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1. Introduction

Square functions and square function estimates are a classical topic
and a central tool in harmonic analysis, in particular in the so-called
Littlewood–Paley theory. Their history can be traced back to almost
a century ago, see [?] for a historical account and [?, ?, ?] for the
development from the 1960s on. One of the classical instances of a
square function is

(1.1) (Sφf)(x) :=
(∫ ∞

0

∣∣(φt ∗ f)(x)
∣∣2 dt

t

)1/2

where φ ∈ L2(Rd) decays reasonably fast at infinity and φt(x) =
t−dφ(x/t) for x ∈ Rd and t > 0. A “square function estimate” then
reads

(1.2) ‖Sφf‖Lp
=
∥∥∥(∫ ∞

0

∣∣(φt ∗ f)(x)
∣∣2 dt

t

)1/2
∥∥∥

Lp
. ‖f‖Lp

.

In many situations, φ is radial. Then its Fourier transform is radial,

too, and can be written as φ̂(ξ) = ψ(|ξ|) for ξ ∈ Rd. Hence,

φt ∗ f = F−1(φ̂(tξ) · f̂ (ξ)) = F−1(ψ̂(|tξ|) · f̂ (ξ)) = ψ(t
√
−∆) f,

where we employ the functional calculus for the Laplace, or better, the
Poisson operator. Hence, the abstract form of (1.2) is

(1.3)
∥∥∥(∫ ∞

0

|ψ(tA)f |2 dt
t

)1/2
∥∥∥

Lp
. ‖f‖Lp

,

where A :=
√
−∆; and taking ψ(z) := ze−z we recover the classical

Littlewood-Paley g-function.
From the mid 1980’s on, the theory of functional calculus for secto-

rial operators was developed by several people. Building on the sem-
inal works [?] and [?] and inspired by [?], Cowling, Doust, McIntosh
and Yagi in [?] established a strong link between the boundedness of
the H∞-calculus for sectorial operators A on (closed subspaces of) Lp-
spaces and square functions of the form (1.3). Kalton and Weis in
an unpublished and unfortunately never finalized manuscript [?] then
showed how one could pass from Lp-spaces to general Banach spaces.
Their manuscript subsequently circulated and inspired a considerable
amount of research.

The main novelty in Kalton and Weis’ approach from [?] was to
employ the class of so-called γ-radonifying operators in order to define
square functions. This step is motivated by two observations. On the
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one hand, (∫ ∞
0

|ψ(tA)f |2 dt
t

)1/2
=
( ∞∑
k=1

|(Tf)en|2
)1/2

where (en)n∈N is an orthonormal basis of H := L2(R+; dt/t) and Tf :
H → X := Lp(Rd) is the operator defined by

(1.4) (Tf)h :=

∫ ∞
0

h(t)ψ(tA)f dt
t

(h ∈ H).

(This works in every Banach lattice X, see Appendix ??.) The second,
more decisive step, is based on the norm equivalence∥∥∥(∑

k
|xk|2

)1/2
∥∥∥
X
∼
(
E
∥∥∑

k
γk ⊗ xk

∥∥2

X

)1/2

where (γk)k is an independent sequence of standard Gaussian random
variables. (This equivalence holds true in every Banach lattice X of
finite cotype, see Theorem ??.) Hence, the square function estimate
(1.3) can be reformulated as

(1.5)
(
E
∥∥∑

k
γk ⊗ (Tf)ek

∥∥2

X

)1/2
. ‖f‖X

with Tf being as above. But this means that the operator Tf is γ-
radonifying and its γ-norm satisfies ‖Tf‖γ . ‖f‖X . (See Appendix

B for the definition and basic properties of the space γ(H;X) of γ-
radonifying operators.)

The decisive feature of this new formulation of the square function
estimate is that the lattice structure of X = Lp does not appear any
more. With it, a door is opened to define square function estimates
over general Banach spaces X. Hence, the following definition.

Definition 1.1. Let X, Y be Banach spaces. Then an (abstract)
(X, Y )-square function is a linear operator

Q : dom(Q)→ γ(H;Y ), dom(Q) ⊆ X

for some Hilbert space H. A dual (X, Y )-square function is a linear
operator

Qd : dom(Qd)→ γ(H;Y )′ ∼= γ′(H ′;Y ′), dom(Qd) ⊆ X ′

for some Hilbert space H.

A square function estimate or a quadratic estimate for the
(X, Y )-square function Q is any inequality of the form

(1.6) ‖Qx‖γ ≤ C ‖x‖ for all x ∈ dom(Q)
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for some constant C ≥ 0. If Q is densely defined, such a square function
estimate holds true if and only if Q extends to a bounded operator
Q : X → γ(H;Y ). Note that a closed and densely defined square
function satisfies a square function estimate if and only if it is fully
defined.

Similarly, an estimate of the form∥∥Qdx′
∥∥
γ′
≤ C ‖x′‖ (x′ ∈ dom(Qd))

is called a dual square function (quadratic) estimate. The usual
examples of dual square functions are not densely, but only weakly∗-
densely defined, and hence in general a dual square function estimate
does not automatically lead to a bounded operator X ′ → γ′(H ′;Y ′).

Note that one always arrives at a (X, Y )-square function by starting
with an operator

A : dom(A)→ L(H;Y ), dom(A) ⊆ X

and taking its part in γ(H;X), i.e., Aγ : dom(Aγ)→ γ(H;Y ) with

dom(Aγ) = {x ∈ dom(A) | Ax ∈ γ(H;Y )}, Aγx := Ax.

It is easy to see that Aγ is a closed square function if A is closed.
(Obviously, a similar construction is possible to obtain dual square
functions.)

If one takes H the one-dimensional Hilbert space, then L(H;Y ) ∼= Y ,
and hence every (bounded) operator can be trivially viewed as a square
function (estimate).

A Functional Calculus with Square Functions.
In this paper, more precisely in Chapter 2, we build on the above
definition and present a novel and systematic account of square function
estimates related to functional calculus. For the sake of readiblity, this
will be carried out in the context of H∞-calculus only. However, in
Chapter ?? we sketch how notions and results can be generalized to
other types of functional calculi.

One main feat is that we cover square functions associated with
expressions of the general form

ψ(t, A),

where the common square functions for sectorial or strip-type operators
usually work with expressions of the form

ψ(tA) or ψ(t+ A),
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repectively. What is more, we do not deal with square functions indi-
vidually but develop a whole calculus of square functions in the spirit
of general functional calculus philosophy. (That is: working with func-
tions instead of working with operators.)

Let us illustrate this idea for the case of sectorial operators. (For
convenience we have included a brief introduction to the functional
calculi of strip-type and sectorial operators in Chapter ??.)

Given a sectorial operator A of angle ω0 on a Banach space X and a
function ψ ∈ H∞0 (Sω) with ω ∈ (ω0, π) one considers — for fixed x ∈ X
— the vector-valued function

(0,∞) −→ X, t 7→ ψ(tA)x.

Following Kalton and Weis [?] one should interpret this function as an
operator

Tψx : L2(R+; dt/t) −→ X

via (Pettis) integration1, i.e.

(Tψx)h :=

∫ ∞
0

h(t)ψ(tA)x
dt

t

for h ∈ H := L2(R+; dt/t), cp. (1.4). One then asks whether the operator
Tψx is γ-radonifying and obeys an estimate of the form

(1.7) ‖Tψx‖γ(H;X) . ‖x‖ .

However, for x ∈ dom(A)∩ ran(A) one can employ the definition of the
functional calculus by Cauchy integrals to obtain

(Tψx)h =

∫ ∞
0

h(t)ψ(tA)x dt
t

=

∫ ∞
0

h(t)
1

2πi

∫
Γ

ψ(tz)R(z, A)x dz dt
t

=
1

2πi

∫
Γ

(∫ ∞
0

h(t)ψ(tz) dt
t

)
R(z, A)x dz

=
(∫ ∞

0

h(t)ψ(tz) dt
t

)
(A)x.

This step indicates an important change in perspective: We interpret
ψ(tz) as a function of z ∈ Sω with values in H and write

Ψ : Sω −→ H, Ψ(z)(t) := ψ(tz).

Then the mapping

z 7→ (h◦Ψ)(z) :=

∫ ∞
0

h(t)ψ(tz) dt
t

= 〈h,Ψ(z)〉

1cf. Appendix ??
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is a scalar H∞-function into which A can be inserted by the functional
calculus. Finally, the resulting operator can be applied to x ∈ dom(A)∩
ran(A) resulting in

(h◦Ψ)(A)x =
(∫ ∞

0

h(t)ψ(tz) dt
t

)
(A)x.

Now, for fixed such x this yields the operator

Ψ(A)x : H → X, (Ψ(A)x)h := (h◦Ψ)(A)x.

(Note that Ψ(A)x = Tψx, by the computation above.) This operator
turns out to be γ-radonifying (see Section 7.4), so we end up with a
square function

Ψ(A) : dom(A) ∩ ran(A)→ γ(H;X).

In this way, the problem of a square function estimate (1.7) has been
tranformed into the problem of the boundedness of the operator Ψ(A)
on X.

Evolving this idea one realizes that the mapping

Ψ 7→ Ψ(A),

which associates an (in general unbounded) square function with an
H-valued H∞-function Ψ, has many properties of a functional calculus
(Lemma 2.9, Lemma 2.10). The only difference now is that the func-
tions we are considering have to be H-valued instead of scalar-valued,
and this calculus is a module rather than an algebra homomorphism.
We call this calculus the square functional calculus or, following
Le Merdyin [?], the vectorial functional calculus.

As a result of this new perspective, the problem of a square function
estimate is recognised as just another instance of the central problem of
functional calculus, namely whether applying an unbounded functional
calculus to a certain function leads to a bounded operator or not.

Achievements.
The main objectives of our paper are on the one hand to devise abstract
theorems that govern the calculus of square functions and on the other
hand to reduce known concrete results (for sectorial and strip type
operators) to them. This is achieved in Chapters 3 and 4 where we
identify three basic principles:
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Subordination: The two square functions are connected via a bounded
operator between the underlying Hilbert spaces. (This principle is of-
ten applied to the Fourier transform in the case of strip-type and the
Mellin transform in the case of sectorial operators.)

Integral representations: Here square function and dual square func-
tion estimates are combined with a deep result from the theory of γ-
radonifying operators. Integral representations are the key to results
that assert bounded (vectorial) H∞-functional calculus from the bound-
edness of certain carefully chosen square functions (Theorem 3.12).

`1-Frame-boundedness: This is a (natural, but still rather enigmatic)
boundedness concept for subsets of Hilbert spaces. It lies at the heart
of all known results inferring the boundedness of certain square func-
tions from a bounded scalar H∞-calculus. Basically, the main abstract
theorem here asserts that if the H-valued function Ψ has `1-frame-
bounded range, then the associated square function Ψ(A) is bounded
(Theorem 4.3).

These abstract results are then, in Chapters 7 and 8 applied to oper-
ators of strip type and to sectorial operators. In particular, we discuss
all the classical integral representations used to infer bounded H∞-
calculus from bounded square functions, namely:

• Cauchy–Gauß Representation (Section 8.1)
• Poisson Representation (Section 8.2)
• CDMcY-Representation (Section 8.3)
• Laplace Transform Representation (Section 8.4)
• Franks-McIntosh Representation (Section 8.5
• Singular Cauchy Representation (Section 8.6).

(The first one of these is actually new, and has not been used so far in
the literature.)

One consequence of Theorem 3.12 on integral representations is that
it allows to infer not just the boundedness of a scalar H∞-calculus but
of the vectorial one. Hence one of the main results, Theorem 8.1, states
that a densely defined operator (on a Banach space with finite cotype)
with a bounded scalar H∞-calculus on a strip has a bounded H∞-square
functional calculus on each larger strip. (This result has been obtained
independently of us by Le Merdy in [?].)

Relation with Work by Others.

Was sollen wir
hier schreiben?
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Notation and Terminology.
Banach spaces are denoted by X, Y, Z and understood to be complex
unless otherwise noted. The duality between a Banach space X and
its dual space X ′ is denoted by 〈·, ·〉 or 〈·, ·〉X,X′ .

For a closed linear operator A on a complex Banach space X we
denote by dom(A), ran(A), ker(A), σ(A) and %(A) the domain, the
range, the kernel, the spectrum and the resolvent set of A, respectively.
The norm-closure of the range is written as ran(A). The space of
bounded linear operators on X is denoted by L(X). For two possibly
unbounded linear operators A,B on X their product AB is defined on
its natural domain dom(AB) := {x ∈ dom(B) | Bx ∈ dom(A)}. An
inclusion A ⊆ B denotes inclusion of graphs, i.e., it means that B
extends A.

The inner product of two elements u, v of a Hilbert space H is gener-
ically written as [u, v ] or [u, v ]H . We usually do not identify a Hilbert
space H with its dual space H ′. Rather, we write

u := [ · , u ] ∈ H ′,
for u ∈ H, i.e., the mapping

H −→ H ′, u 7−→ u = [ · , u ]

is the canonical (conjugate-linear) bijection of H onto its dual H ′. The
definition

(1.8) [u, v ]H′ := [v, u ]H (u, v ∈ H)

turns H ′ canonically into a Hilbert space, and a short computation
yields u = u under the canonical identification H = H ′′. Moreover,
(1.8) becomes

(1.9) [x, y ]H = [y, x ]H′ (x, y ∈ H ′).
If H = L2(Ω) = L2(Ω;K) for some measure space (Ω,Σ, µ), we can
identify H ′ = L2(Ω) via the duality
(1.10)

H ×H −→ K, (u, v) 7−→ 〈u, v〉 :=

∫
Ω

u v dµ (u, v ∈ L2(Ω)).

Under this identification, the conjugate u of u ∈ H as defined above
coincides with the usual complex conjugate of u as a function on Ω.

For an open subset O ⊆ C of the complex plane we let H∞(O) be the
algebra of bounded holomorphic functions on O with norm ‖f‖H∞ :=
sup{|f(z)| | z ∈ O}.

Unless explicitly noted otherwise, the real line R carries the Lebesgue
measure dt and the set (0,∞) of positive reals carries the measure dt/t.
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We abbreviate

L∗p(0,∞) := Lp((0,∞); dt/t) (0 < p ≤ ∞).

The Fourier transform of a function f ∈ L1(R) is

F(f)(t) = f̂(t) =

∫
R
f(s)e−ist ds (t ∈ R).

The inverse Fourier transform is then given by the formula

(F−1g)(s) = g∨(s) =
1

2π

∫
R
g(t)eist dt (s ∈ R)

for g ∈ L1(R).

Part I. Theory

2. Square Functions Associated with a Functional
Calculus

In this chapter we shall associate square functions with a given (holo-
morphic) functional calculus. The definition of a general square func-
tion, the outline of our approach and a justification for it have been
presented in the Introduction (page 3) so that we do not repeat them
here. We start with a short introduction on abstract functional calculus
and then pass to the “vectorial” case, where square functions appear.

2.1. Scalar Functional Calculus.
Let F be a commutative algebra with a unit element 1 and X a Banach
space, and let furthermore a mapping

Φ : F → {closed single-valued operators on X}
be given. For each f ∈ F the set of its regularisers is

RegΦ(f) := {e ∈ F | Φ(e), Φ(ef) ∈ L(X)}.
A subset M⊆ RegΦ(f) is called determining for Φ(f) if one has

(2.1) Φ(f)x = y ⇐⇒ ∀e ∈M : Φ(ef)x = Φ(e)y

for all x, y ∈ X. Since Φ(f) is a (single-valued) operator it follows that
if M is determining for Φ(f) then⋂

e∈M

ker(Φ(e)) = {0}.

Now, the pair (F ,Φ) is called an (unbounded) F-calculus on X if
the following axioms hold:
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1) Φ(1) = I

2) Φ(f) + Φ(g) ⊆ Φ(f + g).

3) Φ(f)Φ(g) ⊆ Φ(fg) and

dom(Φ(f)Φ(g)) = dom(Φ(g)) ∩ dom(Φ(fg)).

4) For each f ∈ F its set of regularisers RegΦ(f) is determining for
Φ(f).

Each element e ∈
⋂
f∈F RegΦ(f) is called a universal regularizer. A

subsetM of universal regularisers is called (universally) determin-
ing if it is determining for each f ∈ F . (Universally determining sets
need not exist.)

Remark 2.1. It follows easily from 2) and 3) that Φ(f + g) = Φ(f) +
Φ(g) and Φ(fg) = Φ(f)Φ(g) if Φ(g) ∈ L(X). From 3) it follows that if
e ∈ RegΦ(f) and y = Φ(f)x, then

Φ(e)y = Φ(e)Φ(f)x = Φ(ef)x

and hence the implication “=⇒” in (2.1) already follows from 3).
If e ∈ RegΦ(e) is injective, then it follows from 4) that

Φ(f) = Φ(e)−1Φ(ef).

In [?, Chapter 1] it has been described how this formula can be used
to extend a so-called “elementary” functional calculus and this is the
way most functional calculi are obtained. In [?] it has been described
how the more general requirement 4) can be made the basis of a similar
extension procedure. In any case, for the purpose of this paper, it is
not relevant how to arrive at a given unbounded calculus. The only
thing matters are its formal properties.

From now on, we shall almost exclusively consider the case F = H∞(O),
the algebra of bounded holomorphic functions on some open set O ⊆ C
(or Cd). Then we speak of a (possibly unbounded) H∞-calculus on O.
In this situation, if Φ(f) ∈ L(X) for each f ∈ H∞(O), then

Φ : H∞(O)→ L(X)

is an algebra homomorphism. (Conversely, each such algebra homo-
morphism constitutes a functional calculus, i.e., satisfies the axioms
from above.) If, in addition, there is C ≥ 0 such that

‖Φ(f)‖ ≤ C ‖f‖H∞ for all f ∈ H∞(O),

then we speak of Φ as a bounded H∞-calculus on O. (By the closed
graph theorem, in practically all interesting cases a H∞(O)-calculus
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satisfying Φ(f) ∈ L(X) for all f ∈ H∞(O) will be a bounded H∞-
calculus.)

Remark 2.2. If O ⊆ C is open, then by Liouville’s theorem the algebra
H∞(Ω) is only interesting if ∅ 6= O 6= C.

Now suppose that (H∞(O),Φ) is a functional calculus on X and
suppose in addition that C \O has nonempty interior U , say. For each
λ ∈ U the function rλ(z) := (λ − z)−1 is holomorphic and bounded
on O. If we suppose in addition that Rλ := Φ(rλ) ∈ L(X), then this
yields a pseudo-resolvent on U . Hence by [?, Proposition A.2.4] there
is a unique operator A with R(λ,A) = Rλ for all λ ∈ U . (This operator
is single-valued if and only if one/each Rλ is injective.) It is common
to call Φ a functional calculus for A and write f(A) := ΦA(f) := Φ(f)
for f ∈ H∞(O).

Note that if fn ∈ H∞(O) is a uniformly bounded sequence which
converges pointwise (= locally uniformly) on O to a function f , then
also f ∈ H∞(O). In this case we say that fn → f pointwise and
boundedly, and call this bp-convergence.

At times we shall need that the functional calculus (H∞(O),Φ) in
question is in some sense continuous with respect to bp-convergence.
In order to make this more precise, let us call a point x ∈ X bp-good
if x ∈ dom(Φ(f)) for all f ∈ H∞(O), and if (fn)n is a sequence in
H∞(O) that bp-converges on O to f ∈ H∞(O), then

Φ(fn)x→ Φ(f)x

in X. The following is a useful fact about bp-good points. Its proof is
straightforward.

Lemma 2.3. Let (H∞(O),Φ) be a functional calculus. Then the set
of bp-good points is a subspace of X, invariant under each Φ(f), f ∈
H∞(O).

A universal regulariser e ∈ H∞(O) is called bp-good whenever (fn)n
is a sequence in H∞(O) that bp-converges on O to f ∈ H∞(O), then

Φ(efn)→ Φ(ef)

strongly on X. In other words, e is bp-good if each x ∈ ran(Φ(e)) is
bp-good.

Our first continuity property of the functional calculus shall be ex-
pressed in terms of the set

CΦ := {e ∈ H∞(O) | e is bp-good}.
A functional calculus (H∞(O),Φ) is called standard if the set CΦ of
bp-good universal regularisers is universally determining.
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Lemma 2.4. Let (H∞(O),Φ) be a standard functional calculus. Then
the following holds: If fn → f pointwise and boundedly, and if x, y ∈ X
are such that x ∈ dom(Φ(fn)) for all n ∈ N and

Φ(fn)x→ y,

then x ∈ dom(Φ(f)) and Φ(f)x = y.

We say that the convergence lemma holds for a functional calculus
(H∞(O),Φ) if the following is true: whenever fn → f pointwise and
boundedly on O and Φ(fn) ∈ L(X) for all n ∈ N and supn∈N ‖Φ(fn)‖ <
∞, then Φ(f) ∈ L(X) and Φ(fn)→ Φ(f) strongly as n→∞.

Lemma 2.5. Let (H∞(O),Φ) be a functional calculus such that the
space of bp-good points of X is dense in X. Then the convergence
lemma holds.

Corollary 2.6. Let (H∞(O),Φ) be a functional calculus such that each
operator Φ(f), f ∈ H∞(O), is bounded. If the functional calculus is
standard or the convergence lemma holds, then Φ : H∞(O)→ L(X) is
bounded.

The functional calculi most relevant in the remainder of the paper
are the ones for sectorial and strip type operators. Although their
construction can be found at several places in the literature, e.g. in [?,
Chapters 2 and 4], the standard presentations suffer from an unnatural
asymmetry in view of the exp / log-correspondence of sectors and strips,
cf. Remark 7.11 below. Therefore, we have taken the opportunity to
give a slightly modified account that avoids that shortcoming and in
fact appears to be the most natural and the most general at the same
time. See Chapter 7 for details.

The functional calculus for a strip type operator A is standard, and
the bp-good points form a dense subspace if A is densely defined, see
Lemma 7.2. Analogously, the functional calculus for an injective sec-
torial operator A is standard, and the bp-good points form a dense
subspace if A has dense domain and dense range, see ??.

2.2. The Square Functional Calculus.
We shall now associate square functions with a given functional cal-
culus. For the necessary definitions and results about γ-radonifying
operators, the reader is referred to Appendix B. Let us fix (once and
for all) a functional calculus (H∞(O),Φ) over some open set O ⊆ C (or
Cd) on some Banach space X.
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Let H be a Hilbert space with (Banach space) dual H ′, where the
duality is denoted by

〈·, ·〉 = 〈·, ·〉H,H′ : H ×H ′ → C, 〈h, h′〉 = h′(h)

for h ∈ H, h′ ∈ H ′. We identify H with H ′′ via the canonical mapping,
i.e., elements h ∈ H are regarded also as functionals on H ′. Hence, for
a H ′-valued function f : O → H ′ we can form the scalar function

h◦f : O → C, (h◦f)(z) = 〈h, f(z)〉H,H′ (z ∈ O, h ∈ H).

If f ∈ H∞(O;H ′) then h◦f ∈ H∞(O) and hence Φ(h◦f) is defined as
a closed operator on X. We then define the operator

Φ(f) : dom(Φ(f))→ L(H;X)

by

[Φ(f)x]h := Φ(h◦f)x,

on its natural domain dom(Φ(f)) given by

x ∈ dom(Φ(f))
def⇐⇒ x ∈ dom(Φ(h◦f)) for all h ∈ H and

(h 7→ Φ(h◦f)x ∈ L(H;X).

This definition/notation is consistent with the original notation under
the identification H∞(O;H ′) = H∞(O) in the case that H = C is one-
dimensional. The following lemma is straightforward.

Lemma 2.7. Let (H∞(O),Φ) ba functional calculus and f ∈ H∞(O;H ′).
Then dom(Φ(f)) contains all bp-good points.

In the next step we take the part of Φ(f) in γ(H;X) to arrive at the
square function

Φγ(f) : dom(Φγ(f))→ γ(H;X), Φγ(f)x := Φ(f)x, where

dom(Φγ(f)) = {x ∈ dom(Φ(f)) | Φ(f)x ∈ γ(H;X)}.

We call the square function Φγ(f) bounded if dom(Φγ(f)) = X and

Φγ(f) : X → γ(H;X)

is a bounded operator.
In the same way one obtains the operator Φγ∞(f) by taking the part

of Φ(f) in γ∞(H;X). If X does not contain a copy of c0, Φγ(f) =
Φγ∞(f).

If the functional calculus is standard, the following lemma sometimes
facilitates computations.
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Lemma 2.8. Let (H∞(O),Φ) be a standard functional calculus on some
Banach space X, let f ∈ H∞(O;H ′) and x ∈ X. Define

D(f, x) := {h ∈ H | x ∈ dom(Φ(h◦f))} ⊆ H.

Then the following assertions hold:

a) One has x ∈ dom(Φ(f)) if and only if there is a dense subspace D
of H with D ⊆ D(f, x) and the operator D → X, h 7→ Φ(h◦f)x is
bounded.

b) One has x ∈ dom(Φγ∞(f)) if and only if there is a dense subspace
D of H with D ⊆ D(f, x) and there is c ≥ 0 such that

E
∥∥∥∑
e∈F

γeΦ(e◦f)x
∥∥∥2

X
≤ c2

for all finite orthonormal systems F ⊆ D. In this case,

‖Φγ∞(f)x‖γ ≤ c.

c) Suppose that X does not contain a copy of c0 and (eα)α∈I is a
fixed orthonormal basis of H. Then Φγ(f) is bounded if and only
if Φ(eα◦f) ∈ L(X) for all α and there is a constant c ≥ 0 such
that

E
∥∥∑

α∈F
γαΦ(eα◦f)x

∥∥2 ≤ c2 ‖x‖2

for all x ∈ X. In this case, ‖Φγ(f)‖ ≤ c.

