {x ∈ Γ : (x− x0) . ν(x) > 0}
where ν(.) is the outward normal vector on the boundary Γ. For τ > 2 supx∈Ω |x− x0|, the wave
equation is exactly observable in time τ . That is, there exists a positive constant κτ such that

(5.10) κτ

(∫
Ω

|z1|2 +

∫
Ω

|∇z0|2
)
≤
∫ τ

0

∫
Γ0

| ∂z∂ν |
2dσ dt.

We refer to [4, 19, 17], and [29, Section 7.2] and the references therein.

Let A0 =

(
0 I
−∆D 0

)
on H := H1

0 (Ω)×L2(Ω). It is a standard fact that A0 generates a unitary

group U(t)t∈R on H. Set C̃(f, g) := (∂f∂ν |Γ0
, 0). Then the energy estimate (5.10) is precisely the

observability inequality

(5.11) κτ‖(z0, z1)‖2H ≤
∫ τ

0

∥∥C̃U(t)(z0, z1)
∥∥2

L2(Γ0)
dt.

Now we consider the damped wave equation with a potential

(5.12)

 z′′(t, x) = ∆z(t, x) + b(t, x)z′(t, x) + V (t, x)z(t, x) ∈ [0, τ ]× Ω
z(0, .) = z0 ∈ H1

0 (Ω), z′(0, .) = z1 ∈ L2(Ω)
z(t, x) = 0 (t, x) ∈ [0, τ ]× Γ.

Going to the first order system on H, the wave equation (5.12) can be rewritten as Z ′ = A(t)Z

with A(t) =

(
0 I

∆ + V (t) b(t)

)
= A0 + R(t) where R(t) =

(
0 0

V (t) b(t)

)
. As in the case of the

Schrödinger equation we can apply the previous discussion to see that the Hautus test for A0

implies our averaged Hautus test for (A(t))t≥0. In order to do so we need to verify (5.2). Clearly,

‖R(t)(u, v)‖H ≤
√

2 max{‖V (t, .)‖∞, ‖b(t, .)‖∞}‖(u, v)‖H .
Since 1

2 (a+ b) ≤ max(a, b) ≤ a+b for a, b > 0, (5.2) holds if

1

τ

∫ τ

0

∥∥V (t, .)
∥∥2

∞ +
∥∥b(t, .)∥∥2

∞ dt < µ

for some µ small enough. On the other hand, this condition also ensures the condition (4.4) of
Theorem 4.1 that allows to obtain exact averaged observability for (5.12) at some time τ . That
is, we obtain the energy estimate (5.10) for τ large enough for the solution z to (5.12). If V and b
are independent of t then observability results are known (see [29, Section 7.3]). If b(t) = 0 and V
depends on t, then a more precise result can be found in [25] for a special class of Γ0. The proof
in [25] is different from ours and it is based on Carleman estimates.
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Mathématiques Appliquées, vol. 8, Masson, Paris, 1988.

[20] K. Liu Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35

(1997), no. 5, 1574–1590.
[21] Q. Lu and E. Zuazua Averaged controllability for random evolution partial differential equations. J. Math.

Pures Appl. (9) 105 (2016), no. 3, 367414.

[22] L. Miller Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal.
218 (2005), no. 2, 425–444.

[23] B. Opic and A. Kufner Hardy-type inequalities, Czechoslovak Academy of Sciences, Longman Sciences / Wiley

(1990), ISBN 0-563-05135-3.
[24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied mathe-

matical sciences AMS, vol 44, 1983.

[25] J.P. Puel, Global Carleman inequalities for the wave equation and applications to controllability and inverse
problems, see http://www1.univ-ag.fr/aoc/pub/gdt/co/Puel-Inverse-problems.pdf.

[26] D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equa-
tions, Stud. Appl. Math, 52 (1973), 189–221.

[27] D. L. Russell and G. Weiss, A general necessary condition for exact observability, SIAM J. Control Optim,

Vol 32 (1), pp. 1–23, (1994).
[28] L. M. Silverman and H. E. Meadows, Controllability and observability in time-variable linear systems, SIAM

J. Control Optim, vol. 5, no.1 , 64–73, 1967.

[29] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009.
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