Proof. a) One implication is clear. For the converse, suppose that
D ⊆ D(f, x) is dense in H and c ≥ 0 is such that

(2.2) ‖Φ(h◦f)x‖ ≤ c ‖h‖
for all h ∈ D. If h ∈ H is arbitrary, there is a sequence (hn)n in D
with hn → h. Then hn◦f bp-converges to h◦f and (Φ(hn◦f)x)n is a
Cauchy sequence in X. Since the functional calculus is standard, by
Lemma 2.4 it follows that h ∈ D(f, x) and the norm estimate (2.2)
holds. Hence x ∈ dom(Φ(f)) as claimed.
b) Again, one implication is trivial. For the converse we note that it
follows from the assumption that ‖Φ(h◦f)‖ ≤

√
2c ‖h‖ for every h ∈ D.

By a), x ∈ dom(Φ(f)). It is left to show that Φ(f) ∈ γ∞(H;X).
If (e1, . . . , ed) is any finite orthonormal system in H we can find, by
density and the Gram–Schmidt procedure, a sequence (e1,n, . . . , ed,n)
of orthonormal systems in D such that ej,n → ej for each 1 ≤ j ≤ d.
As the estimate

E
∥∥∥ d∑
j=1

γe[Φ(f)x]ej,n

∥∥∥2

X
≤ c2
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holds for each n ∈ N, it holds also in the limit.
c) As before, one implication is clear. For the converse note that

the hypothesis implies that the dense subspace D := span{eα | α ∈ I}
is contained in D(f, x) for each x ∈ X. Moreover, if F is a finite
orthonormal system in D, each vector in F is a finite linear combination
of the eα. From the hypothesis it follows by virtue of the contraction
principle that

E
∥∥∑

e∈F
γeΦ(e◦f)x

∥∥2 ≤ c2 ‖x‖2 .

Hence, applying b) concludes the proof. �

In the following lemma we collect some properties of the so-obtained
square functions. Note that H∞(O;H ′) is an H∞(O)-module with re-
spect to pointwise multiplication.

Lemma 2.9. In the situation just described, the following assertions
hold for each f ∈ H∞(O;H ′):

a) The operators Φ(f) and Φγ(f) are closed.

b) For each g ∈ H∞(O;H ′)

Φγ(f) + Φγ(g) ⊆ Φγ(f + g).

c) For each g ∈ H∞(O)

Φγ(f)Φ(g) ⊆ Φγ(f · g)

with dom(Φγ(f)Φ(g)) = dom(Φ(g)) ∩ dom(Φγ(f · g)).

d) For each g ∈ H∞(O)

Φ(g) ◦ Φγ(f) ⊆ Φγ(f · g)

e) For each g ∈ H∞(O) with Φ(g) ∈ L(X)

Φ(g) ◦ Φγ(f) ⊆ Φγ(f · g) = Φγ(f)Φ(g)

In particular, dom(Φγ(f)) is invariant under Φ(g).

The assertion d) means: if x ∈ dom(Φγ(f)) and Φ(g)[Φγ(f)x] ∈
γ(H;X), then x ∈ dom(Φγ(f · g)) and Φ(g)[Φγ(f)x] = Φγ(f · g)x.

Proof. The assertions in b) and c) follow more or less directly from
the corresponding statements about the scalar calculus (H∞(O),Φ).
Assertion d) is straightforward, and e) is a consequence of c) and d).
(Note that by the ideal property of γ(H;X), dom(Φ(g) ◦ Φγ(f)) =
dom(Φγ(f)). �
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From Lemma 2.9 we see that the mapping f 7→ Φγ(f) behaves like
a functional calculus, so we call it the vectorial H∞-calculus on O.
It is bounded if Φγ(f) is a bounded square function for each f ∈
H∞(O;H ′) and there is a constant C ≥ 0 such that

‖Φγ(f)x‖γ ≤ C ‖f‖H∞(O) ‖x‖ (x ∈ X, f ∈ H∞(O;H ′)).

This amounts to saying that the mapping

H∞(O;H ′) −→ L(X; γ(H;X)), f 7→ Φγ(f)

is a bounded operator.
Clearly, if the vectorial H∞-calculus is bounded, then the underlying

scalar H∞-calculus is bounded. We shall prove that, essentially, the
converse holds for sectorial/strip type operators, when one allows for
opening up the sector/strip (Theorem 8.1).

Lemma 2.10 (Convergence Lemma for Square Functions).
Let (H∞(O),Φ) be a functional calculus on a Banach space X such that
the scalar convergence lemma holds. Then the vectorial convergence
lemma holds. More precisely: Let (fn)n be a sequence in H∞(O;H ′)
satisfying

1) supn∈N ‖fn‖∞ <∞,

2) fn(z)→ f(z) weakly for all z ∈ O,

3) Φγ(fn) ∈ L(X; γ(H;X)) for all n ∈ N and

4) supn∈N ‖Φγ(fn)‖L(X;γ(H;X)) <∞.

Then Φγ∞(f) ∈ L(X; γ∞(H;X)) and Φγ(fn)x → Φγ∞(f)x strongly in
L(H;X) as n→∞, for each x ∈ X.

Proof. Fix h ∈ H. Then supn ‖h◦fn‖∞ ≤ ‖h‖ supn ‖fn‖∞ < ∞ and
h◦fn → h◦f pointwise on O. Moreover, Φ(h◦fn) ∈ L(X) and

‖Φ(h◦fn)x‖X = ‖[Φγ(fn)x]h‖X ≤ ‖h‖ ‖Φγ(fn)x‖L(H;X)

≤ ‖h‖ ‖Φγ(fn)x‖γ(H;X)

for all n ∈ N. This yields

sup
n∈N
‖Φ(h◦fn)‖L ≤ ‖h‖ sup

n
‖Φγ(fn)‖L(X;γ(H;X)) .

By the scalar convergence lemma, Φ(h◦f) ∈ L(X) and Φ(h◦fn) →
Φ(h◦f) strongly on X. That is, Φγ(fn)x→ Φ(f)x strongly in L(H;X)
for every x ∈ X. By the γ-Fatou Lemma B.5, Φ(f)x ∈ γ∞(H;X). �
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2.3. Dual Square Functions.
Let again (H∞(O),Φ) be a functional calculus as above. For a Hilbert
space H and a function f : O → H we have

h′◦f : O → C, (h′◦f)(z) = 〈f(z), h′〉H,H′ (z ∈ O, h′ ∈ H ′).

If f ∈ H∞(O;H) then h′◦f ∈ H∞(O) for each h′ ∈ H ′. Hence we can
define the operator

Φd(f) : dom(Φd(f))→ L(H ′;X ′)

by

[Φd(f)x′]h′ := Φ(h′◦f)′x′

on its natural domain dom(Φd(f)) ⊆ X ′ given by

x′ ∈ dom(Φd(f))
def⇐⇒ x′ ∈ dom(Φ(h′◦f)′) for all h′ ∈ H ′ and

(h′ 7→ Φ(h′◦f)′x′) ∈ L(H ′;X ′).

Then we pass to the associated dual square function

Φγ′(f) : dom(Φγ′(f))→ γ′(H ′;X ′), Φγ′(f)x′ := Φd(f)x′

dom(Φγ′(f)) = {x′ ∈ dom(Φd(f) | Φd(f)x′ ∈ γ(H ′;X ′)} ⊆ X ′.

Of course, this is only meaningful if Φ(h′◦f)′ is single-valued, i.e., if
Φ(h′◦f) is densely defined for each h′ ∈ H ′. We therefore make the
following

Standing assumption for dual square functions: Whenever we
speak of a dual square function associated with a function f ∈ H∞(O;H)
we require that for each h′ ∈ H ′ the operator Φ(h′◦f) is densely defined.

Remark 2.11. In order to talk about square functions for each f ∈
H∞(O;H) we would need that Φ(f) is densely defined for each scalar-
valued f ∈ H∞(O). For a strip-type operator this means that it must
be densely defined, whereas for a sectorial operator this means that it
must have dense domain and range.

The following lemma is the analogue of Lemma 2.9.

Lemma 2.12. In the situation just described, the following assertions
hold for f ∈ H∞(O;H):

a) The operator Φγ′(f) is weak∗-to-weak∗ closed.

b) If g ∈ H∞(O) such that Φ(g) ∈ L(X) and if x′ ∈ dom(Φγ′(f · g)),
then Φ(g)′x′ ∈ dom(Φγ′(f)) and

Φγ′(f)Φ(g)′x′ = Φγ′(f · g)x′.
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Proof. a) is left to the reader. For the proof of b) we fix h′ ∈ H ′ and
note first that since Φ(g) is bounded we have

Φ(h′◦(f · g))′ = Φ((h′◦f)g)′ ⊆
(
Φ(g)Φ(h′◦f)

)′
= Φ(h′◦f)′Φ(g)′

by [?, A.4.2 and 1.2.2]. The claim now follows easily. �

The following theorem yields a useful characterisation of “dual square
function estimates”. (Recall our notation [u, v ] for the scalar product
on H. For an H-valued function f and v ∈ H we also write [f, v ] for
the function z 7→ [f(z), v ].)

Theorem 2.13. Let (eα)α∈I be a fixed orthonormal basis of H. The
following assertions are equivalent for f ∈ H∞(O;H):

(i) Φγ′(f) is a bounded operator Φγ′(f) : X ′ → γ′(H ′;X ′).

(ii) The assignment

T (h′ ⊗ x) := Φ(h′◦f)x, h′ ∈ H ′, x ∈ dom(Φ(h′◦f))

extends to a bounded operator T : γ(H;X)→ X.

(iii) There is a constant c ≥ 0 such that

(2.3)
∥∥∥∑
α∈F

Φ([f, eα ])xα

∥∥∥2

X
≤ c E

∥∥∥∑
α∈F

γαxα

∥∥∥2

for all finite subsets F ⊆ I and xα ∈ dom(Φ([f, eα ])) for α ∈ F .

In this case T = Φγ′(f)′
∣∣
γ(H;X)

is the pre-adjoint of Φγ′(f) under the

identification γ′(H ′;X ′) ∼= γ(H;X)′, and (2.3) holds with c = ‖T‖ =
‖Φγ′(f)‖.

Furthermore, if g ∈ H∞(O) is such that Φ(g) ∈ L(X), then

(2.4) Φγ′(f)′(Φ(g) ◦ S) = Φ(g)
(
Φγ′(f)′S

)
for all S ∈ γ(H;X).

Proof. (i)⇒(ii): By hypothesis, Φγ′(f)′ : γ(H;X)′′ → X ′′ is bounded.
Fix x′ ∈ X ′, h′ ∈ H ′ and x ∈ dom(Φ(h′◦f)). Then

〈Φγ′(f)′(h′ ⊗ x), x′〉X′′,X′ = 〈h′ ⊗ x,Φγ′(f)x′〉
= tr

(
(Φγ′(f)x′)′(h′ ⊗ x)

)
= 〈x, [Φγ′(f)x′]h′〉 = 〈x,Φ(h′◦f)′x′〉
= 〈Φ(h′◦f)x, x′〉 .

Consequently,

Φγ′(f)′(h′ ⊗ x) = Φ(h′◦f)x = T (h′ ⊗ x) ∈ X.
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Since dom(Φ(h′◦f)) is dense in X, the linear span of such elements
h′ ⊗ x is dense in γ(H;X) and the claim follows.

(ii)⇔(iii): This follows since T (
∑

α∈F eα ⊗ xα) =
∑

α∈F Φ([f, eα ])xα.

(ii)⇒(i): It suffices to show that Φγ′(f) = T ′ : X ′ → γ(H;X)′ ∼=
γ′(H ′;X ′). Fix x′ ∈ X ′. Then

〈x, (T ′x′)(h′)〉X,X′ = 〈h′ ⊗ x, T ′x′〉γ,γ′ = 〈T (h′ ⊗ x), x′〉X,X′
= 〈Φ(h′◦f)x, x′〉

for all h′ ∈ H ′ and x ∈ dom(Φ(h′◦f)). Hence x′ ∈ dom(Φ(h′◦f)′) and

[Φγ′(f)x′]h′ = Φ(h′◦f)′x′ = (T ′x′)h′ for all h′ ∈ H ′.
That is, Φγ′(f) = T ′.

For the remaining statement let again h′ ∈ H ′ and x ∈ dom(Φ(h′◦f)).
Then, with S := h′ ⊗ x,

Φ(g)(T (S)) = Φ(g)Φ(h′◦f)x = Φ(h′◦f)Φ(g)x = T (h′ ⊗ Φ(g)x)

= T (Φ(g) ◦ S).

Since the linear span of such operators S is a dense subset of γ(H;X),
the claim follows from the ideal property of γ(H;X). �

2.4. Square Functions over L2-Spaces.
Up to now we worked with a general Hilbert space H. If one is in
the special situation H = L2(Ω) = H ′ for some measure space (Ω, µ),
it is natural to consider functions of two variables f = f(t, z) in the
construction of square functions.

Lemma 2.14. Let O ⊆ C be an open subset of the complex plane, let
f : Ω×O → C be measurable and suppose in addition that

1) f(t, ·) ∈ H∞(O) for µ-almost all t ∈ Ω and

2) sup
z∈O

∫
Ω

|f(t, z)|2 µ(dt) <∞.

Then (z 7→ f(·, z)) ∈ H∞(O; L2(Ω)).

Proof. Let g ∈ L2(Ω). It remains to show that the function

F (z) :=

∫
Ω

g(t)f(t, z)µ(dt)

is holomorphic. To this end, let B be any open ball such that B ⊆ O.
Then for a ∈ B

f(t, a) =
1

2πi

∫
∂B

f(t, z)dz

z − a
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for almost all t ∈ Ω, by the Cauchy formula. Fubini’s theorem yields

F (a) =

∫
Ω

g(t)f(t, a)µ(dt) =
1

2πi

∫
∂B

F (z)dz

z − a
for all a ∈ B. By a standard result in complex function theory [?,
Theorem 10.7], F is holomorphic. �

Remark 2.15. Suppose in addition that (H∞(O),Φ) is a functional
calculus for the (possibly multivalued) operator A, cf. Remark 2.2. For
f as in Lemma 2.14 we then have

[Φ(f)x]h =
(∫

Ω

h(t)f(t, z)µ(dt)
)

(A)x

if x ∈ dom(Φ(f)) and h ∈ H = L2(Ω). In many situations one has

[Φ(f)x]h =
(∫

Ω

h(t)f(t, z) dt
)

(A)x =

∫
Ω

h(t)f(t, A)xµ(dt)

at least for vectors x from a large subspace of X. We therefore use the
Reference to Sec-
torial and Strip
Case

symbol f(·, A)x or f(t, A)x as a convenient alternative notation — as
a façon de parler — for the operator Φ(f)x. So, whenever expressions
of the form

‖f(t, A)x‖γ
appear, this is just a suggestive notation. It is by no means implied
that “f(t, A)x” has to make sense literally, which would mean that
x ∈ dom(f(t, A)) for almost all t ∈ Ω and [Φ(f)x]h =

∫
Ω
h(t)f(t, A)x dt

as an integral of an X-valued function as in Appendix ??. It is actually
one of the advantages of our approach to square functions that one does
not have to worry about vector-valued integration too much.

3. Square Function Estimates: New from Old

In this chapter we discuss certain general principles that allow to
generate new (dual) square function estimates from known ones. A
fairly trivial instance of such a principle is given by subordination.

3.1. Subordination.
Let us, for the moment, return to a general setting, where X, Y are
Banach and H,K are Hilbert spaces. A square function Q : dom(Q)→
γ(H;Y ) is called subordinate to a square function R : dom(R) →
γ(K;Y ), in symbols:

Q - R,

if dom(Q) ⊇ dom(R) and there is a bounded operator T : H → K
such that

Qx = Rx ◦ T for all x ∈ dom(R).
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The square functions Q and R are called strongly equivalent, in
symbols:

Q ≈ R,

if Q - R and R - Q. Note that if Q - R then, by the ideal property,
there is a constant c ≥ 0 such that

‖Qx‖γ ≤ c ‖Rx‖γ for all x ∈ dom(R).

Analogously, a dual square function Qd : dom(Qd) → γ′(H ′;Y ′) is
subordinate to a dual square function Rd : dom(Rd) → γ′(H ′;Y ′) if
dom(Qd) ⊇ dom(Rd) and there is a bounded operator T : H ′ → K ′

such that
Qdx′ = Rdx′ ◦ T for all x′ ∈ dom(Rd).

It is evident that any (dual) square function subordinate to a bounded
(dual) square function is itself bounded. Subordination is a (rather
trivial) way to generate new square function estimates from known
ones.

Now let us return to square functions associated with a functional
calculus (H∞(O),Φ) over a set O.

Theorem 3.1 (Subordination). Let K be another Hilbert space and
T : K → H a bounded linear operator.

a) If g ∈ H∞(O;H ′) then dom(Φγ(g)) ⊆ dom(Φγ(T
′ ◦ g)) and

Φγ(T
′ ◦ g)x = Φγ(g)x ◦ T for all x ∈ dom(Φγ(g)).

In particular, Φγ(T
′ ◦ g) - Φγ(g). If, moreover, T is surjective,

then Φγ(T
′ ◦ g) ≈ Φγ(g).

b) If f ∈ H∞(O;K) then dom(Φγ′(f)) ⊆ dom(Φγ′(T ◦ f)) and

Φγ′(T ◦ f)x′ = Φγ′(f)x′ ◦ T ′ for all x′ ∈ dom(Φγ(f)).

In particular, Φγ′(T ◦ f) - Φγ′(f). If, moreover, T is injective
with closed range, then Φγ′(T ◦ f) ≈ Φγ′(f).

Proof. The first part of a) is an easy exercise. If T is surjective then
there is a bounded operator S : H → K with TS = IH . By the first
part, Φγ(g) = Φγ(S

′ ◦ T ′ ◦ g) - Φγ(T
′ ◦ g) - Φγ(g). The proof of b) is

similar. �

Whenever it is convenient, we shall abbreviate Φγ(f) - Φγ(g) and
Φγ(f) ≈ Φγ(g) simply by

f - g and f ≈ g,
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respectively. The same abbreviation is used in the case of dual square
functions. For applications of the subordination principle see Chapter 7
below.

3.2. Direct Sums.
Suppose that H = H1⊕H2 is the direct sum of Hilbert spaces H1, H2.
Then H ′ can be canonically identified with

H ′ = (H1 ⊕H2)′ ∼= H ′1 ⊕H ′2
and we shall do so in the following. Given fj ∈ H∞(O;H ′j) for j = 1, 2,
we write

Φγ(f1)⊕ Φγ(f2)

for the operator X → γ(H1 ⊕H2;X) with domain

dom
(
Φγ(f1)⊕ Φγ(f2)

)
:= dom(Φγ(f1)) ∩ dom(Φγ(f2))

and mapping x from that domain to the operator

H1 ⊕H2 → X, (h1, h2) 7→ [Φγ(f1)x]h1 + [Φγ(f2)x]h2.

On the other hand, we may consider the function

f1⊕ f2 := (f1, f2) ∈ H∞(O;H ′1⊕H ′2), (f1⊕ f2)(z) := (f1(z), f2(z))

and the associated square function Φγ(f1 ⊕ f2).

Corollary 3.2. Let H1, H2 be Hilbert spaces, and fj ∈ H∞(O;H ′j) for
j = 1, 2. Then

Φγ(f1)⊕ Φγ(f2) = Φγ(f1 ⊕ f2).

Proof. Abbreviate H := H1 ⊕ H2 and f := f1 ⊕ f2. We consider for
j = 1, 2 the projection operators

Pj : H → Hj, Pj(h1, h2) = hj

and the injections

J1(h1) = (h1, 0), J2(h2) = (0, h2)

for hj ∈ Hj, j = 1, 2. Note that the adjoints P ′j and J ′j are simply the
corresponding injection and projection operators, respectively, for the
direct sum H ′1 ⊕H ′2.

Now clearly f = P ′1 ◦ f1 +P ′2 ◦ f2, hence by a basic rule from Lemma
2.9

Φγ(P
′
1 ◦ f1) + Φγ(P

′
2 ◦ f2) ⊆ Φγ(f).

Since Pj is surjective, Theorem 3.1 yields

Φγ(P
′
j ◦ fj) ≈ Φγ(fj).
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In particular, they have equal domains. This leads to

Φγ(P
′
1 ◦ f1) + Φγ(P

′
2 ◦ f2) = Φγ(f1)⊕ Φγ(f2)

by our definition from above.
Next, observe that fj = J ′j ◦ f and hence

Φγ(fj) - Φγ(f)

for j = 1, 2. In particular,

dom(Φγ(f)) ⊆ dom(Φγ(f1)) ∩ dom(Φγ(f2))

and this is what was missing to establish the claim. �

Direct sums of square functions appear, for example, in Example 7.9.

3.3. Tensor Products and Property (α+).
Let H, K be Hilbert spaces and f ∈ H∞(O;H ′) and g ∈ H∞(O;K ′).
Then one can consider the function

f ⊗ g : O −→ H ′ ⊗a K ′ ⊆ (H ⊗K)′ (f ⊗ g)(z) := f(z)⊗ g(z).

It is then clear that (f ⊗ g) ∈ H∞(O; (H ⊗K)′).
The following result yields information about the square function

Φγ(f ⊗ g) in terms of the square functions Φγ(f) and Φγ(g). (We refer
to Appendix B.6 for background on tensor products of Hilbert spaces,
property (α+), and the associated constant C+.)

Theorem 3.3. Let (H∞(O); Φ) be a standard functional calculus on a
space X with property (α+), and let f ∈ H∞(O;H) and g ∈ H∞(O;K),
where H and K are Hilbert spaces. Suppose that the square function
Φγ(g) is bounded and let x ∈ dom(Φγ(f)). Then x ∈ dom(Φγ(f ⊗ g))
and

‖Φγ(f ⊗ g)x‖γ ≤ C+ ‖Φγ(g)‖ ‖Φγ(f)x‖γ .

Proof. By the ideal property, composition with the operator Φγ(g) :
X → γ(K;X) yields a bounded operator

Φγ(g)⊗ : γ(H;X)→ γ(H; γ(K;X)), Φγ(g)⊗T := Φγ(g) ◦ T,
the “tensor extension”. As such, its norm is bounded by ‖Φγ(g)‖.
Since X has property (α+) the natural mapping H ′ ⊗a (K ′ ⊗a X) →
(H ⊗a K)′ ⊗a X extends to a bounded operator

J+ : γ(H; γ(K;X))→ γ(H ⊗K;X)

with norm C+ = C+(X). Hence Φγ(g)⊗ as an operator γ(H;X) →
γ(H ⊗K;X) with norm ≤ C+ ‖Φγ(g)‖.

Fix x ∈ dom(Φγ(f) and note that for h ∈ H and k ∈ K we have

(h⊗ k)◦(f ⊗ g) = (h◦f) (k◦g).
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Since, by hypothesis, Φγ(g) is bounded, Φ(k◦g) ∈ L(X) and hence x
lies in the domain of Φ((h⊗ k)◦(f ⊗ g)) with

Φ((h⊗ k)◦(f ⊗ g))x = Φ((h◦f)(k◦g))x

= Φ(k◦g)Φ(h◦f)x =
[
Φγ(g)

(
Φ(h◦f)x

)]
k

=
[
Φγ(g)

(
[Φγ(f)x]h

)]
k =

[[
Φγ(g)⊗(Φγ(f)x)

]
h
]
k

=
[
J+
[
Φγ(g)⊗(Φγ(f)x)

]]
(h⊗ k).

So the space D(f ⊗ g, x) (see Lemma 2.8) contains the dense subspace
D := H ⊗a K of H ⊗K, and

(3.1) Φ(f ⊗ g)x = J+
[
Φγ(g)⊗(Φγ(f)x)

]
as operators D → X. As the functional calculus is standard, Lemma
2.8 applies and yields that x ∈ dom(Φ(f ⊗ g)). Moreover, (3.1) holds
as operators H ⊗K → X. Since the right side lies in γ(H ⊗K;X), it
follows that x ∈ dom(Φγ(f ⊗ g)) and

Φγ(f ⊗ g)x = J+
[
Φγ(g)⊗(Φγ(f)x)

]
The claimed norm estimate follows. �

Remark 3.4. The proof of Theorem 3.3 reveals that one can omit the
assumption that the functional calculus is standard when one requires
in addition that x ∈ dom(Φ(f ⊗ g)).

Corollary 3.5. Let H,K be two Hilbert spaces and X be a Banach
space with property (α+). Suppose further that for a standard functional
calculus the square functions

Φγ(f) : X −→ γ(H;X) and Φγ(g) : X −→ γ(K;X)

are bounded. Then the tensor square function

Φγ(f ⊗ g) : X −→ γ(H⊗K;X)

is bounded, too, with

‖Φγ(f ⊗ g)‖ ≤ C+ ‖Φγ(f)‖ ‖Φγ(g)‖

For an application of this lemma, see Lemma 8.10 below.
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3.4. Lower Square Function Estimates I.
A lower square function estimate is an estimate of the form

‖x‖X ≤ C ‖Φγ(g)x‖γ (x ∈ dom(Φγ(g))).

In certain situations one can combine a lower square function esti-
mate, a usual square function estimate and a subordination to show
the boundedness of an operator Φ(f) by means of the following result.

Lemma 3.6. Let H, K be Hilbert spaces and let g ∈ H∞(O;K ′) and
g̃ ∈ H∞(O;H ′). Suppose that one has a lower square function estimate
for Φγ(g)

‖x‖X ≤ C ‖Φγ(g)x‖γ
(
x ∈ dom(Φγ(g))

)
.

Suppose further that the scalar-valued function f ∈ H∞(O) is such that
there is Tf ∈ L(H;K) with

f · g = T ′f ◦ g̃.

Then

‖Φ(f)x‖ ≤ C ‖Tf‖ ‖Φγ(g̃)x‖γ
for all x ∈ dom(Φ(f)) ∩ dom(Φγ(g̃))).

Proof. By Lemma 2.9.c),

Φγ(g)Φ(f) ⊆ Φγ(f · g) = Φγ(T
′
f ◦ g̃)

If x ∈ dom(Φγ(g̃)), then, by subordination x ∈ dom(Φγ(T
′
f ◦ g̃)) as well.

If, in addition x ∈ dom(Φ(f)) then, still by Lemma 2.9.c), Φ(f)x ∈
dom(Φγ(g)). Hence,

‖Φ(f)x‖X ≤ C ‖Φγ(g)Φ(f)x‖γ = C ‖Φγ(g̃)x ◦ Tf‖γ
≤ C ‖Tf‖ ‖Φγ(g̃)x‖γ . �

Lemma 3.6 is an abstract version of the “pushing the operator through
the square function”-technique used by Kalton and Weis in [?] (see also
[?, Theorem 10.9]) to show that a norm equivalence

‖R(±iω + ·, A)x‖γ(L2(R);X) ∼ ‖x‖X

for a strip type operator A implies the boundedness of the H∞-calculus
on a strip, see Section 8.6 below for details.



SQUARE FUNCTION ESTIMATES AND FUNCTIONAL CALCULI 27

3.5. Lower Square Function Estimates II.
We now present some methods to establish lower square function es-
timates. These, however, require slightly stronger assumptions about
the underlying functional calculus. Indeed, eventually we shall work
with a standard functional calculus (H∞(O),Φ). Recall from Section
2.1 that this means that the set CΦ of bp-good universal regularisers is
universally determining.

Remark 3.7. The following considerations are motivated by McIn-
tosh’s approximation formula

x =

∫ ∞
0

ϕ(tA)ψ(tA)x
dt

t

for x ∈ dom(A) ∩ ran(A), sectorial operators A and appropriate func-
tions ϕ, ψ, see [?] and [?, Sec. 5.2].

For f ∈ H∞(O;H) and g ∈ H∞(O;H ′) let f � g ∈ H∞(O) be defined
by

(f � g)(z) := 〈f(z), g(z)〉H,H′ (z ∈ O).

Then, if we regard elements h ∈ H and h′ ∈ H ′ as constant mappings
from O to H and H ′, respectively, we have

h � g = h◦g and f � h′ = h′◦f.

Clearly, we expect the formula

(3.2) 〈Φ(f � g)x, x′〉X,X′ = 〈Φγ(g)x,Φγ′(f)x′〉γ,γ′

to hold. The following result gives some conditions for this.

Lemma 3.8. Suppose that f ∈ H∞(O;H) and g ∈ H∞(O;H ′), and
that x ∈ dom(Φγ(g)) is bp-good. Then

〈Φ(f � g)x, x′〉 = 〈Φγ(g)x,Φγ′(f)x′〉

for all x′ ∈ dom(Φγ′(f)).

Proof. For the proof of the claim we let (eα)α∈I be an orthonormal
basis of H and denote

gα(z) := 〈eα, g(z)〉 =
[
eα, g(z)

]
H
, fα(z) := 〈f(z), eα〉 =

[
f(z), eα

]
H

for α ∈ I. Then by general Hilbert space theory

(f � g)(z) =
∑

α
fα(z) · gα(z)
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for each z ∈ O, and the partial sums are uniformly bounded. (Note that

fα(z) · gα(z) 6= 0 for at most countably many α since {g(z), f(z) | z ∈
O} is separable.) Hence, for x′ ∈ dom(Φγ′(f)) we can compute

〈Φγ(g)x,Φγ′(f)x′〉γ,γ′
1)
=
∑
α

〈Φ(gα)x,Φ(fα)′x′〉X,X′

2)
=
∑
α

〈Φ(fα)Φ(gα)x, x′〉X,X′

3)
=
∑
α

〈Φ(fαgα)x, x′〉X,X′ = 〈Φ(f � g)x, x′〉X,X′

Here, 1) follows from c) of Theorem B.17 and 3) since x is bp-good.
Since x being bp-good implies in particular that Φ(gα)x ∈ dom(Φ(fα)),
also 2) is justified. �

The following is the main result of the present section.

Theorem 3.9. Let (H∞(O),Φ) be a standard functional calculus, and
let f ∈ H∞(O;H) and g ∈ H∞(O;H ′). If Φγ′(f) is a bounded operator,
then

Φγ′(f)′Φγ(g) ⊆ Φ(f � g).

In other words, dom(Φγ(g)) ⊆ dom(Φ(f � g)) and

〈Φ(f � g)x, x′〉 = 〈Φγ(g)x,Φγ′(f)x′〉
for all x ∈ dom(Φγ(g)) and all x′ ∈ X ′. In particular, one has the
lower estimate

‖Φ(f � g)x‖X . ‖Φγ(g)x‖γ for all x ∈ dom(Φγ(g)).

Proof. We let y := Φγ′(f)′[Φγ(g)x] ∈ X by Theorem 2.13. Take e ∈
CΦ, i.e. a bp-good universal regulariser. Then by Lemma 3.8, for each
x′ ∈ X ′ we have

〈Φ(e(f � g))x, x′〉 = 〈Φ(f � g)Φ(e)x, x′〉 = 〈Φγ(g)Φ(e)x,Φγ′(f)x′〉
= 〈Φ(e) ◦ [Φγ(g)x],Φγ′(f)x′〉
=
〈
Φγ′(f)′

(
Φ(e) ◦ [Φγ(g)x]), x′

〉
= 〈Φ(e)(Φγ′(f)′[Φγ(g)x]), x′〉 = 〈Φ(e)y, x′〉 ,

where we used Lemma 2.9.e) and (2.4). It follows that

Φ(e(f � g))x = Φ(e)y.

Since, by hypothesis, the set CΦ is determining, it follows that x ∈
dom(Φ(f � g)) and Φ(f � g)x = y. The remaining assertions follow
easily. �
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Corollary 3.10. Let (H∞(O),Φ) be a standard functional calculus.
Suppose that f ∈ H∞(O;H) and g ∈ H∞(O;H ′) are such that Φγ(g)
and Φγ′(f) are bounded operators. Then Φ(f �g) is a bounded operator
and

〈Φ(f � g)x, x′〉 = 〈Φγ(g)x,Φγ′(f)x′〉 for all x ∈ X and x′ ∈ X ′.
In particular, if f � g = 1 then one has the norm equivalence

‖x‖X ' ‖Φγ(g)x‖γ for all x ∈ X.

The problem whether to a given function f ∈ H∞(O;H) there exists
a function g ∈ H∞(O;H ′) with f � g = 1 is known as the Corona
problem. By a result of Tolokonnikov [?] and Uchiyama [?], for the
case O = D such a function g exists provided infz∈D ‖f(z)‖H > 0, see
also [?, Appendix 3]. By a conformal mapping this result extends to
O immediately (recall ∅ ( O ( C).

Corollary 3.11. Let (H∞(O),Φ) be a standard functional calculus over
a simply connected domain O ⊆ C such that Φγ′(f) is a bounded
operator for all f ∈ H∞(O;H). Then there is a constant C ≥ 0
with the following property: whenever g ∈ H∞(O;H ′) is such that
δ := infz∈O ‖g(z)‖H′ > 0, one has

‖x‖ ≤ C c(δ) ‖Φγ(g)x‖γ for all x ∈ dom(Φγ(g))

with c(δ) ≤ δ−2 ln(1 + 1
δ
)
3/2.

Proof. The closed graph theorem yields a constant C1 with ‖Φγ′(f)‖ ≤
C1 ‖f‖∞ for all f ∈ H∞(O;H). And the Tolokonnikov–Uchiyama
lemma yields for given g a function f ∈ H∞(O) with f � g = 1 and

‖f‖∞ ≤ C2δ
−2 ln(1 + 1

δ
)
3/2 . Now the claim follows from Theorem 3.9

with C = C1C2. �
Sollte man hi-
erzu nicht eine
Anwendung
beschreiben?

3.6. Integral Representations.
In this section we describe a method for obtaining new square function
estimates from known ones via integral representations. We build on
the previous results and hence work again with a standard functional
calculus (H∞(O),Φ) on a Banach space X. The following is the main
result.

Dieser Abschnitt
muss nochmal ue-
berarbeitet wer-
den

Theorem 3.12. Let (H∞(O),Φ) be a standard functional calculus on
the Banach space X. Let H, K be Hilbert spaces, where K := L2(Ω)
for some measure space (Ω, µ). Suppose further that f, g ∈ H∞(O;K)
such that the dual square function associated with f ,

Φγ′(f) : X ′ → γ′(K;X ′),
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is bounded. Consider, for m ∈ L∞(Ω;H ′), the function u ∈ H∞(O;H ′)
defined by

(3.3) u(z) :=

∫
Ω

m(t) · f(t, z) g(t, z)µ(dt) ∈ H ′ (z ∈ O).

If H has finite dimension or X has finite cotype then

dom(Φγ(g)) ⊆ dom(Φγ(u))

and for each x ∈ dom(Φγ(u)),

(3.4) ‖Φγ(u)x‖γ ≤ C ‖m‖L∞(Ω;H′) ‖Φγ′(f)‖ ‖Φγ(g)x‖γ ,

where C depends on dim(H) or the cotype (constant) of X, respectively.

The following proof shows that the constant C appearing here sat-
isfies

C ≤ min(
√

2 dim(H), c(q, cq(X)))

where q is the cotype of X and c(q, cq(γ(K;X)) is the constant appear-
ing in Theorem B.21.

Proof. Fix x ∈ dom(Φγ(g)). We claim that Φ(u)x is defined and
factorizes as

(3.5) Φ(u)x : H
Sm−→ L∞(Ω)

M
↪−→ L(K)

λx−→ γ(K;X)
π−→ X,

where

1) π = Φγ′(f)′ : γ(K;X)→ X, cf. Theorem 2.13;

2) λx = (R 7→ Φγ(g)x ◦ R) : L(K) → γ(K;X), which is well-defined
by the ideal property of γ(K;X);

3) M : L∞(Ω)→ L(K) is the representation of L∞(Ω) as multiplica-
tion operators on K = L2(Ω);

4) Sm : H → L∞(Ω) maps h ∈ H to Smh := h◦m.

Suppose that this factorisation holds. If dim(H) <∞ then γ(H;X) =
L(H;X) with estimate

‖T‖γ ≤
√

2 dim(H) ‖T‖ for each T ∈ L(H;X).

Hence the factorization (3.5) shows that Φ(u)x is in γ(H;X) and one

has the norm estimate (3.7) with C ≤
√

2 dim(H).
If X has cotype q < ∞, so does γ(K;X) (Lemma B.20); hence, by

Theorem B.21 and the ideal property,

‖Φ(u)x‖γ(H;X) ≤ c(q, cq(γ(K;X)) ‖Sm‖ ‖λx‖ ‖π‖ ,

from which the norm estimate follows.
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To establish the factorization (3.5), fix h ∈ H. Then

λxMSm(h) = λxM(h◦m) = λx(Mh◦m) =
(
Φγ(g)x

)
Mh◦m.

Now for any k ∈ K,

[λxMSm(h)]k =
[
Φγ(g)x

]
((h◦m)k) = Φ

(
〈g(·), (h◦m)k〉

)
x

= Φ
(
〈(h◦m)g(·), k〉

)
x.

Hence x ∈ dom(Φγ((h◦m)g) and

λxMSm(h) = Φγ((h◦m)g)x.

Since, for z ∈ O,(
f � (h◦m)g

)
(z) =

∫
Ω

〈h,m(·)〉 f(z)g(z)

=
〈
h,

∫
Ω

mf(z)g(z)
〉

= (h◦u)(z),

we may apply Theorem 3.9, and obtain for any h ∈ H
πλxMSm(h) = Φγ′(f)′Φγ((h◦m)g)x = Φ(f � (h◦m)g)x

= Φ(h◦u)x = [Φ(u)x]h,

which shows x ∈ dom(Φ(u)) and proves the desired factorization. �

Corollary 3.13. Let (H∞(O),Φ) be a standard functional calculus on
the Banach space X. Let H, K be Hilbert spaces, where K := L2(Ω)
for some measure space (Ω, µ). Suppose further that f, g ∈ H∞(O;K)
and m ∈ L∞(Ω;H ′) such that

1) Φγ(g) : X → γ(K;X) is bounded and

2) Φγ′(f) : X ′ → γ′(K;X ′) is bounded.

Consider the function u ∈ H∞(O;H ′) defined by

(3.6) u(z) :=

∫
Ω

m(t) · f(t, z) g(t, z)µ(dt) ∈ H ′ (z ∈ O).

If H has finite dimension or X has finite cotype then the operator
Φγ(u) : X → γ(H;X) is bounded, too, with

(3.7) ‖Φγ(u)‖ ≤ c ‖m‖L∞(Ω;H′) ‖Φγ′(f)‖ ‖Φγ(g)‖ ,

where c depends on dim(H) or the cotype (constant) of X, respectively.

Suppose that Φ is a standard functional calculus for the operator A,
H = L2(Ω′), and

u(s, z) =

∫
Ω

m(s, t)f(t, z)g(t, z) dt.
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Then Theorem 3.12 says the following: if the square and dual square
functions associated with g(·, A) and f(·, A), respectively, are bounded,
then also the square function associated with u(·, A) is bounded. (Note
our convention from Section 2.4.) For H = C this theorem is the main
tool to infer bounded H∞-calculus from square and dual square function
estimates. Examples are given in Chapter 8 below.

Remark 3.14. We do not know of a proper dual analogue of Theo-
rem 3.12. However, under certain conditions one can use it to obtain
bounded square functions for the dual functional calculus and by the
inclusion γ(H ′;X ′) ⊆ γ′(H ′;X ′) this yields a bounded dual square
function for the original calculus.

4. Franks–McIntosh Representations and
`1-Conditions

Quadratic estimates in relation to H∞-calculus use bounded holo-
morphic H-valued functions f defined on some open subset O ⊆ C.
After introducing an orthonormal basis in H we may identify H with
the space `2. In this chapter we consider functions f with stronger prop-
erties, namely bounded holomorphic functions f defined and taking val-
ues in `1. Writing f(z) = (fn(z))n∈N we thus have: each fn ∈ H∞(O)
and

(4.1) ‖f‖H∞(O;`1) = sup
z∈O

∞∑
n=1

|fn(z)| <∞.

Given a bounded H∞-functional calculus Φ : H∞(O) → L(X), such
functions have remarkable properties.

Theorem 4.1. Let O ⊆ C be an open subset of the complex plane,
let X be Banach space, and let Φ : H∞(O) → L(X) be a bounded
algebra homomorphism with norm ‖Φ‖. For a function f = (fn)n∈N ∈
H∞(O; `1), the following assertions hold:

a) The set of operators {Φ(fn) | n ∈ N} is R-bounded in L(X) and

(4.2) sup
N∈N, ε∈{0,1}N

∥∥∥ N∑
n=1

εnΦ(fn)
∥∥∥ <∞.

b) The dual square function associated with f (considered as a func-
tion into `2) is bounded. More precisely, Φγ′(f) ∈ L(X ′; γ′(`2;X))
with

‖Φγ′(f)x′‖γ′ ≤
√
π

2
‖Φ‖ ‖f‖H∞(O;`1) ‖x

′‖X′ (x′ ∈ X ′).
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c) If X has finite cotype q <∞, then the square function Φγ(f) asso-
ciated with f is bounded. More precisely: Φγ(f) ∈ L(X; γ(`2;X))
and

‖Φγ(f)x‖γ ≤
√

2cq(X)mq ‖Φ‖ ‖f‖H∞(O;`1) ‖x‖X (x ∈ X),

where cq(X) is the cotype-q constant of X and mq is the q-th ab-
solute moment of the normal distribution.

Proof. a) Let N ∈ N and ε ∈ {0, 1}N . Then∥∥∥∑N

n=1
εnΦ(fn)

∥∥∥ =
∥∥∥Φ
(∑N

n=1
εnfn

)∥∥∥ ≤ ‖Φ‖ sup
z

∣∣∣∑N

n=1
εnfn(z)

∣∣∣
≤ ‖Φ‖ ‖f‖H∞(O;`1) .

This establishes (4.2). For the proof of theR-boundedness, let x1, . . . , xN ∈
X and r1, r

′
1, . . . , rN , r

′
N be independent real Rademacher variables,

E
∥∥∥∑N

n=1
rnΦ(fn)xn

∥∥∥ = E
∥∥∥E′∑N

n=1
r′nrnΦ(fn)

∑N

k=1
r′kxk

∥∥∥
≤ EE′

∥∥∥Φ
(∑N

n=1
rnfn

)(∑N

k=1
r′kxk

)∥∥∥
≤ ‖Φ‖

(
E sup

z

∣∣∣∑N

n=1
rnfn(z)

∣∣∣) · E′∥∥∥∑N

k=1
r′kxk

∥∥∥
≤ ‖Φ‖ ‖f‖H∞(O;`1) E

′
∥∥∥∑N

k=1
r′kxk

∥∥∥.
b) Fix N ∈ N, x1, . . . , xN ∈ X and independent (complex) Rademacher
variables r1, . . . , rN . Then, since E(rnrk) = 2δkn,∥∥∥∑N

n=1
Φ(fn)xn

∥∥∥2

= 1
4

∥∥∥E∑N

n=1
rnΦ(fn)

∑N

k=1
rkxk

∥∥∥2

≤ 1
4
E
∥∥∥Φ
(∑N

n=1
rnfn

)(∑N

k=1
rkxk

)∥∥∥2

≤ 1
4
‖Φ‖2

(
E sup

z

∣∣∣∑N

n=1
rnfn(z)

∣∣∣)2 ∥∥∥∑N

k=1
rkxk

∥∥∥2

≤ 1
2
‖Φ‖2 ‖f‖2

H∞(O;`1) E
∥∥∥∑N

k=1
rkxk

∥∥∥2

≤ π
4
‖Φ‖2 ‖f‖2

H∞(O;`1) E
∥∥∥∑N

k=1
γkxk

∥∥∥2

,

where in the last step we appplied (B.4) with q = 2. By Theorem
2.13, the dual square function Φγ′(f) is bounded, and its norm satisfies

‖Φγ′(f)‖ ≤
√
π

2
‖Φ‖ ‖f‖H∞(O;`1).

c) By Theorem B.19,

E
∥∥∥∑N

n=1
γnΦ(fn)x

∥∥∥2

≤ cq(X)2m2
q E
∥∥∥∑N

n=1
rnΦ(fn)x

∥∥∥2
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= cq(X)2m2
q E
∥∥∥Φ
(∑N

n=1
rnfn

)
x
∥∥∥2

≤
(
cq(X)mq ‖Φ‖ ‖x‖

)2 E sup
z∈O

∣∣∣∑
n
rnfn(z)

∣∣∣2
≤
(
cq(X)mq ‖Φ‖ ‖x‖

)2
2 ‖f‖H∞(O;`1) .

This shows that Φ(f)x ∈ γ∞(`2;X) and

‖Φ(f)x‖γ ≤
√

2cq(X)mq ‖Φ‖ ‖f‖H∞(O;`1) ‖x‖ .

Finally, since X has finite cotype it cannot contain a copy of c0 and
hence Φ(f)x ∈ γ(H;X) by the Hoffmann-Jørgensen–Kwapień theo-
rems, cf. Appendix B.2. �

Remark 4.2. It is clear from the proof that assertions b) and c) remain
true if instead of f ∈ H∞(O; `1) one has

E sup
z∈O, N∈N

∣∣∣∑N

n=1
rnfn(z)

∣∣∣ <∞
where (rn)n is any sequence of independent complex Rademachers.

4.1. Functions with `1-Frame-Bounded Range.
The condition (4.1) means that f—considered as a function into `2—
has its image in a multiple of the `1-unit ball. However, in many
concrete cases, this condition is too restrictive. Rather, the following
more general notion is often helpful, see Example ?? below.

Let H be a complex Hilbert space. The `1-frame-bound of a subset
M ⊆ H is defined as

(4.3) |M |1 := inf
(L,R)

‖L‖ sup
x∈M

∑
α∈I
|〈Rx, eα〉| ,

where the infimum is taken over all pairs (L,R) of bounded linear
operators

R : H → `2(I), L : `2(I)→ H

(I being any (sufficiently large) index set) such that

LR = IH .

And M is called `1-frame-bounded if |M |1 <∞.

This notion is, to the best of our knowledge, new and presumably
interesting in its own right. Its name derives from the fact that for a
pair (R,L) as in the definition, the family (R∗eα)α∈I is a frame for H.
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Note that in the presence of operators (R,L) as above, for a function
f ∈ H∞(O;H) the square functions associated to f and to R ◦ f are
mutually subordinate, and hence equivalent, i.e.,

f ≈ R ◦ f
in the terminology of Section 3.2. To say that f has `1-frame-bounded
range means that there is at least one pair (R,L) as above such that

sup
z∈O

∑
α

|〈Rf(z), eα〉| <∞

Since O is separable, the sum here involves only countably many α,
and hence one is in the situation of Theorem 4.1 above. As a result,
we obtain the following theorem.

Theorem 4.3. Let O ⊆ C be an open set, let X be a Banach space,
and let Φ : H∞(O) → L(X) be a bounded algebra homomorphism with
norm ‖Φ‖. Furthermore, let f ∈ H∞(O;H) and g ∈ H∞(O;H ′). Then
the following assertions hold.

a) If f has `1-frame-bounded image in H, then the dual square func-
tion associated with f is bounded, i.e., Φγ′(f) ∈ L(X ′; γ′(H ′;X ′)).
Moreover,

‖Φγ′(f)x′‖γ′ ≤
√

π
2
‖Φ‖ |f(O)|1 · ‖x

′‖X′ (x′ ∈ X ′).

b) If g has `1-frame-bounded image in H ′ and X has cotype q < ∞,
then the square function associated with f is bounded, i.e., Φγ(g) ∈
L(X; γ(H;X)). Moreover,

‖Φγ(g)x‖γ ≤
√

2cq(X)mq ‖Φ‖ |g(O)|1 · ‖x‖X (x ∈ X),

where cq(X) is the cotype-q constant of X and mq is the q-th ab-
solute moment of the normal distribution.

The most prominent examples of H∞-functions with `1–frame-bounded
range are the shift-type functions

f(t, z) = ψ(t+ z)

defined for t ∈ R and z from a horizontal strip, where ψ is an elementary
function of the functional calculus of strip type, see Theorem 7.6 below.
By the exp / log-correspondence, this result transfers to sectors and one
obtains that also the dilation type functions

f(s, z) = ϕ(sz)

defined for s > 0 and z from a sector have `1-frame-bounded range, if
ϕ is an elementary function for the sectorial calculus, see ??.
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4.2. Franks-McIntosh Representations.
Suppose that ∅ 6= O ⊆ O′ are open subsets of the complex plane. A
Franks-McIntosh representation for the pair (O,O′) on a Banach
space X consists of a pair of functions f, g ∈ H∞(O′; `1) and a bounded
linear operator

a : H∞(O′;X)→ `∞(X)

such that

ϕ(z) =
∞∑
n=1

an(ϕ)fn(z)gn(z) for z ∈ O

holds for all ϕ ∈ H∞(O′, X).
Note that by composing with the restriction map

H∞(O′)→ H∞(O), f 7→ f
∣∣
O

each H∞(O)-functional calculus Φ induces an H∞(O′)-functional cal-
culus, which by abuse of notation we denote again by Φ. (If O′ is
connected, then a holomorphic function on O′ is uniquely determined
by its restriction to O, so that the restriction mapping is injective.)

From a combination of the integral representation Theorem 3.12 and
Theorem 4.1 we obtain the following result.

Theorem 4.4. Let ∅ 6= O ⊆ O′ be open subsets of the complex plane.
Let X be a Banach space of finite cotype and let Φ : H∞(O)→ L(X) be
a bounded standard functional calculus. Let H be an infinite-dimension-
al Hilbert space and suppose that there exists a Franks-McIntosh re-
presentation (f, g, a) for the pair (O,O′) on H ′. Then the associated
vectorial H∞(O′, H ′)-calculus ist bounded. More precisely, one has

‖Φγ(ϕ)x‖γ(H;X) ≤ C ‖Φ‖2 ‖ϕ‖H∞(O′;H′) ‖x‖X
for all x ∈ X and ϕ ∈ H∞(O′, H ′), where

C = c ‖a‖ ‖f‖H∞(O′;`1) ‖g‖H∞(O′,`1)

and c depends only on the cotype and the cotype constant of X.

Proof. Take Ω := N with the counting measure, so that K := L2(Ω) =
`2 and regard f and g as mappings O → K = K ′. By Theorem 4.1 b)
and c) the dual square function Φγ′(f) and the square function Φγ(g)
are both bounded. (Recall that X has finite cotype.)

The Franks-McIntosh representation

ϕ(z) =
∞∑
n=1

an(ϕ)fn(z)gn(z)
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on O is an instance of (3.6), with m = (an(ϕ))n. Applying Theorem
3.12 yields the claim. �

The Franks-McIntosh representations carry their name after the pa-
per [?], where Franks and McIntosh constructed such representations
for the case (O,O′) = (Sα, Sω), where 0 < α < ω < π. See ?? below.

5. Square Function Estimates and γ-Boundedness

In this chapter we examine the relationship between the boundedness
of certain square functions and the γ-boundedness of certain sets of
operators. Basically, two questions are interesting:

1) What can γ-boundedness do for the boundedness of square func-
tions?

2) What can the boundedness of square functions do for obtaining
γ-bounded sets of operators?

We shall address these two questions in this order. As with the theory
of γ-radonifying operators, we refer to Appendix B.7 and the literature
listed there for the definition and basic properties of γ-bounded sets of
operators.

5.1. The Multiplier Theorem.
The Multiplier Theorem is one (and in fact up to now the only one)
answer to the first question from above. We work, again, with a func-
tional calculus (H∞(O),Φ) over an open set O ⊆ C (or Cd). Suppose
that

M : O → L(H ′;K ′)

is an operator-valued function on O. For an H ′-valued function f :
O → H ′ one can then form the K ′-valued function

Mf : O → K ′, (Mf)(z) = M(z)f(z)

and ask about a relation of Φγ(f) and Φγ(Mf). If M(z) ≡ T is con-
stant, this is just subordination as treated in Section 3.2. It becomes
interesting when M is not constant.

Of course, one first has to deal with the question whether Φγ(Mf)
is meaningful. It is reasonable here to require at least

Condition 1: For all k ∈ K and h′ ∈ H ′ the function

Mk,h′ : O → C, Mk,h′(z) := 〈k,M(z)h′〉

is a member of H∞.
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By some standard results on vector-valued holomorphic functions, Con-
dition 1 is actually equivalent to the (formally stronger) statement that

M ∈ H∞(O;L(H ′, K ′)).

In particular, the pointwise product Mf satisfies Mf ∈ H∞(O;K ′).

Whereas Condition 1 is more or less natural, the next requirement
imposes a serious restriction on the function M :

Condition 2: One has H = K and the M(z) are pairwise commuting
and normal operators on H ′.

Note that Condition 2 implies by the Fuglede–Putnam-Rosenblum the-
orem [?, 12.16] that the range of M generates a commutative C∗-
subalgebra of L(H ′). Hence, by the spectral theorem, Condition 2
is (up to a fixed subordinating unitary operator) equivalent to saying
that H = H ′ = L2(Ω) for some measure space Ω and {M(z) | z ∈ O}
is a family of bounded scalar multiplication operators thereon.

Condition 1 allows to consider, for each pair (h, h′) ∈ H ⊕ H ′ the
operator

Φ(Mh,h′)

on X. In our third condition we shall require the following strong form
of uniform boundedness:

Condition 3: Each operator Φ(Mh,h′) is bounded and the set of op-
erators

{Φ(Mh,h′) | ‖h‖ , ‖h′‖ ≤ 1} ⊆ L(X)

is γ-bounded.

Before we state and prove the main theorem, let us look more closely
at this third requirement.

Remark 5.1. Suppose that H = H ′ = L2(Ω) for some measure space
(Ω, dt) and that M(z) is given by multiplication with the function
m(z) ∈ L∞(Ω). Let us define for ψ ∈ L1(Ω)

mψ(z) :=

∫
Ω

m(z)ψ (z ∈ O).

Then

Mh,h′(z) =

∫
Ω

m(z)hh′ = mhh′(z),

and since

{hh′ | ‖h‖2 , ‖h
′‖2 ≤ 1} = {ψ | ‖ψ‖1 ≤ 1},
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Condition 3 simply says that the set

{Φ(mψ) | ‖ψ‖1 ≤ 1}
is γ-bounded. This can be established, for instance, under the following

Ist das γ[1]-
boundedness in
Krieglerspeak?

hypotheses:

1) The function m can be regarded as a function of two variables
(t, z) ∈ Ω×O and, in some (if very weak) sense, one can write

Φ(mψ) =

∫
Ω

Φ(m(t, ·))ψ(t) dt.

2) The set

{Φ(m(t, ·)) | t ∈ Ω}
is γ-bounded.

See [?]
Reference to ex-
amples!We now come to the main result.

Theorem 5.2 (Multiplier theorem). Let (H∞(O),Φ) be a functional
calculus over an open set O ⊆ Cd. Let H be a Hilbert space and
(M(z))z∈O a family of operators in L(H ′) satisfying Conditions 1–3
from above.

Let, furthermore, f ∈ H∞(O;H ′) and x ∈ dom(Φγ(f)). If the point
x is bp-good, then x ∈ dom(Φγ∞(Mf)) and

‖Φγ(Mf)x‖γ ≤ C ‖Φγ(f)x‖γ ,

where C = J Φ(Mh,h′) | ‖h‖ , ‖h′‖ ≤ 1 Kγ is the γ-bound of the set con-
sidered in Condition 3.

Proof. First step. We consider the case that f has values in a finite-
dimensional subspace of H ′ that has an orthonormal basis consisting of
eigenvectors of each M(z). That is to say, there is a finite orthonormal
system (ej)

n
j=1 in H such that f(z) =

∑n
j=1 fj(z)ej and M(z)ej =

λj(z)ej for all j and all z ∈ O. Since f ∈ H∞(O;H ′) and by Condition
1 it follows that all the scalar-valued functions fj and λj are contained
in H∞. Then (Mf)(z) =

∑n
j=1 λj(z)fj(z)ej ∈ H∞(O;H ′). For h ∈ H:

h◦(Mf) =
n∑
j=1

[h, ej ]λjfj.

If x ∈ dom(Φγ(f)) then, in particular x ∈ dom(Φ(fj)) for each j. Since,
by Condition 3, each operator Φ(λj) is bounded, x ∈ dom(Φ(λjfj)) and

Φ(λjfj)x = Φ(λj)Φ(fj)x.
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Hence, x ∈ dom
(
Φ(h◦(Mf))

)
with

[Φ(Mf)x]h =
n∑
j=1

[h, ej ] Φ(λj)Φ(fj)x.

Now let (hk)
m
k=1 be any orthonormal system in H and γ1, γ2 . . . a se-

quence of independent standard Gaussians on some probability space.
Then

E
∥∥∥ m∑
k=1

γk[Φ(Mf)x]hk

∥∥∥2

X
= E

∥∥∥ m∑
k=1

n∑
j=1

γk 〈hk, ej〉Φ(λj)Φ(fj)x
∥∥∥2

X

≤ E
∥∥∥ n∑
j=1

γjΦ(λj)Φ(fj)x
∥∥∥2

X
≤ C2 E

∥∥∥ n∑
j=1

γjΦ(fj)x
∥∥∥2

X

= C2 E
∥∥∥ n∑
j=1

γj[Φ(f)x]ej

∥∥∥2

X
≤ C2 ‖Φγ(f)x‖2

γ .

Here, the first inequality is due to the contraction principle (Theorem
B.1) and the second one to Condition 3, which implies that the γ-bound
of the set {Φ(λj) | j = 1, . . . , n} is less than C. It follows that

‖Φγ(Mf)x‖γ ≤ C ‖Φγ(f)x‖γ
as desired.

Second step. We employ the spectral theorem and may suppose that
H = H ′ = L2(Ω, µ), where Ω is a locally compact Hausdorff space
endowed with a Radon measure µ and M(z) is multiplication with a
function m(z) = m(z, t) which is bounded and continuous on Ω.

This representation of M and H allows to construct conditional
expectation operators as follows. A partition of Ω is a finite family
α = (A1, . . . , An) of µ-essentially disjoint measurable subsets of Ω with
0 < µ(Aj) for each j = 1, . . . , n. The set of all partitions is denoted by
A. It is directed in a natural way by

α = (A1, . . . , An) ≺ β = (B1, . . . , Bm)

whenever for each k there is j such that Bk ⊆ Aj (µ-essentially). To
each partition α we form the associated conditional expectation oper-
ator

Pαϕ :=
∑
j

′( 1

µ(Aj)

∫
Aj

ϕ
)

1Aj ,

where the primed sum
∑′ indicates that the sum ranges only over

indices j with 0 < µ(Aj) < ∞. This definition applies, of course, to
each function ϕ on Ω such that ϕ1Aj is integrable whenever µ(Aj) <∞.
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It is a simple exercise to show that

PβPα =

{
Pβ if β ≺ α and

Pα if α ≺ β.

Moreover, if Pαϕ and Pαψ are defined, then so is Pα(ϕPαψ) and one
has

Pα(ϕPαψ) = (Pαϕ) (Pαψ).

The operators Pα are positive orthogonal projections on L2(Ω), and
P ′α = Pα under the natural identification of L2(Ω) with its dual. More-
over, Pα → I strongly on L2(Ω) as α→∞ with respect to ≺.

Third step. Recall that f ∈ H∞(O; L2(Ω)). We write fα to denote
the L2-valued function

fα(z) = (Pα ◦ f)(z) = Pα(f(z))

(and likewise for m and mα(z)). Now fix x ∈ dom(Φγ(f)). Then, by
subordination, x ∈ dom(Φγ(fα)) and

‖Φγ(fα)x‖γ ≤ ‖Φγ(f)x‖γ .
Moreover, the range of fα lies in the finite-dimensional subspace

Hα = span{1Aj | 0 < µ(Aj) <∞}
that has an orthonormal basis, namely the functions

ej :=
1√
µ(Aj)

1Aj

of eigenvectors of the multiplication operators associated with the func-
tions mα = Pα ◦m.

In order to apply the first step, we need to assure that Condition 3
is satisfied for mα. If ϕ ∈ L1(Ω) with ‖ϕ‖1 ≤ 1 then for each z ∈ O∫

Ω

Pα(m(z))ϕ =

∫
Ω

m(z) (Pαϕ)

and by Condition 3, the Φ-images of these functions of z are γ-bounded
with bound C. So we indeed can apply the first step and obtain that
x ∈ dom(Φγ(mαfα)) with

(5.1) ‖Φ(mαfα)x‖γ ≤ C ‖Φγ(fα)x‖γ ≤ C ‖Φγ(f)x‖γ .
Fourth step. We now let α→∞ for the direction of the set of finite
partitions of Ω. Actually, we shall show that for x satisfying the hy-
pothesis of the theorem, the operator Φ(mf)x lies in the strong closure
of the operator family {Φ(mαfα)x | α}. To this aim, note that f and
mf both have separable range. Fix any separable subspace K of H
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that contains the ranges of f and mf . Then, by Lemma A.1, there is
a sequence (αn)n such that Pαnk → k for all k ∈ K. It follows that for
each k ∈ K one has

k◦(mαnfαn) = k◦(mfαn)αn = (Pαnk)◦(mfαn)→ k◦(mf)

pointwise and boundedly on O. Since x is supposed to be bp-good, it
follows that

Φ(mαnfαn)x→ Φ(mf)x

strongly on K. This establishes the claim that Φ(mf)x is in the strong
operator closure of the operators Φ(mαfα)x.

Fifth step. Now we can apply the γ-Fatou Lemma B.5 to conclude
that Φ(mf)x ∈ γ∞(H;X) and

‖Φγ∞(mf)x‖γ ≤ sup
α
‖Φ(mαfα)x‖γ ≤ C ‖Φγ(f)‖γ

as claimed. �

Corollary 5.3. Let (H∞(O),Φ) be a functional calculus on a Banach
space X over an open set O ⊆ Cd such that the set of bp-good points
is dense in X. Let H be a Hilbert space and (M(z))z∈O a family of
operators in L(H ′) satisfying Conditions 1–3 from above.

Let, furthermore, f ∈ H∞(O;H ′) such that Φγ(f) is bounded. Then
Φγ(Mf) is bounded and

‖Φγ(Mf)‖ ≤ C ‖Φγ(f)‖ ,

where C = J Φ(Mh,h′) | ‖h‖ , ‖h′‖ ≤ 1 Kγ is the γ-bound of the set con-
sidered in Condition 3.

5.2. How to Obtain γ-Bounded Subsets.
In this section we look at the second question from above: What can
the boundedness of square functions do for obtaining γ-bounded sets of
operators? A first answer to this question rests on the following result,
which is a slight generalization of a result of Haak and Kunstmann
from [?, Theorem 3.18].

Theorem 5.4 (Haak and Kunstmann). Let X be a Banach space with
property (α) and let H, K be Hilbert spaces. For each R ∈ L(H;K)
consider the operator “subordination by R”

SR : γ(K;X)→ γ(H;X), SR(T ) := TR

Then the set

{SR | R ∈ L(H;K), ‖R‖ ≤ 1} ⊆ L
(
γ(K;X); γ(H;X)

)
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is γ-bounded by C−C+, the condition number of the isomorphism

γ(`2 ⊗ `2;X) ∼= γ(`2; γ(`2;X)),

Proof. Let (Rj)
J
j=1 be a finite sequence of bounded operators H → K,

with ‖Rj‖ ≤ 1 for all j and let Tj ∈ γ(K;X) for each j. Further-
more, let (en)Nn=1 be an orthonormal system in H and let (fl)

L
l=1 be an

orthonormal basis for the space

span{Rjen | 1 ≤ j ≤ J, 1 ≤ n ≤ N} ⊆ K.

Then

EE′
∥∥∥∑

n

γ′n

(∑
j

γjTjRj

)
en

∥∥∥2

X
= EE′

∥∥∥∑
j,n

γjγ
′
nTjRjen

∥∥∥2

=
∥∥∥∑
j,n

ej ⊗ e′n ⊗
(
TjRjen

)∥∥∥2

γ(`J2 ;γ(`N2 ;X))

≤ (C−)2
∥∥∥∑
j,n

ej ⊗ e′n ⊗
(
TjRjen

)∥∥∥2

γ(`J2⊗`N2 ;X)

= (C−)2 E
∥∥∥∑

(j,n)

γj,n
∑
l

[Rjen, fl ]K Tjfl

∥∥∥2

X
=: Λ2.

Here, C− is just the norm of the identification map

γ(`2 ⊗ `2;X)→ γ(`2; γ(`2;X)),

We now use a little trick in writing∑
l

[Rjen, fl ]K Tjfl =
∑
(l,m)

[Rjen, fl ]K δjm Tmfl,

where m also ranges over 1, . . . , J . Now we can apply the contraction
principle for Gaussian sums (Theorem B.1) and obtain

Λ2 ≤ C ‖A‖2 E
∥∥∥∑

(l,m)

γl,mTmfl

∥∥∥2

X
,

where A is the operator

A : `L2 ⊗ `J2 → `N2 ⊗ `J2
given by the matrix

A ∼
(
[Rjen, fl ]K δjm

)
(l,m),(n,j)

.
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To estimate this norm let u = (u(l,m))(l,m) and v = (v(n,j))(n,j) be unit
vectors in `L2 ⊗ `J2 and `N2 ⊗ `J2 , respectively. Then

|[Au, v ]|2 =
∣∣∣ ∑
(n,j),(l,m)

[Rjen, fl ]K δjmu(l,m)v(j,n)

∣∣∣2
=
∣∣∣∑
n,j,l

[Rjen, fl ]K u(l,j)v(j,n)

∣∣∣2
=
∣∣∣∑
j

[
Rj

∑
n

v(n,j)en,
∑
l

u(l,j)fl

]
K

∣∣∣2
≤
(∑

j

√∑
n

∣∣v(n,j)

∣∣2√∑
l

∣∣u(l,j)

∣∣2)2

≤ ‖v‖2 ‖u‖2 ≤ 1.

Hence ‖A‖ ≤ 1. We therefore can continue with

Λ2 ≤ (C−)2 E
∥∥∥∑

(l,m)

γl,mTmfl

∥∥∥2

X

≤ (C−)2 (C+)2 EE′
∥∥∥∑

l

∑
m

γlγ
′
mTmfl

∥∥∥2

X

= (C−C+)2 E′E
∥∥∥∑

l

γl

(∑
m

γ′mTm

)
fl

∥∥∥2

X

≤ (C−C+)2 E′
∥∥∑

m

γ′mTm

∥∥∥2

γ(K;X)
.

Here, C+ is the norm of the identification mapping

γ(`2; γ(`2;X))→ γ(`2 ⊗ `2;X),

hence C+C− is the condition number of this map.
Now let F := span{en | n = 1, . . . , N} and PF :=

∑
n en ⊗ en the

orthogonal projection onto F . Then

EE′
∥∥∥∑

n

γ′n

(∑
j

γjTjRj

)
en

∥∥∥2

X
= E

∥∥∥∑
j

γjTjRjPF

∥∥∥2

γ(H,X)
.

If we let F ↗ H with respect to the natural direction, then TjRjPF →
TjRj in the norm of γ(H;X), by Theorem B.8. Therefore∑

j

γjTjRjPF −−→
∑
j

γjTjRj

as γ(H;X)-valued functions uniformly on each set[
max
j
|γj| ≤ c

]
, c > 0.
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Since one has the square-integrable majorant∑
j

|γj| ‖TjRj‖γ(H;X) ,

the net-version of the dominated convergence theorem (Lemma A.2)
yields convergence in L2 as F → H, and we obtain

E
∥∥∥∑

j

γjTjRj

∥∥2

γ(H;X)
≤ C C ′ E′

∥∥∑
m

γ′mTm

∥∥∥2

γ(K;X)
.

And this is what we intended to prove. �

Remark 5.5. If Theorem 5.4 both Hilbert spaces H and K are infinite
dimensional, then the hypothesis that X has property (α) is necessary.

Proof. Suppose that the set {SR | R ∈ L(H;K), ‖R‖ ≤ 1} is γ-
bounded with bound C ≥ 0. Then, let N, J ≥ 1 be entire numbers
and for 1 ≤ n ≤ N and 1 ≤ j ≤ K let xn,j ∈ X and αn,j ∈ C with
|αn,j| ≤ 1 be given.

Choose any orthogonal systems (en)n≤N and (fj)j≤J in H and K,
respectively, and define the operators

Tn :=
J∑
j=1

fj ⊗ xn,j ∈ γ(K;X) and

Rn :=
J∑
j=1

ej ⊗ αn,jfj ∈ L(H;K).

A simple computation using the fact that |αn,j| ≤ 1 yields ‖Rn‖ ≤ 1
for each n ∈ N.

By hypothesis, the set {SRn | 1 ≤ n ≤ N} is γ-bounded with bound
C. In particular, one has the estimate

E
∥∥∥ N∑
n=1

γnTnRn

∥∥∥
γ(H;X)

≤ C E
∥∥∥ N∑
n=1

γnTn

∥∥∥
γ(K;X)

.

Since

TnRn =
J∑
j=1

ej ⊗ (αn,jxn,j),

writing out both γ-norms yields

EE′
∥∥∥ N∑
n=1

J∑
j=1

αn,jγ
′
jγnxn,j

∥∥∥2

X
≤ C2 EE′

∥∥∥ N∑
n=1

J∑
j=1

γnγ
′
jxn,j

∥∥∥2

X
.
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This shows that X has Pisier’s contraction property (in its Gaussian
form) which is equivalent to property (α), see Appendix B.6. �

Theorem 5.4 has the following interesting consequence. Recall the
situation of Theorem 3.12 about integral representations in its “scalar
form”: So one is given a standard functional calculus (H∞(O); Φ) a
Hilbert space K of the form K = L2(Ω, µ) for some measure space
(Ω, µ), and functions f, g ∈ H∞(O;K) such that Φγ′(f) and Φγ(g) are
bounded. For each m ∈ L∞(Ω, µ) the function um ∈ H∞(O) is given
by

um(z) :=

∫
Ω

m · f(z)g(z) dµ (z ∈ O).

In Corollary 3.13 it was proved that Φ(um) ∈ L(X) with ‖Φ(um)‖ .
‖m‖∞. If X has property (α) we can assert more.

Theorem 5.6. Suppose that X has property (α). Then, under the
hypotheses of Corollary 3.13 (scalar case, i.e., with H = C) the set

{Φ(um) | m ∈ L∞(Ω, µ), ‖m‖∞ ≤ 1}
is γ-bounded, with bound

J Φ(um) | ‖m‖∞ ≤ 1 Kγ ≤ C ‖Φγ(g)‖γ ‖Φγ′(f)‖γ′ ,

where C is as in Theorem 5.4.

Proof. Recall from the proof of 3.12 the factorisation

Φ(um)x = Φγ′(f)′(Φγ(x) ◦Mm)

where Mm is the multiplication operator on K = L2(Ω, µ) with the
function m ∈ L∞(Ω, µ). In other words,

Φ(um) = Φγ′(f)′ ◦ SMm ◦ Φγ(g).

Since X has property (α), Theorem 3.12 yields that the set of operators

{SMm | ‖m‖∞ ≤ 1}
is γ-bounded with bound C. Hence, also the set {Φ(um) | ‖m‖∞ ≤ 1}
is γ-bounded with bound

J Φ(um) | ‖m‖∞ ≤ 1 Kγ ≤ C ‖Φγ′(f)‖ ‖Φγ(g)‖ ,
as claimed. �

Theorem 5.6 is the abstract version of many concrete results that
assert “γ-bounded H∞-calculus” on spaces with property (α). For sec-
torial operators, such a result was first obtained by Kalton and Weis in
[?, Theorem 5.3], see also ?? below. In ?? we treat a different example.
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Remark 5.7. It must remain open at this point whether the vecto-
rial form of the integral representation theorem allows for a similar
conclusion regarding γ-boundedness.

5.3. The Multiplier Theorem (II).
The multiplier theorem (Corollary ??) states up to some technical sub-
telties that if a multiplier M satisfies a certain γ-boundedness condition
and if f yields a bounded square function, then Mf yields a bounded
square function as well.

Now suppose that we vary f within a set of bounded square functions
and M within a set of multipliers? Under which conditions can we
guarantee that the emerging set of square functions Mf is γ-bounded?
The following theorem gives an answer:

Theorem 5.8 (Multiplier Theorem, γ-version). Let the following hy-
potheses be satisfied:

1) X is a Banach space with property (α) and H is a Hilbert space.

2) (H∞(O),Φ) is a functional calculus on X over an open set O ⊆ Cd

such that the set of bp-good points is dense in X.

3) F ⊆ H∞(O;H ′) is a set of vector-valued functions such that the
corresponding set of square functions

Φγ(F) := {Φγ(f) | f ∈ F} ⊆ L(X; γ(H;X))

is γ-bounded.

4) M ⊆ H∞(O;L(H)) is a set of multipliers satisfying the following
conditions:

4.1) The operators {M(z) | z ∈ O, M ∈ M} are normal and
pairwise commuting.

4.2) The set of operators

{Φ(Mh,h′) | ‖h‖ , ‖h′‖ ≤ 1, M ∈M}

is γ-bounded.

Then the set

Φγ(MF) := {Φγ(Mf) | M ∈M, f ∈ F} ⊆ L(X; γ(H;X))

is γ-bounded, with

J Φγ(MF) Kγ ≤ C JM Kγ JF Kγ ,

where

JM Kγ := JMh,h′ | ‖h‖ , ‖h′‖ ≤ 1, M ∈M Kγ .
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Note that a space with property (α) has finite cotype and hence does
not contain a copy of c0. In particular, γ∞(H;X) = γ(H;X).

Proof. �

5.4. Averaged γ-Boundedness and Related Concepts.
Let X, Y, Z be Banach spaces. A linear operator T : X → L(Y ;Z) is
called γ-strict, if the set

{Tx | ‖x‖ ≤ 1} ⊆ L(Y ;Z)

is γ-bounded. The corresponding γ-bound

‖|T‖| γ := JTx | ‖x‖ ≤ 1 Kγ

is called the γ-strict norm of T . It is a simple exercise to verify that
the set

Γ(X;L(Y ;Z)) := {T : X → L(Y ;Z) | T is γ-strict}

of γ-strict operators is a linear subspace of L(X;L(Y ;Z) and the map-
ping ‖| ·‖| γ is a complete norm on it. Moreover, if S1 : X1 → X,
S2 : Y1 → Y and S3 : Z → Z1 are bounded linear mappings and
T : X → L(X;L(Y ;Z)) is γ-strict, then so is the mapping

S3(TS1)S2 : X1 → L(Y1;Z1), x1 → S3(TS1x)S2

and one has

‖|S3(TS1)S2‖| γ ≤ ‖S1‖ ‖S2‖ ‖S3‖ ‖|T‖| γ.

Using our new terminology, we can rephrase the Haak–Kunstmann
Theorem 5.4 as follows: If X has property (α) then for any pair of
Hilbert spaces H,K the mapping

L(H;K)→ L(γ(K;X); γ(H;X)), R 7→ SR

is γ-strict.

Now, examining the proof of this theorem, we observe that if either
H or K is one-dimensional, one does not need the full power of property
(α) to obtain the result.

For example, let us suppose first that dimH = 1, i.e., H = C. The
operators R : C → K simply correspond to elements k ∈ K, and
subordination with such an operator is nothing else than evaluation at
k. We hence arrive at the following result, where for convenience we
use the letter H instead of K for the generic Hilbert space. Recall that
C+ is our generic notation for the “property (α+)-constant” of a space,
cf. Appendix B.6.
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Theorem 5.9. Let H be Hilbert space and let X be Banach space with
property (α+). For each h ∈ H let

δh : γ(H;X)→ X, δh(T ) := T (h)

be the evaluation mapping at h. Then the set

{δh | ‖h‖ ≤ 1} ⊆ L(γ(H;X);X)

is γ-bounded by C+. In other words: the operator

∆ : H → L(γ(H;X);X), h 7→ δh

is γ-strict and ‖|∆‖| γ ≤ C+.

Proof. As said above, the proof is the same as for Theorem 5.4 with
the further assumption that H = C there. With the notation of that
proof, since N = 1, property (α−) is not needed there.

For convenience, here is also a direct proof. Let T1, . . . , Tn ∈ X and
h1, . . . , hn ∈ H with ‖hk‖ ≤ 1 for all k. We have to prove

E
∥∥∑

k

γkTkhk
∥∥2

X
≤ (C+)2E

∥∥∑
j

γjTj
∥∥2

γ(H;X)

By the Kahane contraction principle, we may suppose without loss of
generality that ‖hk‖ = 1 for all k. Now let us take K = `2 with
canonical basis (ek)k. By property (α+) one has a bounded operator

γ(K; γ(H;X))→ γ(K ⊗H;X)

with norm ≤ C+ (see Lemma B.25).
Note that the vectors (ek ⊗ hk)1≤k≤n form an orthonormal sequence

in K ⊗H. Hence, we obtain

E
∥∥∥∑

k

γkTkhk

∥∥∥2

X
= E

∥∥∥∑
k

γk
[(∑

j

ej ⊗ Tj
)]

(ek ⊗ hk)
∥∥∥2

X

≤
∥∥∥(∑

j

ej ⊗ Tj
)∥∥∥2

γ(K⊗H;X))
≤ (C+)2

∥∥∑
j

ej ⊗ Tj
∥∥2

γ(K;γ(H;X))

= (C+)2 E
∥∥∑

j

γjTj
∥∥2

γ(H;X)
,

as desired. �

As a corollary we obtain a result that has been first obtained by Le
Merdy in [?] for Lp-spaces and later proved in the present generality
by Van Neerven and Weis in [?, Theorem 5.4].



50 BERNHARD H. HAAK AND MARKUS HAASE

Corollary 5.10. Let X, Y be Banach spaces and T : X → γ(H;Y )
a bounded linear operator (i.e., a bounded square function). If Y has
property (α+), then the set of operators{

[T ·]h | h ∈ H, ‖h‖ ≤ 1
}
⊆ L(X;Y )

is γ-bounded with γ-bound ≤ C+ ‖T‖.

Proof. Since [T ·]h = δh ◦ T , the assertion follows from Theorem 5.9.
�

Remark 5.11. The concept of γ-strict operators is motivated by the
notion of “E-averaged R-boundedness” coined by Kriegler and Weis
in [?, Definition 5.1]. For the special case E = L2(Ω) this amounts
to the following: If N = N(t) is a weakly square-integrable operator-
valued function defined on a measure space Ω then N is L2-averaged
R-bounded, in short: R[L2]-bounded, if the operators

x 7→
∫

Ω

h(t)N(t)x dt, ‖h‖L2
≤ 1

form an R-bounded set. In Example 5.3 c) of their paper, Kroegler and
Weis mention that if N defines a bounded square function on a space
with property (α), then N is R[L2]-bounded. Indeed, this is true by
an application of Corollary 5.10 (even under the weaker assumption of
property (α+).

Let us briefly comment on the other simplification of Theorem 5.4, the
case that K = C. Identifying as before γ(C;X) ∼= X, a short analysis
yields that we are considering the family of operators

Th : X → γ(H;X), Th(x) := h⊗ x

for h ∈ H. Similarly as before, the proof of Theorem 5.4 will work
for this special case if X has property (α−). However, the result holds
under even weaker conditions.

Theorem 5.12. Let X be a space of finite cotype q and let H be any
Hilbert space. Then the set of operators

{Th | h ∈ H, ‖h‖ ≤ 1} ⊆ L(X; γ(H;X))

is γ-bounded by C = C(q, cq(X)).

(The constant C = C(q, cq(X)) is the same as in Theorem B.21.)
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Proof. Let h1 . . . , hN ∈ H and x1, . . . , xn ∈ X. Let e1, . . . , eJ be an
orthonormal basis for the space span{h1, . . . , hN}. Then

E
∥∥∥∑

n

γn (hn ⊗ xn)
∥∥∥2

γ
= EE′‖

∑
n,j

γnγ
′
j [ej, hn ]xn

∥∥∥2

X

The Kaiser–Weis Lemma (Corollary B.22) yields a constant C ≥ 0 such
that the latter random sum can be estimated by

· · · ≤ C2 sup
n
‖([ej, hn ])j‖2

`J2
E‖
∑
n

γnxn

∥∥∥2

X

and the claim follows since

‖([ej, hn ])j‖2
`J2

=
∑
j

|[ej, hn ]|2 = ‖hn‖2
H

for each n ∈ {1, . . . , N}. �

Remark 5.13. It is easily seen that Theorem 5.12 is actually equiva-
lent to the Kaiser–Weis Lemma employed in its proof.

A closer examination of Theorem 5.9 reveals that its statement is
equivalent to the following inequality which bears a faint resemblance
to the Kaiser–Weis Lemma:

E
∥∥∥∑

n

γn
∑
j

αn,jxn,j

∥∥∥2

X
≤ C2 sup

n
‖(αn,j)j‖2

`2
EE′
∥∥∥∑
n,j

γnγ
′
jxn,j

∥∥∥2

X
.

We know that this holds if X has property (α+), but it is reasonable to
conjecture that it holds under weaker conditions. The question must
remain open for now.

6. Alternative Types of Functional Calculi

The square functions considered so far were defined in terms of an
(possibly unbounded) H∞-functional calculus. This has basically two
reasons: (1) many readers are well acquainted with this type of func-
tional calculus and (2) this is the case for which we, the authors, know
the applications. It seemed unreasonable to strive for greater gener-
ality unless one has some serious applications in mind. On the other
hand, applications might well appear as soon as one understands what
is needed for generalizing the concepts and results from the previous
chapters.

Therefore, in this chapter we shall review the basic concepts and
sketch how to develop a theory which leaves the framework of H∞-
calculus towards other functional calculi.

. . .
To be completed
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Part II. Applications

7. Sectorial, Strip type and Ritt Operators

In this chapter we review the standard examples of functional cal-
culi for sectorial, strip type and Ritt operators and associated square
functions. We start with the strip case and postpone the discussion of
sectorial and Ritt operators to ?? and ?? below.

Although the construction of the functional calculi for sectorial and
strip type operators can be found at several places in the literature,
the usual accounts suffer from an unnatural asymmetry in view of the
exp / log-correspondence of sectors and strips, cf. Remark 7.11 below.
Therefore, we give a slightly modified account that avoids that short-
coming and in fact appears to be the most natural and the most general
at the same time.

7.1. Function Theory on Strips.
When we speak of a strip in the following we mean a horizontal strip
in the complex plane, symmetric about the real axis. Formally,

Stω := {z ∈ C | |Im z| < ω}
for ω > 0 and (the degenerate strip) St0 := R.

The algebra of elementary functions on Stω, ω > 0, is

E(Stω) :=
{
f ∈ H∞(Stω) |

∫ ∞
−∞
|f(r + iα)| dr <∞ for all |α| < ω

}
.

It is common in the literature to use explicit growth conditions to define
elementary functions. However, it will appear from our discussion that
this is not necessary. See also Remark 7.11 below.

It is clear that f ∈ E(Stω) if and only if f(· + r) ∈ E(Stω) for
some/each r ∈ R. Moreover, by Cauchy’s theorem, the following for-
mulae hold for any elementary function f ∈ E(Stω):

f(z) =
1

2πi

∫
∂Stω′

f(ζ)

ζ−z
dζ(7.1)

=
1

2πi

∫
∂Stω′

f(ζ)
e−(ζ−z)2

ζ−z
dζ (z ∈ Stω′ , 0 < ω′ < ω).(7.2)

Note that for z ∈ C and ζ ∈ Stω,∣∣e−(ζ−z)2∣∣ = e−Re(ζ−z)2 = e−(Re ζ−Re z)2 · e(Im ζ−Im z)2

≤ e−(Re ζ−Re z)2e(ω+|Im z|)2 .



SQUARE FUNCTION ESTIMATES AND FUNCTIONAL CALCULI 53

Consequently, for fixed z ∈ C the function ζ 7→ e−(ζ−z)2 is an elemen-
tary function on Stω. It follows that the representation formula (7.2)
actually holds for all f ∈ H∞(Stω).

Lemma 7.1. Let 0 < α < ω and f ∈ E(Stω). Then the following
assertions hold:

a) sup
|s|≤α

∫ ∞
−∞
|f(r + is)| dr <∞.

b) f ∈ E(Stα) ∩ C0(Stα).

c)

∫
∂Stα

f(z) dz = 0.

d) f ′ ∈ E(Stα).

Proof. For the proof of a) fix α < ω′ < ω. Then for 0 ≤ s ≤ α,∫
∂Sts

|f(z)| |dz| ≤ 1

2π

∫
∂Sts

∫
∂Stω′

∣∣f(ζ)
e−(ζ−z)2

ζ − z
∣∣ |dζ| |dz|

=
1

2π

∫
∂Stω′

|f(ζ)|
∫
∂Sts

∣∣e−(ζ−z)2

ζ − z
∣∣ |dz| |dζ|

≤ 1

2π
‖f‖L1(∂Stω′ )

∫
∂Sts

e−(Re z)2e(ω′+α)2

ω′ − α
|dz|

=
e(ω′+α)2

√
π(ω′ − α)

‖f‖L1(∂Stω′ )
.

b) To see that |f(z)| → 0 as |Re z| → ∞, |Im z| ≤ α one uses the
representation formula (7.1) or (7.2) and the dominated convergence
theorem.

c) By Cauchy’s formula one has 0 =
∫
Rn
f(z) dz where Rn is the rec-

tangle with corners at ±n± iα, n ∈ N. When letting n→∞ the upper
and the lower side of the rectangle approach ∂Stω and the integrals
over the left and right side vanish since f ∈ C0(Stω′) by b).

d) Let α < ω′ < ω. Then by Cauchy’s integral formula,

f ′(z) =
1

2πi

∫
∂Stω′

f(ζ) dζ

(ζ − z)2
(|Im z| < ω′).

In particular,∫
|Im z|=α

|f(z)| |dz| ≤
( ∫
∂Stω′

|f(ζ)| |dζ|
2π

)(
max
ζ=±iω′

∫
|Im z|=α

|dz|
|ζ − z|2

)
<∞.

�
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After having introduced the relevant function class, we now turn to
operators.

7.2. Operators of Strip Type and their Functional Calculus.
A closed operator A on a Banach space X is called of strip type
α ≥ 0, if σ(A) ⊆ Stα and for all β > α the resolvent R(·, A) is uniformly
bounded on C\Stβ. If for each β > α we have an estimate ‖R(λ,A)‖ .
(|Imλ| − β)−1 on C \ Stβ, A is called of strong strip type α.

For an operator A of strip type α ≥ 0, ω > α and an elementary
function f ∈ E(Stω) there is a natural definition of the operator f(A) ∈
L(X) by

(7.3) f(A) :=
1

2πi

∫
∂Stω′

f(z)R(z, A) dz,

which is independent of ω′ ∈ (α, ω) by Cauchy’s theorem. The mapping
E(Stω) → L(X) given by f 7→ f(A) is called the elementary calculus
for A. It is rather routine to show by virtue of the resolvent identity,
the residue theorem and contour deformation arguments that this is a
homomorphism of algebras with( f(z)

λ− z

)
(A) = f(A)R(λ,A) and( 1

(λ− z)(µ− z)

)
(A) = R(λ,A)R(µ,A)

for all λ, µ ∈ C \ Stω, cf. [?, Chapter 2] or [?].
The elementary functional calculus from above can be extended to

a functional calculus

Φ : H∞(Stω)→ {closed unbounded operators on E}
by virtue of the definition

Φ(f) := Φ(e)−1Φ(ef)

where f ∈ H∞(Stω) and e ∈ E(Stω) is such that e(A) is injective. (One
can take e(z) = (λ−z)−2 for any λ ∈ C with |Imλ| > ω.) The following
lemma summarizes the most important properties.

Lemma 7.2. Let A be a strip type operator of type α ≥ 0 on a Banach
space E, let ω > 0. Then the associated functional calculus (Φ,H∞(Stω)
has the following properties:

a) Each elementary function is a bp-good universal regulariser. In
other words: E(Stω) ⊆ CΦ.

b) The functional calculus (Φ,H∞(Stω) is standard.
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c) If A is densely defined, the set of bp-good points is dense in E and
the convergence lemma holds.

Proof. a) If e ∈ E(Stω) and f ∈ H∞(Stω), then ef ∈ E(Stω) again.
Hence, each elementary function is a universal regulariser. Moreover,
if (fn)n is a sequence in H∞(Stω) bp-converging to f , then efn → ef
converges pointwise and dominated (by a constant times |e|) on each
vertical line, so Φ(efn) = (efn)(A) → (ef)(A) = Φ(ef) in operator
norm.

b) Clearly E(Stω) is universally determining. In fact: whenever
e ∈ E(Stω) is such that e(A) is in injective, then {e} is universally
determining.

c) Let Imλ > ω and e(z) := (λ − z)−2. Then e is elementary and
ran(e(A)) = dom(A2), which is dense if dom(A) is. Since by a), all
points in ran(e(A)) are bp-good, the first assertion in c) is proved. The
second follows from Lemma 2.5. �

An operator A of strip type α ∈ [0, ω) on a Banach space X has a
bounded H∞(Stω)-calculus if there is a constant C ≥ 0 such that

‖f(A)‖ ≤ C ‖f‖H∞(Stω) for all f ∈ E(Stω).

The following lemma gives a characterization of this notion in the case
that A is densely defined.

Lemma 7.3. Let 0 ≤ α < ω, and let A be a densely defined operator
A of strip type α ∈ [0, ω) on a Banach space X. Then A has a bounded
H∞(Stω)-calculus if and only if the elementary calculus has an exten-
sion to a bounded algebra homomorphism Φ : H∞(Stω) → L(X). In
this case, such an extension is unique and ‖Φ(f)‖ ≤ C ‖f‖∞ holds for
every f ∈ H∞(Stω) if it holds for every f ∈ E(Stω).

Proof. To prove uniqueness, suppose first that the bounded algebra
homomorphism Φ : H∞(Stω)→ L(X) extends the elementary calculus.
If f ∈ H∞(Stω) and e ∈ E(Stω) such that ef ∈ E(Stω) and e(A) is
injective, then (ef)(A) = Φ(ef) = Φ(e)Φ(f) = e(A)Φ(f). Hence

Φ(f) = e(A)−1(ef)(A)

with the natural domain. Since each function e(z) = (λ − z)−2 with
|Imλ| > ω is an instance, this shows uniqueness.

Now suppose that ‖f(A)‖ ≤ C ‖f‖∞ for each f ∈ E(Stω). We consider
the extension Φ to all of H∞(Stω) by regularisation. Let f ∈ H∞(Stω).

Then for each n ∈ N the function en(z) := e−(1/n)z2 is elementary, hence
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also fen is, and thus

‖(enf)(A)‖ ≤ C ‖enf‖∞ ≤ C ‖en‖∞ ‖f‖∞ ≤ Ce−
1
n
ω2

‖f‖∞ .

On the other hand, it is easy to see that for x in the dense subspace
dom(A2) of X, one has x ∈ dom(f(A)) and (enf)(A)x→ Φ(f)x. Hence
Φ(f) is bounded by C ‖f‖∞, and since it is closed and densely defined,
Φ(f) ∈ L(X) and ‖Φ(f)‖ ≤ C ‖f‖∞. �

7.3. Square Functions for Strip Type Operators.
From the scalar functional calculus constructed in the previous section,
we now pass to the vectorial version, i.e., to square functions. Again
we suppose that A is an operator of strip type ω0 on a Banach space
X, and consider the functional calculus (E(Stω),H∞(Stω),Φ).

Since the product eg of an elementary function e with a general H∞-
function g is again elementary, it follows from the definition of g(A)
that ran(e(A)) ⊆ dom(g(A)). The following result tells that the same
is true for square functions.

Lemma 7.4. In the described situation the following assertions hold:

a) Let g ∈ H∞(Stω;H ′) and let Φγ(g) be the associated square func-
tion

Φγ(g) : dom(Φγ(g))→ γ(H;X), Φγ(g)x =
(
h 7→ (h◦g)(A)x

)
.

Then dom(Φγ(g)) contains ran(e(A)) for each e ∈ E(Stω).

b) Suppose that A is densely defined. Then each operator f(A), f ∈
H∞(Stω), is densely defined and dual square functions are well
defined.

Let f ∈ H∞(Stω;H) and let Φγ′(f) be the associated dual square
function

Φγ′(f) : dom(Φγ′(f))→ γ(H;X), Φγ′(f)x′ =
(
h′ 7→ (h′◦f)(A)′x′

)
Then dom(Φγ′(f)) contains ran(e(A)′) for each e ∈ E(Stω).

Proof. a) Let e ∈ E(Stω), let x ∈ X and h ∈ H. Then

[Φ(f)e(A)x]h = (h◦f)(A)e(A)x = ((h◦f)e)(A)x

=
1

2πi

∫
∂Stω′

〈h, f(z)〉 e(z)R(z, A)x dz
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with ω′ ∈ (ω0, ω). This shows that e(A)x ∈ dom(Φ(f)) and that

Φ(f)e(A)x =
1

2πi

∫
∂Stω′

f(z)⊗ e(z)R(z, A)x dz

is in γ(H;X) by Lemma B.12. The proof of b) is similar. �

In the following, we shall discuss several instances of square functions
for strip type operators. We recall our standing assumption that when-
ever we speak of dual square functions the dual calculus is supposed
to be well defined, cf. Section 2.3. We begin with the square functions
“of shift type”.

Example 7.5 (Shift type square functions). Let ω′ > ω and ψ ∈
E(Stω′), and define

g : R× Stω → C, g(t, z) := ψ(t+ z) (t ∈ R, z ∈ Stω).

Then g satisfies the hypotheses of Lemma 2.14, i.e., it can be regarded
as a H∞- function

g : Stω → L2(R).

This gives rise to the square and dual square function

[Φγ(g)x]h =
(∫

R
h(t)ψ(t+ z) dt

)
(A)x (x ∈ dom(Φγ(g)),

[Φγ′(g)x′]h =
(∫

R
h(t)ψ(t+ z) dt

)
(A)′x′ (x′ ∈ dom(Φγ′(g))

for h ∈ L2(R).
For e ∈ E(Stω) and x ∈ ran(e(A)), Lemma 7.4 and a simple Fubini

argument show that Φγ(g)x is integration against the vector-valued
function t 7→ ψ(t+A)x. This why we use the symbol “ψ(t+A)” as an
abbreviation for Φγ(g), cf. Remark 2.15.

If X is itself a Hilbert space, one has

‖Φγ(f)x‖γ =
(∫

R
‖ψ(t+A)x‖2 dt

)1/2
,

and hence a square function estimate for this square function takes the
form ∫

R
‖ψ(t+A)x‖2 dt ≤ C ‖x‖2 .

Similar remarks hold true for the dual square functions of shift type.

The next result explains why the shift type square functions are of
such great importance.
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Theorem 7.6. Let ω′ > ω > 0, let ψ ∈ E(Stω′) be an elementary
function on the strip Stω′. Then the function

g : Stω → L2(R), g(z) = (t 7→ ψ(t+ z))

has `1-frame-bounded range.

Proof. We first note that

sup
z∈Stω

∫
R
|ψ(t+ z)| dt <∞

by Lemma 7.1.a). Moreover, ψ′, ψ′′ ∈ E(Stα) for each α ∈ (ω, ω′) by
Lemma 7.1.d). As before, this implies that

sup
z∈Stω

‖ψ(·+ z)‖W2
1(R)

= sup
z∈Stω

∫
R
|ψ(t+ z)|+ |ψ′(t+ z)|+ |ψ′′(t+ z)| dt <∞.

By Lemma C.6 the claim is proved. �

Theorem 4.3 yields the following important result.

Corollary 7.7. Suppose that the H∞(Stω)-calculus for A is bounded
and ψ ∈ E(Stω′) for some ω′ > ω. Then the dual square function
associated with ψ(t+z) is bounded. If X has finite cotype, then also the
square function associated with ψ(t+z) is bounded.

Let us pass to other square functions for strip type operators. Since
the Fourier transform is an isomorphism on L2(R), we may subordinate
the shift type square functions from above via the Fourier transform.
This yields the “weighted group orbits”, to be discussed next.

Example 7.8 (Weighted group orbits). Let as before ω′ > ω and
ψ ∈ E(Stω′). Taking the inverse Fourier transform with respect to the
variable t in the L2(R)-valued function ψ(t+z) yields the function

ψ∨(s)e−isz = F−1
t (ψ(t+ z))(s).

Hence, the (dual) square functions associated with ψ(t + z) and its
Fourier transform ψ∨(s)e−isz are strongly equivalent. In particular,

if ψ(z) =
π/ω

cosh((π/2ω)z)
then ψ∨(s) =

1

coshωs

(cf. Remark 8.4 below), hence

π/ω

cosh((π/2ω)(t+z))
≈ e−isz

cosh(ωs)
.
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Hence, by Theorem 7.6 the latter function also has `1-frame-bounded
range in L2(R). Moreover, Corollary 7.7 holds mutatis mutandis for
this square function.

By refining the subordination technique, we are led to yet another
type of square functions.

Example 7.9 (Resolvents on horizontal lines). Let m > 0 be a func-
tion on R such that m, m−1 ∈ L∞(R). Then Multiplying with m an
isomorphism on L2(R) and hence suitable for generating (by subordi-
nation) equivalent square functions. Applying this observation to the
weighted group orbits from above and then use the Fourier transform
again, we obtain

π/ω

cosh((π/2ω)(t+z))
≈ e−isz

cosh(ωs)
≈ e−ω|s|e−isz

≈
(
1R+(s)e−ωse−isz, 1R+(s)e−ωseisz

)
≈
(
± iω + t− z

)−1
.

This means, in particular, that the weighted group orbit square func-
tion on L2(R)

f(s, z) =
e−isz

cosh(ωs)

is strongly equivalent to the direct sum of square functions given by
the “resolvent functions”

f1(t, z) =
1

iω + t− z
and f2(t, z) =

1

−iω + t− z
on L2(R)⊕L2(R), cf. Corollary 3.2. Consequently, we may (informally!)
write

‖ cosh(ωs)−1e−isAx‖γ ≈ ‖R(±iω + t, A)x‖γ .
Such square functions were considered in [?, Theorem 6.2], see Sec-
tion 8.6 below.

7.4. Sectorial Operators.
When we speak of a sector we usually mean a sector in the complex
plane with vertex at the origin and which is symmetric about the pos-
itive real axis. Formally,

Sω := {z ∈ C \ {0} | |arg z| < ω},
for 0 < ω ≤ π and (the degenerate sector) S0 := (0,∞). The transfor-
mations

w = log z and z = exp(w)
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form a pair of mutually inverse holomorphic mappings from the sector
Sω to the strip Stω and vice versa. Consequently, the function theory
for Stω and Sω are equivalent, and we obtain the following analogue of
Lemma 7.1.

Corollary 7.10. Let 0 < α < ω ≤ π and f ∈ E(Sω). Then the
following assertions hold:

a) sup
|s|≤α

∫ ∞
0

∣∣f(reis)
∣∣ dr

r
<∞.

b) f ∈ E(Sα) ∩ C0(Sα \ {0}).

c)

∫
∂Sα

f(z)
dz

z
= 0.

d) zf ′(z) ∈ E(Sα).

The algebra of elementary functions on Sω, 0 < ω ≤ π, is

E(Sω) :=
{
f ∈ H∞(Sω) |

∫ ∞
0

∣∣f(reiα)
∣∣ dr

r
<∞ for all |α| < ω

}
.

Then E(Sω) = {f ◦ log | f ∈ E(Stω)}.

Remark 7.11. It is common in the literature to use a class of el-
ementary functions defined via explicit growth conditions instead of
integrability. In this approach, the class

H∞0 (Sω) = {f ∈ H∞(Sω) | ∃s, C > 0 : |f(z)| ≤ C min(|z|s , |z|−s)}
features prominently. However, integrability conditions are more natu-
ral and do work as well. Moreover, the common growth conditions for
elmentary functions on sectors and strips are not compatible with the
exp / log-correspondence, whereas our definition is.

A closed operator A with dense domain and dense range on a Banach
space X is called sectorial of angle α ∈ [0, π), if σ(A) ⊆ Sα and for all
β ∈ (α, π) the mapping z 7→ zR(z, A) is uniformly bounded on C \ Sβ.

One can set up a functional calculus for sectorial operators on sectors
analogously to the strip case. Namely, f(A) is defined for an elementary
function f ∈ E(Sω) by means of (7.3) with ∂Stω′ replaced by ∂Sω′ . For
a general f ∈ H∞(Sω), f(A) is defined by regularisation as described
above. Then the sectorial analogue of Lemma 7.3 holds.

It turns out [?, Proposition 3.5.2] that each sectorial operator A
of angle α has a logarithm log(A), which is of (strong) strip type α.
The functional calculi of these operators are linked via the exp/log-
correspondence, i.e., f(logA) = (f ◦ log)(A) for all f ∈ H∞(Stω), see
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[?, Theorem 4.2.4]. It is not true in general that every (strong) strip
type operator is the logarithm of a sectorial one [?, Example 4.4.1].
However, as long as one confines oneself to operators with bounded
H∞-calculus, the correspondence is perfect [?, Proposition 5.5.3], and
hence it suffices to consider in detail only one of these cases.

Finally, we turn to square functions for sectorial operators. The re-
sults of the previous section have their natural analogues for sectorial
operators via the exp / log-correspondence. Of course, one has to use
the Hilbert space L∗2(0,∞) and the “shift type” square functions be-
come “dilation type” square functions of the form ψ(tz). The analogue
of the Fourier transform is the Mellin transform, and the square func-
tions of “weighted group orbit”-type translate into square functions of
the form ψ(s)z−is, i.e., the group of imaginary powers emerges here.

7.5. Ritt Operators.
A bounded operator on a Banach space is a Ritt operator if∑

k≥1
k
∥∥T k−1(I− T )

∥∥ <∞.
The semigroup {T n | n ≥ 0} is the discrete analogue of an analytic
semigroup, see [?]. The spectrum of a Ritt operator is contained in
a Stolz domain and one has a natural functional calculus there, see
[?, ?, ?, ?]. In the recent article [?], LeMerdy considers square functions
associated with the `2-valued H∞-mappings

fm(k, z) := km−
1/2zk−1(1− z)m (k ∈ N)

which are the discrete analogues of the L∗2(0,∞)-valued mappings

gm(t, z) := (tz)me−tz

of dilation type. To some extent, the theory of bounded H∞-calculus
and square function estimates on Stolz domains is equivalent to the
strip or the sector case, by conformal equivalence of the underlying
complex domains.

Should we say
more here?

8. Applications

In this chapter we present several applications of the integral re-
presentation Theorem 3.12. In each case one starts from very specific
bounded square and dual square functions and concludes the bounded-
ness of an H∞-calculus or even, in the case that the Banach space has
finite cotype, the boundedness of a vectorial H∞-calculus. However,
one usually has to pay a price in the form that the domain set for the
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holomorphic functions represented by the integral formula has to be
larger than the domain set used for the square functions.

8.1. Cauchy–Gauß Representation.
Our first instance uses the variant of the usual Cauchy integral formula
with an additional Gaussian factor.

Let 0 < ω < ω′, and let Γ := ∂Stω with arc length (=Lebesgue)
measure. Then it is simple complex analysis to show that

u(z) =
1

2πi

∫
Γ

u(w) e−(w−z)2

w−z dw (|Im z| < ω)

whenever u ∈ H∞(Stω′ ;H), cf. Formula (7.2). To interpret it in the
light of Theorem 3.12 we let K := L2(Γ) and define

m(w) := u(w), f(w, z) := e−
1
2 (w−z)2

w−z , and g(w, z) := e−
1
2

(w−z)2

for w ∈ Γ and z ∈ Stω. Then f, g ∈ H∞(Stα;K) for each α ∈ (0, ω).
Consequently, if for an operator A of strip type ω0 < ω on a Banach
space X the square and dual square functions associated respectively
with f and g are bounded, then A has a bounded H∞(Stω′)-calculus.
And if X has finite cotype, then A has a bounded H∞(Stω′)-square
functional calculus.

Actually, one can say more here. Theorem 3.12 yields a constant
C ≥ 0 such that

‖f(A)‖γ ≤ C ‖f‖H∞(Stω) for all f ∈
⋃

ω′>ω
H∞(Stω′).

If the operator A is densely defined, then by the scalar/vectorial con-
vergence lemma one obtains a bounded (vectorial) H∞(Stω)-calculus.

Combining these results with Theorem 4.3, or rather with Corol-
lary 7.7, we arrive at the following central result.

Theorem 8.1. Let α > 0 and let Φ : H∞(Stα) → L(X) be a bounded
H∞-calculus over the strip Stα on a Banach space X of finite cotype.
Further, let β > α and H be an arbitrary Hilbert space. Then, for
each u ∈ H∞(Stβ;H ′) the square function Φγ(u) : X → γ(H;X) is a
bounded operator and there is a constant C ≥ 0 such that

‖Φγ(u)x‖γ ≤ C ‖u‖H∞(Stβ) ‖x‖X for all u ∈ H∞(Stβ;H ′), x ∈ X.

Proof. Fix ω ∈ (α, β). Then, as in Example 7.5,

sup
z∈Stα

‖g(z)‖W2
1(Γ) + ‖f(z)‖W2

1(Γ) <∞
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and hence g, f : Stα → K have `1-frame-bounded range. By Theo-
rem 4.3, the associated square and dual square functions are bounded.
As explained above, the claim now follows from Theorem 3.12. �

Clearly, Theorem 8.1 has a straightforward analogue for sectorial
operators. Note that the vectorial calculus in Theorem 8.1 “lives” on
a slightly larger strip. Consequently, in the sectorial version one needs
to enlarge the sector.

Remark 8.2. While we were working on the present manuscript, Chris-
tian Le Merdy independently found the equivalent result of Theorem 8.1
for sectorial operators [?, Theorem 6.3]. (His “quadratic” H∞-calculus
is essentially what we call a “bounded vectorial” H∞-calculus.) Le Merdy’s
proof, which rests implicitly on an `1-frame-boundedness argument, is
based on the Franks–McIntosh decomposition, to be treated below in
Section 8.5.

8.2. Poisson Representation.
Our next example uses a variant of the Poisson formula for the strip.

Lemma 8.3. Let 0 < ω < ω′ and u ∈ H∞(Stω′ ;H). Then

(8.1) u(z) =
1

2π

∫
R

π/2ω
cosh(π/2ω(z + s))

(
u(iω − s) + u(−iω − s)

)
ds

whenever |Im z| < ω.

Proof. Fix 0 < α ≤ π/2ω, then for |Im z| < ω the function

f(w) =
α(z − w)

sinh(α(w − z))
u(w)

is analytic in a strip larger than Stω. (Note that w = z is a removable
singularity.) Hence, by Cauchy’s integral formula.

u(z) = f(z) =
1

2πi

∫
Γ

α

sinh(α(w − z))
u(w) dw

where Γ := ∂Stω with the natural orientation. Now write out the
parametrisation, specialise α = π/2ω and use that sinh(a±iπ/2) = ±i cosh(a).

�

Remark 8.4. Specialising u(z) = eizx and z = 0 in (8.1) one obtains
again the formula

1

2π

∫
R

π/2ω
cosh(π/2ωs)

eist ds =
1

cosh(ωt)
(t ∈ R)

used in Example 7.8.
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In order to apply Theorem 3.12, we need to factorise the integral
kernel in (8.1). A possibility is

(8.2)
π/2ω

cosh(π/2ωz)
=
[α
ω

cosh(π/2αz)

cosh(π/2ωz)

]
·

π/2ω
cosh(π/2αz)

= f(z) · g(z),

for α > ω. With mu(s) :=
(
u(iω−s)+u(−iω−s)

)
, Formula (8.1) then

becomes

(8.3) u(z) =
1

2π

∫
R
mu(s)f(z − s)g(z − s) ds.

This is an instance of (3.6), hence Theorem 3.12 can be applied. The
function f still looks a little unwieldy, but turns out to be strongly
equivalent to g, since

α

ω

cosh(π/2α(z+s))

cosh(π/2ω(z+s))
≈ 2α

π
cos
(πω

2α

) cosh(ωt)

cos(πω/α) + cosh(2ωt)
e−itz ≈ e−itz

cosh(ωt)
.

Here, the first equivalence comes from taking the inverse Fourier trans-
form, and the second holds by multiplying by L∞-functions.

Theorem 8.5. Let A be a densely defined operator of strip type ω0 ≥ 0
on a Banach space X (of finite cotype). Let ω > ω0 and suppose that
the square and dual square functions associated with the weighted group
orbit e−itz/ cosh(ωt) are bounded, i.e.,∥∥∥ e−itAx

cosh(ωt)

∥∥∥
γ
. ‖x‖ and

∥∥∥ e−itA′x′

cosh(ωt)

∥∥∥
γ′
. ‖x′‖ .

Then A has a bounded (vectorial) H∞-calculus on Stω.

Proof. We apply the preceding remarks to obtain

‖Φγ(f)‖γ . ‖f‖H∞(Stω)

for f ∈
⋃
ω′>ω H∞(Stω′). The remaining step to a full vectorial H∞(Stω)-

calculus is made via the vectorial convergence lemma (Lemma 2.10).
�

Remark 8.6. The factorisation 8.2 has been used in [?] to prove the
transference principle for groups. A close inspection reveals that For-
mula (8.3) is — after taking a Fourier transform — just the transference
identity in disguise. Using the arguments in the proof of [?, Theo-
rem 3.2] leads to an alternative proof of Lemma 8.3, see the following
section.
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8.3. CDMcY-Representation.
A variant of the Poisson type representation in the previous section was
used by Cowling, Doust, McIntosh and Yagi in their influential paper
[?]. To motivate it we first sketch an

Alternative proof of Lemma 8.3: Suppose first that f = ĝ is the Fourier
transform of a function g on R with

∫
R cosh(ωt) |g(t)| dt < ∞. We

abbreviate gω(t) := cosh(ωt)g(t). Then

f(z) =

∫
R

e−itzg(t) dt =

∫
R

e−itz

cosh(ωt)
cosh(ωt)g(t) dt =

∫
R

e−itz

cosh(ωt)
gω(t) dt

=

∫
R

π/ω
cosh(π/2ω(z + s))

F−1(gω)(s) ds

and

F−1(gω)(s) =
1

2π

∫
R
g(t) cosh(ωt)eits dt

=
1

4π

∫
R
g(t)

(
e−i((iω−s)t + e−i(−iω−s)t) ds

=
1

4π

(
f(iω − s) + f(−iω − s)

)
.

Hence, (8.1) is valid for such functions f , and the general case is proved
by approximation. �

The idea behind the CDMcY-representation is to sneak in an additional
factor in the previous argument and compute formally2

f(z) =

∫
R

e−itzg(t) dt =

∫
R
ψ∨(t)e−itz gω(t)

ψ∨(t) cosh(ωt)
dt

=

∫
R
ψ(z+s)F−1

[ gω(t)

ψ∨(t) cosh(ωt)

]
(s) ds

=

∫
R
ψ(z+s)

[
F−1

( 1

ψ∨(t) cosh(ωt)

)
∗ F−1(gω)

]
(s) ds.

To make this work, the authors require that

(8.4)
1

ψ∨(t) cosh(νt)
∈ L∞(R) for some ν < ω.

2In order to keep our own presentation consistent, we deviate inessentially from
[?] in that we use inverse Fourier transforms in place of Fourier transforms, and
work on strips in place of sectors.
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In order to obtain an L∞-bound on

mf (t) := F−1
( 1

ψ∨(t) cosh(ωt)

)
∗ F−1(gω)

in terms of the H∞-norm of f it remains to ensure that the first factor
in the convolution is in L1(R). Hence, by the well known Carlson–
Bernstein criterion and under the hypothesis (8.4), it suffices to have

(ψ∨)′

ψ∨
cosh(νt)

cosh(ωt)
∈ L2(R).

Under the additional assumption (made in [?]) that ψ(z) = ϕ(ez), and
ϕ ∈ H∞0 on a sector, this is the case, see [?, p. 67].

Remark 8.7. The authors of [?] used this representation to infer
bounded H∞-calculus from “weak quadratic estimates” of the form∫

R
|〈ψ(t+ A)x, x′〉| dt . ‖x‖ ‖x′‖ .

This notion is not covered so far in our approach (which avoids com-
puting with X-valued functions). However, when it comes to square
function estimates, it is not clear whether there is really a surplus com-
pared with Theorem 8.5. The reason is that requirement (8.4) implies
that

e−itz

cosh(νt)
- e−itzψ∨(t) ≈ ψ(z+s)

and hence the boundedness of the shift-type square function associated
with ψ implies the boundedness of the “weighted group orbit”-square
functions considered in Theorem 8.5. (Even more, the CDMcY-choice
of ψ implies also that ψ∨/ cosh(ω′·) ∈ L∞(R) for some ω′ and hence
square function estimates for ψ are basically equivalent with square
function estimates for weighted group orbits.)

8.4. Laplace (Transform) Representation.
In this section we work with a sectorial operator A of angle θ < π/2, i.e.,
−A generates a (sectorially) bounded holomorphic semigroup (e−tA)t>0.
Ubiquitous square functions in this context are dilation type square
functions ψ(tz) with H = L∗2(0,∞), in particular for the choice ψ = ψα,
where

ψα(z) = zαe−z (α > 0)

and z is from a sufficiently large sector. Aiming at an application of
Theorem 3.12 we look for a representation

u(z) =

∫ ∞
0

mu(t)ψα(tz)ψβ(tz) dt
t

= zα+β

∫ ∞
0

mu(t)t
α+β−1e−2tz dt
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=
1

2α+β
zα+β

∫ ∞
0

mu(t/2)tα+β−1e−tz dt

withmu ∈ L∞(0,∞). This means that 1
2α+β

mu(t/2)tα+β−1 is the inverse
Laplace
transform of u(z)/zα+β. Now let us sup-
pose that u ∈ H∞(Sω′) for some ω′ > π/2.
Then one can use the complex inversion
formula to compute

mu(t/2)

2α+β
tα+β−1 =

1

2πi

∫
Γω,t

u(z)

zα+β
etz dz

Here, π/2 < ω < ω′ and the contour Γω,t is
the boundary of the region Sω \ {|z| ≤ t}.
Hence, with a change of variable,

m(t/2) =
2α+β

2πi

∫
Γω,t

u(z)tα+β−1

zα+β
etz dz

=
2α+β

2πi

∫
Γω,1

u(z/t)

zα+β
ez dz,

Sω′

Γω,t

ε

and this yields an estimate

‖mu‖L∞(0,∞) .
(∫

Γω,t

eRe z

|z|α+β
|dz|

)
‖u‖H∞(Sω) .

Combining these consideration with Theorem 3.12 we obtain the fol-
lowing result.

Theorem 8.8. Let A be a sectorial operator, with dense domain and
range, of angle θ < π/2 on a Banach space X (of finite cotype). Let
α, β > 0 and suppose that the square function associated with ϕα(tz) =
(zt)αe−tz and the dual square function associated with ϕβ(tz) = (zt)βe−tz

are bounded operators. Then A has a bounded (vectorial) H∞-calculus
on each sector Sω′ with ω′ > π/2.

Remark 8.9. If α + β > 1, then one can choose ω = π/2 in the com-
plex inversion formula. Hence one obtains an estimate ‖mu‖L∞

.
‖u‖H∞(Sπ/2 ) and then, by the convergence lemma, a bounded H∞(Sπ/2)-

calculus.

It is an intriguing question under which conditions one can actually
push the “H∞-angle” (that is, the angle ω such that A has a bounded
(vectorial) H(Stω)-calculus) down below π/2. To the best of our knowl-
edge, this requires using the concept of R-boundedness and the multi-
plier theorem for γ-spaces. Recently [?], Christian Le Merdy has shown



68 BERNHARD H. HAAK AND MARKUS HAASE

that if X has Pisier’s property (α), then boundedness of the (dual)

square function associated with ϕ1/2(tz) = (tz)
1/2e−tz already suffices.

Apart from a result by Kalton and Weis involving R-boundedness,
Le Merdy needed to “improve the exponent”, i.e., to pass from ϕ1/2 to
ϕ1 and even to ϕ3/2 . His clever argument, carried out for X being an
Lp-space, can be covered by our abstract theory.

Lemma 8.10 (Le Merdy). Suppose that X is a Banach space with prop-
erty (α+), and let A be a sectorial operator of angle θ < π/2, with secto-
rial functional calculus Φ. Suppose that for given α, β > 0 the square
functions Φγ(ϕα) and Φγ(ϕβ) are bounded operators. Then Φγ(ϕα+β)
is bounded, too.

Proof. The proof relies on the tensor product square function and
subordination. We abbreviate H = L2(R+). Since X has property (α),
Lemma ?? shows that the function

(ϕα ⊗ ϕβ)(s, t, z) = sαtβzα+βe−(t+s)z

yields a bounded square function on L∗2(0,∞)⊗L∗2(0,∞). Equivalently,
the function

(fα ⊗ fβ)(s, t, z) = sα−
1/2tβ−

1/2zα+βe−(t+s)z

yields a bounded square function onH⊗H, where we have put fα(t, z) :=

tα−
1/2zαe−tz.

Next, observe that T : H → H ⊗H defined by

(Tf)(s, t) = (t+s)−
1/2f(t+s)

is isometric. Indeed,∫ ∞
0

∫ ∞
0

|f(t+s)|2
t+s

dtds =

∫ ∞
0

∫ ∞
s

|f(t)|2
t

dtds =

∫ ∞
0

|f(t)|2
(

1
t

∫ t

0

ds
)

dt.

Therefore, T ∗T = IdH . As a consequence, Φγ(f) ∈ L(X; γ(H;X)) if
and only if Φγ(T ◦ f) ∈ L(X; γ(H⊗H;X)). Now,

T ∗(fα ⊗ fβ)(t, s, z) = 1√
t

∫ t

0

fα(t− s, z)fβ(s, z) ds

= cα,β t
α+β−1/2zα+βe−tz,

and this concludes the proof. �

Remark 8.11. Passing from L∗2(0,∞) to L2(R+) and then to L2(R)
via the Fourier transform, one has

ϕ1/2(tz) = (tz)
1/2e−tz on L∗2(0,∞) ≈ z

1/2

z + is
on L2(R).
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These square functions — in the formA
1/2R(is, A)x and (A′)

1/2R(is, A′)x′

— were considered by Kalton and Weis in [?, Theorem 7.2].

8.5. Franks–McIntosh Representation.
In [?] Franks and McIntosh prove the following result: Given θ ∈ (0, π)
there exist sequences (fn)n, (gn)n in H∞(Sθ) such that

a) supz∈Sθ

∑
n |fn(z)|+ |gn(z)| ≤ C,

b) Any φ ∈ H∞(Sθ;X) decomposes as φ(z) =
∑

n anfn(z)gn(z) with
coefficients an ∈ X satisfying ‖an‖ . ‖φ‖∞.

The decomposition b) is an instance of our representation formula (3.6)
for K = `2. Condition a) tells — in our terminology — that the `2-
valued H∞-functions F (z) = (fn(z))n and G(z) = (gn(z))n have `1-
frame-bounded range.

In [?] Le Merdy employs this representation to prove that on a space
X of finite cotype each sectorial operator with a bounded H∞-calculus
on a sector has bounded vectorial (“quadratic”) H∞-calculus on each
larger sector, i.e., the sectorial equivalent to our Theorem 8.1, cf. Re-
mark 8.2.

Theorem 8.12. Let X be a Banach space and 0 < ω < α. Then there
exist functions f, g ∈ H∞(Stα, `1) such that each F ∈ H∞(Stω;X),
decomposes uniquely as

F (z) =
∑
j

ajfj(z)gj(z)

where the vector-valued sequence (aj) is bounded and satisfies

‖(aj)‖`∞(X) ≤ C ‖F‖H∞(Stω) .

Proof. Let τ = α−ω
4

and β = α−ω
2

. Further, let I±k be the translated
interval I±k = [kτ, (k+1)τ ]± iβ. Notice that, as a function in H∞(Stω),

F (z) = 1
2πi

∫
∂Stβ

k(ζ, z)F (ζ) dζ where k(ζ, z) :=
exp(−(ζ−z)2)

ζ−z
.

Let e±j,k be the “Legendre polynomials” on I±k , i.e. the orthonormal

sequence obtained by Gram-Schmidt starting from the functions zj on
I±k . Further, let φ±j,k =

∫
∂Stβ

k(ζ, z)e±j,k(ζ)dζ.

Observe that for ζ ∈ I±k and Re(z) ∈ [nτ, (n+1)τ), |k(ζ, z)| ≤
Ce−(n−k)2 where C = (β−ω)−1eβ−ω. Let B±k = B(c±k , τ) denote the
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ball of radius τ centered around I±k . Then

sup
ζ∈B±k

|k(ζ, z)| ≤ C ′e−(n−k)2 ,

and so the normalised power series expansion of k(ζ, z) =
∑

j b
±
j,k

(
ζ−c±k
τ

)j
in B±k has coefficients b±j,k satisfying

|b±j,k| ≤
∥∥(b±j,k)j

∥∥
`2

= ‖k‖H2(B±k ) ≤ Ce−(n−k)2

Finally, using the orthogonality of zl and e±j,k for l < j and the fact

that |ζ − c±k | ≤ τ/2 for ζ ∈ I±k yields

|φ±j,k| ≤ 1
2π

∫
I±k

∞∑
l=j

e±j,kb
±
l,k

(
ζ−c±k
τ

)l
≤ C ′′e−(n−k)22−j.

This decay rate allows to conclude

F (z) = lim
n→∞

n∑
k=−n

∫
I±k

F (ζ)k(ζ, z) dζ

= lim
n→∞

n∑
k=−n

∫
I±k

∑
j

〈
F, e±j,k

〉︸ ︷︷ ︸
=a±j,k

e±j,k(ζ)k(ζ, z) dζ

=
∑
k

∑
j

a±j,kφ
±
j,k,

and a suitable factorisation φ±j,k = f±j,kg
±
j,k finishes the proof. �

8.6. Singular Cauchy Representation.
All the results in this chapter so far were applications of Theorem 3.12,
that is, they infer a bounded (vectorial) H∞-calculus from bounded
square and dual square functions. In the present section, however, we
shall treat an application of Lemma 3.6. That is, we want to infer
bounded H∞-calculus from upper and lower square function estimates.
We discuss an example due to Kalton and Weis [?], see also [?, Theo-
rem 10.9].

Let A be a densely defined operator of strip type ω0 ≥ 0 on a Banach
space X. We fix ω > ω0 and let Γω = ∂Stω = (iω + R) ∪ (−iω +
R) with arc length measure, let H := L2(Γω) and consider the H-
valued function g(λ, z) := 1

λ−z . Under the canonical isomorphism H ∼=
L2(R)⊕L2(R), the function g is strongly equivalent with the pair (±iω+
s − z)−1 of shift-type square functions, which — as demonstrated in
Section 7.5 — is again strongly equivalent with the weighted group orbit
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square function associated with e−isz/ cosh(ωs). Our aim is to prove
the following remarkable result of Kalton and Weis [?, Theorem 6.2].

Theorem 8.13. Let A be a densely defined operator of strip type ω0

and let ω > ω0. Suppose that

‖R(λ,A)x‖γ(L2(Γω);X) ' ‖x‖ (x ∈ X).

Then A has a bounded H∞(Stω)-calculus.

Proof. Let 0 ≤ ω0 < α < ω < ω′ and let f ∈ H∞(Stω′) and λ ∈ Γω.
Let Γε,λ = ∂(Stω ∪B(λ, ε)), oriented positively.

Stα

Γε,λ
λ

ε

z

Then for z ∈ Stα

f(w)

(w − z)(λ− z)
=

f(w)

(w − λ)(λ− z)
− f(w)

(w − λ)(w − z)
.

Integrating this with respect to w over {w ∈ Γε,λ, |w| ≤ r} and letting
r →∞ yields

f(z)

λ− z
=

f(λ)

λ− z
− 1

2πi

∫
Γε,λ

f(w)

(w − λ)(w − z)
dw.

By the fractional Cauchy theorem, the limit as ε → 0 of the integral
over the half circle avoiding λ ∈ Γω at distance ε is

1

2πi
· (iπ)

f(λ)

λ− z
=

1

2

f(λ)

λ− z
.

Hence, as ε→ 0 we obtain

f(z)

λ− z
=

f(λ)

λ− z
− 1

2πi
p.v.

∫
Γω

f(z)

(w − λ)(w − z)
dw − f(λ)

2(λ− z)

=
f(λ)

2(λ− z)
+

1

2πi
p.v.

∫
Γω

f(w)

(λ− w)(w − z)
dw

Let Tf : L2(Γω)→ L2(Γω) be defined by

(Tfh)(λ) :=
f(λ)

2
h(λ) +

1

2πi
p.v.

∫
Γω

f(w)

(λ− w)
h(w)dw (λ ∈ Γω).
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Note that Tf is bounded by a constant times ‖f‖H∞(Stω): the first sum-

mand is simply multiplication by 1
2
f and the second is multiplication

with f composed with convolution with 1/w.
Now, by the computations above, we have

f(z)g(λ, z) =
(
Tf (g(·, z)

)
)(λ) (z ∈ Stα, λ ∈ Γω).

Viewing g as a function in H∞(Stα; L2(Γω)) we hence have

f · g = Tf ◦ g

as in the hypotheses of Lemma 3.6. (Note that we as usual identify
L2(Γω) = L2(Γω)′ here.) We hence obtain a constant C ≥ 0 indepen-
dent of ω′ > ω such that

‖f(A)‖ ≤ C ‖f‖H∞(Stω) for all f ∈ H∞(Stω′).

The claim now follows from the scalar convergence lemma [?, Section
5.1]. �

Appendix

Appendix A. Some Analytical Lemmas

In this appendix we collect some auxiliary results from analysis for
the sake of easy referencing. We include sketches of proofs for the
convenience of the reader.

Lemma A.1. Let (J,≤) be a directed set, let (Tα)α be a J-net of
bounded linear operators on a Banach space X such that Tα → 0
strongly and supα ‖Tα‖ < ∞. Let, furthermore, Y be a separable sub-
space of X. Then there is an increasing sequence (αn)n∈N in J such
that limn→∞ Tαnx = 0 for all x ∈ Y .

Proof. Let {xn | n ∈ N} ⊆ Y be dense subset of Y . The sequence
(αn)n is constructed recursively with the property that

‖Tαnxk‖ ≤
1

n
(k = 1, . . . , n).

(It is obvious that this can be done.) Clearly, for fixed k we have
Tαnxk → 0 as n→∞. And by the uniform boundedness of the opera-
tors Tαn , the claim follows. �

The next result states a net-version of the dominated convergence
theorem
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Lemma A.2 (Dominated Convergence). Let X be a Banach space,
(Ω,Σ, µ) a measure space, 1 ≤ p <∞, and (fα)α a net in Lp(Ω,Σ, µ;X)
that satisfies the following conditions:

1) There is g ∈ Lp(Ω,Σ, µ) with ‖fα(·)‖X ≤ g almost everywhere for
each index α.

2) There is a sequence (An)n∈N in Σ of finite measure with
⋃
n∈NAn =

[g > 0] and such that ‖fα1An‖L∞
→ 0 as α→∞ for each n ∈ N.

Then ‖fα‖p → 0 as α→∞.

Proof. This follows from the estimate∫
Ω

‖fα‖pX ≤
∫
An

‖fα‖pX +

∫
Acn

‖fα‖pX ≤ µ(An) ‖fα1An‖
p
L∞

+

∫
Acn

|g|p

which holds for all n ∈ N and all indices α. �

Corollary A.3. Let X be a Banach space, (Ω,Σ, µ) a measure space,
1 ≤ p < ∞, and γ1, . . . , γN ∈ Lp(Ω,Σµ). Furthermore, let for each
j = 1, . . . , N a bounded and convergent net (xαj )α in X be given. Denote
by xj := limα x

α
j the respective limit. Then

N∑
j=1

γjx
α
j →

N∑
j=1

γjxj as α→∞

in Lp(Ω,Σ, µ;X).

Proof. Let C := supj,α
∥∥xαj ∥∥. Then the assertion follows from Lemma

A.2 by setting fα :=
∑N

j=1 γj(x
α
j − xj), g := 2C

∑N
j=1 |γj| and An :=⋂N

j=1[ 1
n
≤ |γj| ≤ n]. �

The next lemma tells something about Lp-norms of the sums of in-
dependent vector-valued random variables.

Lemma A.4. Let X be a Banach space and let ξ and η be independent
X-valued random variables on a probability space Ω. If η is symmetric
then

E ‖ξ‖pX ≤ E ‖ξ + η‖pX
for each 1 ≤ p <∞.

Proof. Since η is symmetric and ξ and η are independent, both sum-
mands on the right hand side of

ξ =
1

2
(ξ + η) +

1

2
(ξ − η)

have the same distribution and hence the same Lp-norms. �
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Appendix B. γ-Radonifying Operators

In this appendix we review and develop the theory of γ-summing
and γ-radonifying operators to an extent that serves our purposes. The
presented results in this chapter are essentially from or closely inspired
by the breakthrough paper [?] of Kalton and Weis, cf. Chapter 1 above.

The draft character of Kalton and Weis’ original preprint stimulated
us and various other people to elaborate the theory or to detail and
streamline the proofs. Traces of these activities can be found in many
published papers, for example in Jan van Neerven’s excellent survey
[?] that contains also historical remarks and an extensive bibliography
on the topic. Hytonen, Van Neerven, Veraar and Weis are currently
preparing a multi-volume monograph on “Analysis in Banach Spaces”
on these and other topics. The second volume [?], at present only
available in preprint form, is particularly relevant for us.

However, for the convenience of the reader and in order to keep this
paper as self-contained as possible, we shall present our own account
of the theory of γ-radonifying operators. As this account dates back
to times when no-one but the authors had any notice of [?], there are
some (mostly inessential) differences, which will be pointed out when
they occur. When possible and convenient, we shall point to existing
proofs in the literature. However, some of the results presented here
have no direct counterpart in [?] (so far, one should say).

As this chapter is intended as a reference for notation, definitions and
results, we shall be brief with proofs and refer to [?] and [?] whenever
it is convenient.

One of the main differences of our presentation to both the original
Kalton-Weis paper and van Neerven’s survey is that those works deal
exclusively with real Banach spaces, whereas we develop the theory for
complex ones. The reason is that functional calculus questions, where
complex contour integrals are ubiquitous, call for rather a complex than
a real setting.

For the theory we need the notion of a complex standard Gauss-
ian random variable, by which we mean a random variable γ of the
form

γ = γr + i γi

where γr and γi are independent standard real Gaussians. Basically,
the whole theory for real spaces carries over to complex spaces when
real Gaussians are replaced by complex ones.
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B.1. The Contraction Principle for Gaussian Sums.
The following result is fundamental when working with Gaussian sums.
We work over the scalar field K ∈ {R,C}.

Theorem B.1 (Contraction Principle). Let γ1, γ2, . . . be independent
scalar standard Gaussians on some probability space, let X be a Banach
space, x1, . . . , xm ∈ X and let A = (akj)kj be a scalar n × m-matrix.
Then

E
∥∥∥∑n

k=1

∑m

j=1
γkakjxj

∥∥∥2

X
≤ ‖A‖2 E

∥∥∥∑m

j=1
γjxj

∥∥∥2

X
,

where the matrix A is considered as an operator A : `m2 → `n2 .

The proof, which we include for convenience, proceeds in three steps.
In the first step one reduces the problem to the case that n = m. If
m > n one just extends A to an m ×m-matrix by adding 0-rows. If
m < n one extends A to an n × n-matrix by adding 0-columns, and
defines xj := 0 for m < j ≤ n.

Now, if m = n after scaling one may suppose that A is a contraction.
Then the following lemma reduces the claim to A being an isometry.

Lemma B.2. Every contraction on the Euclidean space Kd is a convex
combination of at most d isometries.

Proof. This is well known, but the proof is given here for the con-
venience of the reader. We may suppose that ‖A‖ = 1. By polar

decomposition, A = U |A| where |A| = (A∗A)
1/2 , and U is isometric.

Hence we may assume that A = A∗ is positive semi definite. By the
spectral theorem we may even further reduce the problem to A being
a diagonal matrix with entries 1 = λd ≥ · · · ≥ λ1 ≥ 0. (Note that 1
has to be an eigenvalue since ‖A‖ = 1.) Now we set λ0 = 0 and write

diag(λ1, . . . , λd) =
∑d

j=1
(λj − λj−1)Pj

where Pj(x1, . . . , xd) := (x1, . . . , xj, 0 . . . , 0) is projection onto the first
j coordinates. (So Pd = I.) This is convex combination of projections.
But for any orthogonal projection P on a Hilbert space,

P =
1

2
I +

1

2
(2P − I)

is a representation as a convex combination of unitaries, since (2P −
I)∗(2P−I) = (2P−I)2 = 4P 2−4P+I = I. Since in the representation
above always the identity I is used, we can collect terms and arrive at
a convex combination of at most d terms. �
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Finally, we have to treat the case that n = m and A is an or-
thogonal/unitary matrix. Then by the rotation invariance of the n-
dimensional, resp. 2n-dimensional, standard Gaussian measure [?,
p.239],

E
∥∥∥ n∑
k=1

n∑
j=1

γkakjxj

∥∥∥2

= E
∥∥∥ n∑
k=j

( n∑
k=1

akjγk

)
xj

∥∥∥2

= E
∥∥∥ n∑
j=1

γjxj

∥∥∥2

.

This concludes the proof of Theorem B.1.

B.2. Definition and the Ideal Property.
Let H be a Hilbert space and X a Banach space over the scalar field
K ∈ {R,C}. A linear operator T : H → X is called γ-summing if

‖T‖γ := sup
F

E
(∥∥∥∑

e∈F
γe ⊗ Te

∥∥∥2

X

)1/2

<∞,

where the supremum is taken over all finite orthonormal systems F ⊆
H and (γe)e∈F is an independent collection of K-valued standard Gauss-
ian random variables on some probability space. We let

γ∞(H;X) := {T : H −→ X | T is γ-summing}
the space of γ-summing operators of H into X. It is clear that each
γ-summing operator is bounded with ‖T‖ ≤ ‖T‖γ.

Remark B.3 (Real vs. Complex). In the case K = C we can view the
complex spaces H,X as real spaces, and we shall indicate this by writ-
ing Hr, Xr. Then Hr is a real Hilbert space with respect to the scalar
product [f, g ]r := Re [f, g ]. For C-linear T : H → X we now have two
definitions of ‖T‖γ, one using 〈·, ·〉r-orthonormal systems (called R-

ons’s for short) and real Gaussians, and the other using C-orthonormal
systems and complex Gaussians. We claim that both definitions lead
to the same quantity. In particular, one has

γ∞(H;X) = γ∞(Hr;Xr) ∩ L(H;X).

In order to see this we note first that if {e1, . . . , ed} is a C-orthonormal
system, then {e1, . . . , ed, ie1, . . . , ied} is an R-ons. Hence, if γ̃j = γj+iγ′j
are independent complex standard Gaussians,

E
∥∥∥∑

j
γ̃jTej

∥∥∥2

= E
∥∥∥∑

j
γjT (ej) + γ′jT (iej)

∥∥∥2

≤ ‖T‖2
γ,R

with the obvious meaning of ‖T‖γ,R. This yields ‖T‖γ,C ≤ ‖T‖γ,R.

On the other hand, let {f1, . . . , fn} be an R-ons and let γ1, . . . , γn be
real standard Gaussians. Pick a C-ons {e1, . . . , en} such that fk ∈
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spanC{e1, . . . , en} for each k. Then we can find λkj = akj + ibkj such
that

fk =
∑
j

(akj + ibkj)ej =
∑
j

akjej + bkj(iej) (1 ≤ k ≤ n).

Define the real matrices A := (akj)k,j, B := (bkj)k,j and C := [AB], as
well as gj := ej for 1 ≤ j ≤ n and gj := iej for n < j ≤ 2n. Then, by
the contraction principle (Theorem B.1),

E
∥∥∥∑n

k=1
γkTfk

∥∥∥2

= E
∥∥∥∑n

k=1
γkakjT (fk) + bkjT (ifk)

∥∥∥2

= E
∥∥∥∑n

k=1

∑2n

j=1
γkckjTgj

∥∥∥2

≤ ‖C‖2 E
∥∥∥∑2n

j=1
γjTgj

∥∥∥2

= ‖C‖2 E
∥∥∥∑n

j=1
(γj + iγn+j)Tej

∥∥∥2

≤ ‖C‖2 ‖T‖2
γ,C .

But ckj = 〈fk, gj〉r and hence ‖C‖ ≤ 1. This yields ‖T‖γ,R ≤ ‖T‖γ,C
and concludes the proof of the claim.

The following lemma yields an equivalent description of the γ-summing
norm.

Lemma B.4. Let (eα)α∈I be any fixed orthonormal basis of H. Then
for any Banach space X and T ∈ L(H;X) the net

E
∥∥∥∑

α∈F
γαTeα

∥∥∥2

X
, (F ⊆ I finite)

is increasing (with respect to the natural inclusion order) and

‖T‖2
γ = sup

F
E
∥∥∥∑

α∈F
γαTeα

∥∥∥2

X
.

Proof. The monotonicity follows from Lemma A.4 since Gaussian ran-
dom variables are symmetric. For the remaining part let h1, . . . , hN be
any orthonormal system in H. Then∑

j≤N

γjhj =
∑
j≤N

γj
∑
α∈I

[hj, eα ] eα =
∑
α∈I

∑
j≤N

γj [hj, eα ] eα

By Corollary A.3 the latter sum converges in L2(Ω), where Ω is the
probability space on which the γj are defined. It follows that

E
∥∥∥∑

j≤N
γjThj

∥∥∥2

X
= lim

F
E
∥∥∥∑

α∈F

∑
j≤N

γj [hj, eα ]Teα

∥∥∥2

X

≤ sup
F

E
∥∥∥∑

α∈F
γαTeα

∥∥∥2

X
.

Here we have employed the contraction principle (Theorem B.1) applied
to the matrix ([hj, eα ])j,α. �
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The following approximation property is [?, Proposition 3.18].

Lemma B.5 (γ-Fatou I). Let (Tα)α be a bounded net in γ∞(H;X)
such that Tα → T ∈ L(H;X) in the weak operator topology. Then
T ∈ γ∞(H;X) and

‖T‖γ ≤ lim inf
α→∞

‖Tα‖γ .

It is easy to see that γ∞(H;X) contains all finite rank operators. The
closure in γ∞(H;X) of the space of finite rank operators is denoted by
γ(H;X), and its elements T ∈ γ(H;X) are called γ-radonifying.

The following property is one of the cornerstones of the theory.

Theorem B.6 (Ideal Property). Let Y be another Banach space and
K another Hilbert space, let L : X → Y and R : K → H be bounded
linear operators, and let T ∈ γ∞(H;X). Then

LTR ∈ γ∞(K;Y ) and ‖LTR‖γ ≤ ‖L‖L(X;Y ) ‖T‖γ ‖R‖L(K;H) .

If T ∈ γ(H;X), then LTR ∈ γ(K;Y ).

Proof. One can handle the left-hand and the right-hand side sepa-
rately, the first being straightforward. For the latter, pick a finite
orthonormal system {e1, . . . , en} within K. Then find an orthonormal
system {f1, . . . , fm} with

span{Re1, . . . , Ren} = span{f1, . . . , fm}.
Consequently Rek =

∑m
j=1 akjfj for some scalar (n×m)-matrix A =

(akj)k,j. Then, by Theorem B.1 below,

E
∥∥∥∑n

k=1
γkTRek

∥∥∥2

= E
∥∥∥∑n

k=1
γkT

∑m

j=1
akjfj

∥∥∥2

= E
∥∥∥∑n

k=1

∑m

j=1
γkakjTfj

∥∥∥2

≤ ‖A‖2 E
∥∥∥∑m

j=1
γjTfj

∥∥∥2

≤ ‖A‖2 ‖T‖2
γ .

Since ‖A‖`m2 →`n2 ≤ ‖R‖K→H , the claim is proved. �

See [?, Theorem 6.2] for a slightly different proof. Based on the ideal
property, we can show that in the case K = C a difference between the
complex and real approach to γ(H;X) is only virtual.

Remark B.7 (Real vs Complex, again). Let H,X be complex spaces.
We claim that

γ(H;X) = {T ∈ γ(Hr;Xr) | T is C-linear} = γ(Hr;Xr) ∩ L(H;X).

The inclusion “⊆” is trivial, so suppose that T : H → X is C-linear
and in γ(Hr;Xr). Then there is a sequence Tn of real-linear finite rank
operators such that ‖Tn − T‖γ → 0. Define Snx := 1/2(Tnx − iTn(ix)).
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Then each Sn is a C-linear finite rank operator ‖Sn − T‖γ → 0. To
prove this we note that the operator M : x 7→ ix is a linear isometry
on Hr commuting with T , hence

2 ‖Sn − T‖γ ≤ ‖Tn − T‖γ +
∥∥M−1TnM − T

∥∥
γ
≤ ‖Tn − T‖γ → 0

by the ideal property. It follows that T ∈ γ(H;X), as claimed.

One might ask whether γ∞(H;X) can differ from γ(H;X). An ex-
ample from Linde and Pietsch, reproduced in [?, Exa. 4.4], shows that
this indeed happens if X = c0. On the other hand, by a theorem
of Hoffman-Jørgensen and Kwapień, if X does not contain c0 then
γ(H;X) = γ∞(H;X), see [?, Theorem 4.3]. Although this result was
obtained for real spaces only, Remark B.7 shows that it continues to
hold in the complex case.

For later reference, we quote the following approximation results
from [?, Corollaries 6.4 and 6.5]. Their proofs are straightforward from
the ideal property.

Theorem B.8 (Approximation). Let H,K be Hilbert and X, Y be Ba-
nach spaces, and let T ∈ γ(H;X). Then the following assertions hold:

a) If (Lα)α ⊆ L(X;Y ) is a uniformly bounded net that converges
strongly to L ∈ L(X;Y ), then LαT → LT in γ(H;Y ).

b) If (R∗α)α ⊆ L(H;K) is a uniformly bounded net that converges
strongly to R∗ ∈ L(H;K), then TRα → TR in γ(K;X).

Note that if T ∈ γ(H;X) the operators LT and TR are again γ-
radonifying, by the ideal property.

B.3. Fourier Series and Nuclear Operators.
Recall our notation

g := [ · , g ] ∈ H ′

for an element g ∈ H, H any Hilbert space.

Every finite rank operator T : H → X has the form

(B.1) T =
∑n

j=1
gj ⊗ xj,

and one can view γ(H;X) as a completion of the algebraic tensor prod-
uct H ′ ⊗X with respect to the γ-norm.

Note that if e1, . . . , en is an orthonormal system in H, then e1, . . . , en
is an orthonormal system in H ′, dual to {e1, . . . , en} in the sense that

〈ej, ek〉 = 〈ej, ek〉H,H′ = δjk (j, k = 1, . . . , n).
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The following shows that a “Gaussian sum” in a Banach space X can
be regarded as a γ-norm of a finite rank operator.

Lemma B.9. Let g1, . . . , gm ∈ H be an orthonormal system in H and
x1, . . . , xm ∈ X. Then∥∥∥∑m

j=1
gj ⊗ xj

∥∥∥2

γ
= E

∥∥∥∑n

j=1
γjxj

∥∥∥2

X
.

Proof. Let e1, . . . , en be any finite orthonormal system in H and let T
be defined by (B.1). Then

E
∥∥∥∑n

k=1
γkTek

∥∥∥2

= E
∥∥∥∑n

k=1
γk
∑m

j=1
[ek, gj ]xj

∥∥∥2

≤ E
∥∥∥∑m

j=1
γjxj

∥∥∥2

by Theorem B.1, since the scalar matrix A := ([ek, gj ])k,j satisfies
‖A‖ ≤ 1. On the other hand, if we take n = m and ek := gk, then we
obtain equality. �

Let (eα)α∈A be an orthonormal basis of H. For a finite set F ⊆ A,
let

PF :=
∑

α∈F
eα ⊗ eα

be the orthogonal projection onto span{eα | α ∈ F}. The net (PF )F is
uniformly bounded and converges strongly to the identity on H. Hence,
the following is a consequence of Theorem B.8, part b).

Corollary B.10 (Fourier Series). If T ∈ γ(H;X) and (eα)α is any
orthonormal basis of H, then∑

α
eα ⊗ Teα = T

in the norm of γ(H;X).

It follows from Lemma B.9 that

‖g ⊗ x‖γ = ‖g‖H ‖x‖X = ‖g‖H ‖x‖X
for every g ∈ H, x ∈ X, i.e., the γ-norm is a cross-norm.

Recall that T : H → X is a nuclear operator if

(B.2) T =
∑
n≥0

gn ⊗ xn

for some gn ∈ H, xn ∈ X with
∑

n≥0 ‖gn‖H ‖xn‖X < ∞. The nuclear
norm of T is

‖T‖nu := inf
∑
n≥0

‖gn‖H ‖xn‖X ,

where the infimum is taken over all representations of the form (B.2).
We let Nu(H;X) be the set of all nuclear operators. If X = H then
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we write Nu(H) := Nu(H;H). Recall that nuclear operators on H are
precisely the operators of trace class

Corollary B.11. A nuclear operator T : H → X is γ-radonifying and
‖T‖γ ≤ ‖T‖nu.

The following application turns out to be quite useful.

Lemma B.12. Let H,X as before, and let (Ω,Σ, µ) be a measure space.
Suppose that f : Ω → H and g : Ω → X are (strongly) µ-measurable
and ∫

Ω

‖f(t)‖H ‖g(t)‖X µ(dt) <∞.

Then f⊗g ∈ L1(Ω; γ(H;X)), and T :=
∫

Ω
f⊗g dµ ∈ γ(H;X) satisfies

Th =

∫
Ω

[h, f(t)] g(t)µ(dt) (h ∈ H)

and

‖T‖γ ≤
∫

Ω

‖f(t)‖H ‖g(t)‖X µ(dt).

B.4. Trace Duality.
We follow [?, ?], cf. also [?, Sec. 9.1.j], and identify the dual of γ(H;X)
with a subspace of L(H ′;X ′) via trace duality. For a finite rank
operator U : H → H given by

U :=
∑n

j=1
g′j ⊗ hj

for certain g′1, . . . , g
′
n ∈ H ′ and h1, . . . , hn ∈ H, its trace is

tr(U) =
∑n

j=1

〈
hj, g

′
j

〉
.

This is independent of the representation of U , see [?, p. 125]. Now,
for V ∈ L(H ′;X ′) we define

‖V ‖γ′ := sup
{
|tr(V ′U)| | U ∈ L(H;X), ‖U‖γ ≤ 1, dim ran(U) <∞

}
,

where we regard V ′U : H → X ⊆ X ′′ → H ′′ = H, and let

γ′(H ′;X ′) := {V ∈ L(H ′;X ′) | ‖V ‖γ′ <∞}.

By a short computation, if U ∈ L(H;X) has the representation U =∑n
j=1 g

′
j ⊗ xj and V ∈ L(H ′;X ′), then

(B.3) tr(V ′U) =
n∑
j=1

〈
xj, V g

′
j

〉
.
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Lemma B.13 (γ′-Fatou). Let (Vn)n be a bounded sequence in γ′(H ′;X ′)
and let V : H ′ → X ′ be such that 〈x, Vnh′〉 → 〈x, V h′〉 for all x ∈ X
and h′ ∈ H ′. Then V ∈ γ′(H ′;X ′) and

‖V ‖γ′ ≤ lim inf
n→∞

‖Vn‖γ′

Proof. It follows from (B.3) that tr(V ′nU) → tr(V ′U) for every U :
H → X of finite rank. The claim follows. �

We now turn to an alternative description of the γ′-norm. To this
end we note the following auxiliary result.

Lemma B.14. If T ∈ Nu(H) then tr(TA) = ‖T‖nu for some A ∈
L(H), ‖A‖ ≤ 1.

Proof. By a standard result of Hilbert space operator theory, T has
the representation

T =
∑

j∈J
sjej ⊗ fj

where J is either finite or J = N, the ej as well as the fj form or-
thonormal systems, and the numbers sj > 0 are the singular values of

T . Define A :=
∑

j∈J fj ⊗ ej, where in case J = N the series converges

strongly. Then ‖A‖ ≤ 1 and TA =
∑

j∈JsjA
∗ej ⊗ fj. Hence

tr(TA) =
∑
j∈J

sj [fj, A
∗ej ] =

∑
j∈J

sj = ‖T‖nu . �

As a consequence we arrive at the following characterisation of the
γ′-norm.

Corollary B.15. Let V ∈ L(H ′;X ′). Then

‖V ‖γ′ = sup
{
‖V ′U‖nu | U ∈ L(H;X), ‖U‖γ ≤ 1, dim ran(U) <∞

}
.

Proof. Let U : H → X be of finite rank with ‖U‖γ ≤ 1. Then

|tr(V ′U)| ≤ ‖V ′U‖nu. On the other hand, by applying Lemma B.14 to
T := V ′U we find A ∈ L(H) with ‖A‖ ≤ 1 and

‖V ′U‖nu = tr(V ′UA) ≤ ‖V ‖γ′ ‖UA‖γ ≤ ‖V ‖γ′ ‖U‖γ ‖A‖ ≤ ‖V ‖γ′
by the ideal property. �

As a consequence of Corollary B.15 we obtain the ideal property of
γ′(H ′;X ′).

Corollary B.16 (Ideal Property). Let R : H → K and L : Y → X be
bounded operators, and V ∈ γ′(H ′;X ′). Then L′V R′ ∈ γ′(K ′;Y ′) with

‖L′V R′‖γ′ ≤ ‖L‖ ‖V ‖γ′ ‖R‖ .
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Proof. Let U : K → Y be of finite rank. Then

‖(L′V R′)′U‖nu = ‖RV ′(L′′U)‖nu ≤ ‖R‖ ‖V
′(LU)‖nu ≤ ‖R‖ ‖V

′‖γ′ ‖LU‖γ
≤ ‖R‖ ‖V ′‖γ′ ‖L‖ ‖U‖γ

by the ideal property of Nu(K) and γ(K;Y ). �

With the following results we extend [?, Proposition 5.1 and 5.2].

Theorem B.17. a) If U ∈ γ(H;X) and V ∈ γ′(H ′;X ′), then V ′U ∈
Nu(H) with ‖V ′U‖nu ≤ ‖V ‖γ′ ‖U‖γ. Moreover, the mapping

γ′(H ′;X ′) −→ L
(
γ(H;X); Nu(H)

)
, V 7−→ (U 7−→ V ′U)

is isometric.

b) The bilinear mapping (“trace duality”)

γ(H;X)× γ′(H ′;X ′) −→ C, (U, V ) 7−→ 〈U, V 〉 := tr(V ′U)

establishes an isometric isomorphism γ(H;X)′ ∼= γ′(H ′;X ′).

c) Let (eα)α be an orthonormal basis of H. Then

〈U, V 〉 = tr(V ′U) =
∑
α

〈Ueα, V eα〉X,X′

for every U ∈ γ(H;X) and V ∈ γ′(H ′;X ′).

d) If V ∈ γ(H ′;X ′) then V ∈ γ′(H ′;X ′), with ‖V ‖γ′ ≤ ‖V ‖γ.

Proof. a) follows from Corollary B.15 and approximation of a general
U ∈ γ(H;X) by finite rank operators.
b) By a) the trace duality is well defined, and it reproduces the norm
on γ′(H ′;X ′) by construction. For surjectivity, let Λ : γ(H;X) → C
be a bounded functional and define

V : H ′ −→ X ′, (V h′)(x) := Λ(h′ ⊗ x).

A short computation reveals that tr(V ′U) = Λ(U) for every rank-one
operator U = h′⊗x. Hence tr(V ′U) = Λ(U) even for every finite rank-
operator U : H → X. But this implies that V ∈ γ′(H ′;X ′) and that
V induces Λ.
c) By Corollary B.10, U =

∑
α eα⊗Ueα and the convergence is in ‖·‖γ.

Hence

〈U, V 〉 =
∑
α

〈eα ⊗ Ueα, V 〉 =
∑
α

〈Ueα, V eα〉X,X′

by (B.3).
d) is proved as in [?, Theorem 10.9]. �
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Remark B.18. It is shown in [?, Sec. 10] and [?, Thm. 9.43] that the
equality γ(H ′;X ′) = γ′(H ′;X ′) holds if X is K-convex. By a result of
Pisier, a space X is K-convex if and only if it has nontrivial type. See
[?, Sec. 10] for more about K-convexity in this context.

B.5. Spaces of Finite Cotype.
A Rademacher variable is a ±1-valued Bernoulli-(1/2,

1/2) random vari-
able. A complex Rademacher variable is a random variable of the
form

r = r1 + ir2

where r1, r2 are independent real Rademachers on the same probability
space. Unless otherwise stated, our Rademacher variables are under-
stood to be complex.3

By [?, Proposition 2.6] (see also [?, Lemma 12.11])

(B.4) E
∥∥∥∑n

j=1
rjxj

∥∥∥q
X
≤ (π/2)

q/2 E
∥∥∥∑n

j=1
γjxj

∥∥∥q
X
,

whenever 1 ≤ q < ∞, n ∈ N, x1, . . . , xn ∈ X, r1, . . . , rn are complex
Rademachers and γ1, . . . , γn are complex Gaussians. (Our reference
uses real random variables, but the complex case follows by a straight-
forward argument, yielding the same constant.)

A converse estimate does not hold in general unless the Banach space
has finite cotype. Recall that a Banach space X has type p ∈ [1, 2] if
there exists a constant tp(X) ≥ 0 such that for all finite sequences
(xn)mn=1 in X, ∥∥∥∑

n
rnxn

∥∥∥
L2(Ω;X)

≤ tp(X) ‖(xn)n‖`p(X) ,

and X has cotype q ∈ [2,∞] if for some constant cq(X) ≥ 0,

‖(xn)n‖`q(E) ≤ cq(X)
∥∥∥∑

n
rnxn

∥∥∥
L2(Ω,E)

,

We refer to [?, Chapter 11] for definitions, properties and references on
the notions of type and cotype of a Banach space. (Using real in place
of complex Rademachers may alter the values of tp(X) and cq(X) by
universal factors, but does not make a qualitative difference.)

Each Banach spaces has cotype ∞ and type 1; therefore, X is said
to have nontrivial type if it has type p for some p > 1, and it said to
have finite cotype if it has cotype q for some q < ∞. Each Banach
space of nontrivial type has finite cotype, but the converse is false.

3Our definition of complex Rademachers differs from the one given in [?], where
complex Rademachers are defined as random variables uniformly distributed on the
unit circle. The resulting differences are unessential.
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It is important for us that if X has finite cotype, then a converse
to (B.4) holds. Namely, we have the following deep result from [?,
Theorem 12.27].

Theorem B.19. Let 2 ≤ q < ∞ and denote by mq
q the q-th absolute

moment of the normal distribution, i.e.,

mq :=
( 1√

2π

∫
R
|x|q e−

x2

2 dx
) 1
q
.

Then

E
∥∥∥∑n

j=1
γjxj

∥∥∥2

≤ m2
q cq(X)2 E

∥∥∥∑n

j=1
rjxj

∥∥∥2

whenever X is a Banach space of cotype q and x1, . . . , xn ∈ X.

Recall that a Banach space X has the same type/cotype as the space
L2(Ω, X), whenever Ω is a measure space, see e.g. [?, Theorem 11.12].
A similar result holds for the γ-functor.

Lemma B.20. A Banach space X has the same type and cotype as
γ(H;X).

Proof. We show the result only for the case of cotype. For the type
case the arguments are similar. Suppose first that X has cotype q <∞,
and let (Uk)k be a finite sequence in γ(H;X). Fix an orthonormal basis
(eα)α of H. Then Uk =

∑
α eα ⊗ Ukeα for each k by Corollary B.10.

Hence, with F denoting finite subsets of the index set of the orthonor-
mal basis,∑

k
‖Uk‖qγ =

∑
k

lim
F

∥∥∥∑
α∈F

eα ⊗ Ukeα
∥∥∥q
γ

= lim
F

∑
k

∥∥∥∑
α∈F

eα ⊗ Ukeα
∥∥∥q
γ

. sup
F

∑
k
E′
∥∥∥∑

α∈F
γ′αUkeα

∥∥∥q
X

= sup
F

E′
∑

k

∥∥∥∑
α∈F

γ′αUkeα

∥∥∥q
X

. sup
F

cq(X)q E′ E
∥∥∥∑

k
rk

(∑
α∈F

γ′αUkeα

)∥∥∥q
X

. sup
F

cq(X)q EE′
∥∥∥∑

α∈F
γ′α

(∑
k
rkUkeα

)∥∥∥q
X

. cq(X)q E
∥∥∥∑

k
rkUk

∥∥∥q
X
,

where the non-mentioned constants come from the Khinchine–Kahane
inequalities. It follows that

‖(Uk)k‖`q(γ(H;X)) . cq(X)
∥∥∥∑

k
rkUk

∥∥∥
L2(Ω;γ(H;X))

and this shows that cq(γ(H;X)) . cq(X).
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For the converse suppose that γ(H;X) has cotype q < ∞. Let (xk)k
be a finite sequence in X and let e ∈ H be a unit vector. Abbreviate
E := γ(H;X) and Uk := e⊗ xk. Then(∑

k
‖xk‖qX

)1/q

=
(∑

k
‖Uk‖qE

)1/q

≤ cq(E)
∥∥∥∑

k
rkUk

∥∥∥
L2(Ω;E)

.

Moreover,∥∥∥∑
k
rkUk

∥∥∥2

L2(Ω;E)
= E

∥∥∥∑
k
rke⊗ xk

∥∥∥2

E
= E

∥∥∥e⊗ (∑
k
rkxk

)∥∥∥2

E

= E
∥∥∥∑

k
rkxk

∥∥∥2

X
,

whence it follows that cq(X) ≤ cq(E). �

The next result shows the significance of spaces of finite cotype for
the theory of γ-radonifying operators.

Theorem B.21. Let X be a Banach space of finite cotype q < ∞.
There is a constant c = c(q, cq(X)) such that the following holds:
Whenever K is a compact Hausdorff space, H is a Hilbert space and
T ∈ L(H;X) is an operator that factorises as T = UV over C(K),
i.e.,

H

V ""

T
// X

C(K)
U

<<
,

then T ∈ γ(H;K) and ‖T‖γ(H;X) ≤ c ‖U‖ ‖V ‖.

Proof. Let X be of cotype 2 ≤ q < ∞ and fix q < p < ∞. By
[?, Theorem 11.14] the operator U is p-absolutely summing, and one
has πp(U) ≤ c · ‖U‖, where c depends on p and cq(X). By the
ideal property for p-absolutely summing operators, T is p-absolutely
summing with πp(T ) ≤ πp(U) ‖V ‖. Now, a theorem of Linde and
Pietsch [?], cf. [?, Prop. 12.1], yields that T ∈ γ(H;X) with ‖T‖γ ≤
max{Kγ

2,p, K
γ
p,2}πp(T ). Here Kγ

p,2 and Kγ
2,p are the constants in the

Khinchine–Kahane inequalities for Gaussians, see [?, Proposition 2.7].
By taking the infimum over p we remove the dependence of the constant
on p. �

The following consequence is Corollary 3.4 from [?].

Corollary B.22 (Kaiser–Weis). Let X be a Banach space of finite
cotype q. Then there is a constant C = C(q, cq(X)) such that for all fi-
nite sequences x1, . . . , xN ∈ X and all complex matrices α = (αn j)n,j ∈
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CN×J one has

EE′
∥∥∥ N∑
n=1

J∑
j=1

γnγ
′
jαn jxn

∥∥∥2

X
≤ C2 E

∥∥∥ N∑
n=1

γnxn‖2
X .

Proof. Consider the operators

U : `J2 → `N∞, U(ej) = (αn j)n =
∑
n

αn je
′
n

and

V : `N∞ → γ(`N2 , V (e′n) = en ⊗ xn.

Then ‖U‖2 = supn
∑

j |αn j|
2 and ‖V ‖2 = E

∥∥∥∑N
n=1 γnxn‖2

X , by the

contraction principle. Now apply Theorem B.21 to conclude that V U ∈
γ(`J2 ; γ(`N2 ;X)) with norm

‖V U‖γ ≤ C ‖U‖ ‖V ‖ .
Writing out V U and its norm finishes the proof. �

B.6. Spaces with Property (α∗).
Let H and K be Hilbert spaces. Their algebraic tensor product, here
denoted by H⊗aK, is a pre-Hilbert space with respect to the (uniquely
determined) inner product satisfying

[h⊗ k, u⊗ v ] = [h, u ] · [k, v ]

for all h, u ∈ H and k, v ∈ K. We denote by H ⊗ K the completion
of H ⊗aK with respect to this inner product. Then we have a natural
isometric isomorphism

(H ⊗K)′ ∼= H ′ ⊗K ′.
In this section we examine the relation of the spaces γ(H ⊗K;X) and
γ(H; γ(K;X).
Note that, algebraically, there is a natural isomorphism

H ′ ⊗a (K ′ ⊗a X) ∼= (H ′ ⊗a K ′)⊗a X
which on the level of elementary tensors is just the “associative law”

h′ ⊗ (k′ ⊗ x) = (h′ ⊗ k′)⊗X.
Via this natural isomorphism, the algebraic tensor product H ′⊗aK ′⊗a
X can be viewed as a subset of either space γ(H; γ(K;X)) and γ(H ⊗
K;X).

Lemma B.23. The algebraic tensor product H ′ ⊗K ′ ⊗X is dense in
either space γ(H ⊗K;X) and γ(H; γ(K;X)).
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Proof. This follows from Corollary B.10 by noting that if (eα)α and
(fβ)β are orthonormal bases of H and K, respectively, then (eα⊗fβ)α,β
is an orthonormal basis of H ⊗ K. Moreover, for h ∈ H and k ∈ K
one has h⊗ k = h ⊗ k under the canonical identification of (H ⊗K)′

with H ′ ⊗K ′. �

Now let us look at the first type of relation.

Lemma B.24. For a Banach space X the following properties are
equivalent

(i) For each pair H, K of Hilbert spaces, the natural map extends to
a bounded operator γ(H ⊗K;X)→ γ(H; γ(K;X)).

(ii) The natural map extends to a bounded operator

J− : γ(`2 ⊗ `2;X)→ γ(`2; γ(`2;X))

(iii) There is a constant C− ≥ 0 such that

EE′
∥∥∥∑
j,n

γjγ
′
nxj,n

∥∥∥2

≤ (C−)2E
∥∥∥∑
j,n

γj,nxj,n

∥∥∥2

for each finite array (xj,n)j,n in X.

In this case, the best constant C− in (iii) equals ‖J−‖, and this domi-
nates the norm of the operator in (i).

Here, (γj)j and (γ′n)n are two independent sequences of indepen-
dent standard Gaussians, and (γij) is an array of independent standard
Gaussians.

Proof. It is immediately clear that (i) implies (ii) and (ii) implies (iii)
with C− ≤ ‖J−‖. Suppose that (iii) holds. Then it is clear that for
any T ∈ H ′ ⊗a K ′ ⊗a X one has∥∥J−(T )

∥∥
γ(H;γ(K;X))

≤ C ‖T‖γ(H⊗K;X) .

Now (i) follows from Lemma B.23, and the norm of the considered
operator is ≤ C−. �

Following Van Neerven and Weis [?] we say that a space X having the
equivalent properties listed in Lemma B.24 has (Gaussian) property
(α−). In Proposition 2.5. of the cited reference, the authors show that
the Gaussian property (α−) implies finite cotype and is equivalent to
“Rademacher property (α−)”, by which it is meant that assertion (iii)
of Lemma B.24 holds when one replaces Gaussians by Rademachers.

Analogously, a Banach space is said to have (Gaussian) property
(α+), if it has the equivalent properties listed in the following lemma.
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Lemma B.25. For a Banach space X the following properties are
equivalent

(i) For each pair H, K of Hilbert spaces, the natural map extends to
a bounded operator γ(H; γ(K;X))→ γ(H ⊗K;X)

(ii) The natural map extends to a bounded operator

J+ : γ(`2; γ(`2;X))→ γ(`2 ⊗ `2;X).

(iii) There is a constant C+ ≥ 0 such that

EE′
∥∥∥∑
j,n

γjγ
′
nxj,n

∥∥∥2

≤ (C+)2E
∥∥∥∑
j,n

γj,nxj,n

∥∥∥2

for each finite array (xj,n)j,n in X.

In this case, the best constant C+ in (iii) equals ‖J+‖ and this domi-
nates the norm of the operator in (i).

Again, by [?, Proposition 2.5.], Gaussian property (α+) is equivalent
to Rademacher property (α+) and implies finite cotype.

A space X is said to have property (α) if X has both properties (α+)
and (α−). It is shown in [?, Chapter 13] or [?, Thm. 9.72] that this
is equivalent to X having Pisier’s contraction property from [?,
Definition 2.1]. (The terminology is from [?, Thm. 9.72].)

Every Hilbert space has property (α) and each space Lp(Ω;X) with
1 ≤ p <∞ inherits this property from X [?, Chapter 13].

However, by [?, Example 2.4], the p-Schatten classes provide exam-
ples of spaces with property (α−) but not property (α+) for p ∈ (1, 2)
and the other way round for p ∈ (2,∞).

B.7. γ-Bounded Sets.
Let X, Y be Banach spaces. A collection T ⊆ L(X;Y ) is said to be
γ-bounded if there is a constant c ≥ 0 such that

(B.5) E
(∥∥∥∑

T∈T ′
γTTxT

∥∥∥2

X

)1/2

≤ c E
(∥∥∥∑

T∈T ′
γTxT

∥∥∥2

X

)1/2

for all finite subsets T ′ ⊆ T , (xT )T∈T ′ ⊆ X. (As above, (γT )T∈T ′ is
an independent collection of standard Gaussian random variables on
some probability space.) If T is γ-bounded, the smallest constant c for
which (B.5) holds, is denoted by J T Kγ and is called the γ-bound of
T .

Remark B.26. In order to establish the γ-boundedness of T with
J T Kγ ≤ c, it suffices to check (B.5) only for vectors xT from a dense
subspace of X. This follows from Corollary A.3. Likewise, it suffices
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to take the operators T from a strongly dense subset of T . Actually, it
suffices to take the operators T from a subset T ′ such that absconv(T ′)
is strongly dense in T . This follows from [?].

When one replaces Gaussians by Rademachers in the definition above
one obtains the related notion of an R-bounded set of operators.
If both spaces X and Y have finite cotype, R-boundedness and γ-
boundedness are equivelent (on the expense of constants that depend
on the cotype and the cotype constants of the spaces).

The notions of γ- and R-bounded sets have been thoroughly studied
in the literature, see [?, Chapter 7] and the literature listed there. For
the following simple fact, however, we could not find any reference in
the literature.

Lemma B.27. Let (Mα)α be a family of γ-bounded subsets of L(X;Y )
with C := supα JMα Kγ < ∞. Suppose that M ⊆ L(X;Y ) has the
following property:

∀N ∈ N ∀ x1, . . . , xN ∈ X ∀ T1, . . . , TN ∈ L(X;Y ) ∀ ε > 0

∃ α ∈ I ∃ T1α, . . . , TNα ∈Mα :
N∑
j=1

‖Tjαxj − Tjxj‖ < ε.

Then M is γ-bounded with JM Kγ ≤ C.

Proof. Fix x1, . . . , xN ∈ X and T1, . . . , TN ∈ M . By the hypothesis
on M there is a sequence (αn)n of indices and respective operators
Tαnj ∈ Mαn with Tαnjxj → Tjxj as n → ∞ for each j = 1, . . . , N . By
Corollary A.3

E
∥∥∥∑

j
γjTαnjxj

∥∥∥2

X
→ E

∥∥∥∑
j
γjTjxj

∥∥∥2

X

as n→∞. The claim follows. �

Remark B.28. Lemma B.27 can be applied, for example, in the sit-
uation when one has a subset M ⊆ L(X;Y ) and operator nets (Pα)α
in L(X) and (Qα)α in L(Y ) such that QαTPα → T strongly for each
T ∈M . Then the sets

Mα := {QαTPα | T ∈M}

satisfy the technical condition of Lemma ??. So if one is able to show
that C := supα JMα Kγ < ∞, it follows that M is γ-bounded with
JM Kγ ≤ C.
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Appendix C. `1-Frame-Bounded Sets

Let H be a Hilbert space. A sequence (fα)α∈I in H is called a frame
for H if there exist two constants 0 < A < B such that

(C.1) A2 ‖h‖2
H ≤

∑
α∈I

| [h, fα ] |2 ≤ B2 ‖h‖2
H for all h ∈ H.

Equivalently, a frame is given by a pair of operators (L,R) where R :
H → `2(I) and L : `2(I) → H such that LR = IdH . Indeed, in that
case fα := R∗eα, α ∈ I, is a frame, where (eα)α∈I is the canonical basis
of `2(I). (One easily obtains (C.1) with A = ‖L‖−1 and B = ‖R‖.)
Conversely, if (fα)α∈I is a frame and R : H → `2(I) is defined by
Rf := ([f, fα ])α∈I , then R∗R is a selfadjoint, positive and invertible
operator, and hence L := (R∗R)−1R∗ satisfies LR = IH .

LetH be a Hilbert space. A subsetM ofH is called `1-frame-bounded
if there exists a frame (fα)α∈I of H such that

sup
x∈M

∑
α∈I

|[x, fα ]| <∞,

In this case, in view of the discussion above, the `1-frame-bound of
a subset M ⊆ H is defined as

(C.2) |M |1 := inf ‖L‖ sup
x∈M

∑
α∈I

|[Rx, eα ]|}

where the infimum is taken over all pairs of operators (L,R) with R :
H → `2(I) and L : `2(I)→ H such that LR = IH .

Let X be a Banach space. An operator T : X → H is called `1-
frame-bounded if T maps the unit ball ofX into an `1-frame-bounded
subset of X. In this case,

|T |`1 :=
∣∣{Tx | ‖x‖X ≤ 1}

∣∣
1

is called the `1-frame-bound of T .

Remarks C.1. 1) `1-frame-bounded sets need not be compact.

2) Let X, Y be Banach spaces. If U : X → H is `1-frame-bounded
and V : Y → X is bounded, then UV : Y → H is `1-frame-
bounded and

|UV |`1 ≤ |U |`1 ‖V ‖ .
3) We point out that we do not know yet whether finite unions or

translates of `1-frame-bounded sets are again `1-frame-bounded,
something one would certainly expect to hold for a “good” bound-
edness concept. Consequently, we do not know whether the set of
`1-frame-bounded operators X → H form a vector space.
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Lemma C.2. Let H be any Hilbert space and M ⊆ H. Then the
following assertions hold.

a) If M is `1-frame-bounded, then it is norm-bounded, with

sup
x∈M
‖x‖ ≤ |M |1

If span(M) is finite-dimensional and M is norm-bounded, then it
is `1-frame-bounded.

b) If M is `1-frame-bounded and S : H → K is an isomorphism into
another Hilbert space, then S(M) is `1-frame-bounded with

|S(M)|1 ≤ ‖S‖ |M |1
c) If M is `1-frame-bounded, then absconv(M) is `1-frame-bounded.

Proof. Parts a) and b) are clear. For the proof of c) it suffices to
notice that the closed unit ball of `1(I) is absolutely convex and closed
in `2(I). �

Remark C.3. Every `1-frame-bounded operator T : X → H factorises
through an `1-space, but the converse is not true in general. Indeed, let
(fn)n∈N be a countable dense subset of the unit sphere {f ∈ `2 | ‖f‖2 =
1} of `2. Let T : `1 → `2 be the operator defined by T (xn)n :=

∑
n xnfn.

Then the image under T of the unit ball of `1 is dense in the unit ball
of `2, and hence T is not `1-frame-bounded.

For operators between Hilbert spaces, the class of `1-frame-bounded
operators coincides with the class of Hilbert–Schmidt operators.

Lemma C.4. For an operator T : K → H, K and H Hilbert spaces,
the following assertions are equivalent:

(i) T is `1-frame-bounded.

(ii) T factorises through an `1-space.

(iii) T is Hilbert-Schmidt.

Proof. Suppose that (i) holds, i.e., T is `1-frame-bounded. Let R :
H → `2(I) and L : `2(I) → H as in (C.2). Then T = LRT factors as
T = V U with

U :

{
K −→ `1(I)
x 7→ 〈RTx, eα〉

and V :

{
`1(I) −→ H
(λα)α 7→

∑
α λαLeα

and we have (ii). Next, recall that [?, Corollary 4.12] asserts that
Hilbert space operators are Hilbert-Schmidt if and only if they factor
through an L1-space. Hence (ii) implies (iii). Finally, if T : K → H is
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Hilbert-Schmidt, the singular value decomposition yields a representa-
tion

T =
∑
n

τnfn ⊗ en

with orthonormal systems (en)n and (fn)n and scalars τ = (τn)n ∈
`2(N). We extend (en)n in some way to an orthonormal basis (eα)α∈I
of H. Then∑

α

|〈Tf, eα〉| =
∑
n

|〈Tf, en〉| =
∑
n

|τn| |〈f, fn〉| ≤ ‖τ‖`2 ‖f‖K

by the Cauchy-Schwarz and the Bessel inequalities. Hence T is `1-
frame-bounded with |T |`1 ≤ ‖τ‖`2 = ‖T‖HS. �

Let us provide some other examples of `1-frame-bounded sets/operators.

Examples C.5. 1) The Wiener algebra A(T) is the set of continuous
functions on T = {z ∈ C | |z| = 1} that have absolutely summable
Fourier coefficients. Obviously, the embedding A(T) ⊆ L2(T) is `1-
frame-bounded.

2) As a consequence of the above item, every embedding into L2(T)
that factors through the Wiener algebra is `1-frame-bounded. This
implies, e.g., that the embedding Cs[0, 1] ⊆ L2[0, 1] is `1-frame-
bounded for s > 1/2

3) The embeddings Bs
pq[0, 1] ⊆ L2[0, 1] and Ws

p[0, 1] ⊆ L2[0, 1] are
`1-frame-bounded whenever s > 1/2.

We do not know whether the continuous analogue of Example 1) is
true, namely whether the embedding

A(R) := {f ∈ L1(R) | f̂ ∈ L1(R)} ⊆ L2(R)

is `1-frame-bounded. However, we have the following.

Lemma C.6. The canonical embedding W2
1(R) ↪→ L2(R) is `1-frame-

bounded.

Proof. Fix a function 0 ≤ η ∈ C∞(R) with supp(η) ⊆ (0, 2π), strictly
positive on [1, 2] and in such a way that with ηk(t) := η(t−k) one has

1 =
∑
k∈Z

ηk.

Then the double sequence (fn,k)(n,k)∈Z2 given by fn,k := ηke
in(·) forms

a (Gabor) frame on L2(R). (Take L=2π, α=1 and β=(2π)−1 in [?,
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Theorem 6.4.1].) Let g ∈W2
1(R). For n = 0,∑

k∈Z

∣∣∣∣∫ k+π

k−π
ηk(s)g(s) ds

∣∣∣∣ ≤ ‖g‖L1
.

For n 6= 0, a twofold integration by parts (with vanishing boundary
terms) yields∫ k+π

k−π
ηk(s)g(s)e−ins ds = − 1

n2

∫ k+π

k−π
[ηk(s)g(s)]′′e−ins ds.

Since [ηk(s)g(s)]′′ = ηk(s)g
′′(s) + 2η′k(s)g

′(s) +η′′kg(s) and since the ηk’s
are all translates of the same function,∣∣[ηk(s)g(s)]′′

∣∣ . 1(k−π,k+π)(s)
(
|g(s)|+ |g′(s)|+ |g′′(s)|

)
.

Hence ∑
n∈Z∗,k∈Z

|〈g, fn,k〉| . ‖g‖W2
1
. �

Using interpolation techniques one can see that Wα
1 (R) ⊆ L2(R) is

`1-frame-bounded for each α > 1.
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