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Abstract. We discuss admissibility and exact observability estimates of boundary observation

and interior point observation of a one-dimensional wave equation on a time dependent domain
for sufficiently regular boundary functions. We also discuss moving observers inside the non-

cylindrical domain and simultaneous observability results.

1. Introduction and main results

In this article we are concerned with exact observability of the
1D wave equation on a domain with time-dependent boundary.
To be precise, let s : R+ → (0,∞) and let

Ω =
{

(x, t) ∈ R2 : t ≥ 0 and 0 ≤ x ≤ s(t)
}
,

Where s(0) = 1 and ‖s′(t)‖L∞(R) < 1. The last condition
ensures amongst other things that the characteristic emerg-
ing from the origin hits the boundary in finite time. Let
f ∈ L2([0, 1]) and g ∈ H1

0 ([0, 1]) be initial values. We consider
a wave equation on Ω with Dirichlet boundary conditions

(W.Eq)


utt − uxx = 0 (x, t) ∈ Ω
u(0, t) = u(s(t), t) = 0 t ≥ 0
u(x, 0) = g(x) x ∈ [0, 1]
ut(x, 0) = f(x) x ∈ [0, 1]

x

t

1

Ω

x = s(t)

1.1. Existence of solutions. There are several natural approaches to (W.Eq). One may for
example transform the domain Ω to a cylindrical domain. Instead, seeking a natural and more
simple approach, we try to develop the solution u into a series of the form

(1.1) u(x, t) :=
∑
n∈Z

An

(
e2πin ϕ(t+x)) − e2πin ϕ(t−x)

)
where the coefficients An are given by the initial data (g, f). This approach has almost a century
of history, dating back to Nicolai [32] in the case of a linear moving boundary s(t) = 1 + εt and
Moore [30] for general boundary curves (however only asymptotic developments for ϕ are given).
We refer to Donodov [15, 14] for a large number of references. In order to satisfy the Dirichlet
boundary condition, we need a solution ϕ to the functional equation

(1.2) ϕ(t+ s(t))− ϕ(t− s(t)) = 1.

Because of the importance of this functional equation we fix the notation α(t) := t + s(t) and
β(t) := t − s(t) and mention that both are strictly increasing bijections from R+ to [±s(0),∞),
respectively. We will also consider γ = α ◦ β−1 : [−s(0),∞) → [s(0),∞). Most solutions to
(1.2) are useless for our purposes∗. On the other hand side, under reasonable assumptions on the
boundary function, differentiable solutions to (1.2) are unique, at least up to an additive constant.
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This is of course what we look for. In some easy cases a differentiable solution ϕ can be found
by calculus, see the following table for some examples. We refer to a detailed discussion on the
general situation in the appendix A.

Name Boundary function Solution to (1.2)

linear moving boundary s(t) = 1 + εt ε ∈ (0, 1) ϕ(t) = ln( 1+ε
1−ε )−1 ln(1+εt)

parabolic boundary s(t) =
√

1 + εt ε ∈ (0, 2) ϕ(t) = 1
2ε

√
ε2 + 4εt+ 4

hyperbolic boundary s(t) = 1
ε (−1 +

√
1+(1+εt)2) ε > 0 ϕ(t) = εt

1+εt

shrinking domain s(t) = 1
1+εt ε ∈ (0, 1) ϕ(t) = ε

4 (t+ 1
ε )2 .

For simplicity of notation, we shall always assume s(0) = 1 ; in case of hyperbolic boundaries some
straight-forward modifications have to be made. The common denominator of these examples is
the following: ϕ ∈ C2([−1,∞)) and ϕ′(t) > 0 for all t ≥ −1. We call s an admissible boundary
function if (1.2) admits such a solution ϕ.

Proposition 1.1. Let s be an admissible boundary function and assume the initial data f, g ∈
D((0, 1)). Then (g, f) determine uniquely a sequence (An)n∈Z ∈ `2 such that for t ≥ 0 and
0 ≤ x ≤ s(t), the function (1.1) is the solution of the moving boundary wave equation (W.Eq).

We start the proof with the following trivial observation.

Lemma 1.2. For fixed t0 ≥ 0, the family {e2πinϕ(x) : n ∈ Z}, is a complete orthonormal system
in H := L2([t0−s(t0), t0+s(t0)], ϕ′(x) dx).

For t0=0, we obtain as a particular case that the family (bn) with bn(x) = e2πinϕ(x) is an or-
thonormal basis in H := L2([−1, 1], ϕ′(x) dx). Since there is C > 0 such that 1

C ≤ ϕ′(x) ≤ C on

[0, 1], we have L2([−1, 1], ϕ′(x) dx) = L2([−1, 1], dx) as sets with equivalent respective norms†.

Proof of Proposition 1.1 . We let F (x) = −
∫ 1

x
f(s) ds and

h(x) :=

{
1
2g(x) + 1

2ϕ′(0)F (x) for 0 ≤ x ≤ 1

− 1
2g(−x) + 1

2ϕ′(0)F (−x) for −1 ≤ x < 0

By assumption, h ∈ H that we develop into the orthonormal basis: h =
∑

Z 〈h, bn〉 bn. We shall
always note

(1.3) An = 〈h, bn〉 =

∫ 1

−1
h(x)e2πinϕ(x)ϕ′(x) dx

Since g(0)=g(1)=0, we have h(1)=h(−1)=0. Hence the sequences (An) and (nAn) are square-
summable. Taking sum and difference, we find F (x) = ϕ′(0)(h(x) + h(−x)) and g(x) = h(x) −
h(−x), so

F (x) = ϕ′(0)
∑
n∈Z

An

(
e2πinϕ(x) + e2πinϕ(−x)

)
, x ∈ [0, 1]

and

g(x) =
∑
n∈Z

An

(
e2πinϕ(x) − e2πinϕ(−x)

)
, x ∈ [0, 1].

Since we suppose f, g ∈ D((0, 1)), h satisfies the periodicity condition h(α)(−1)=h(α)(1) for all
derivative orders α ≥ 0. As a consequence, the series of F , g and h above may be differentiated
term by term. We let

u(x, t) :=
∑
n∈Z

An

(
e2πin ϕ(t+x)) − e2πin ϕ(t−x))

)

†In particular, (bn) is a Riesz basis in L2([−1, 1]).
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Since ϕ ∈ C2([−1,∞)), u is twice differentiable and with respect to x and t. Moreover, partial
derivatives can be calculated term by term. As an immediate consequence, uxx − utt = 0 in the
interior domain Ω◦. Moreover, u satisfies the Dirichlet condition since for x = 0

u(0, t) =
∑
n∈Z

An

(
e2πin ϕ(t)) − e2πin ϕ(t))

)
= 0

whereas for x = s(t), thanks to the functional equation (1.2),

u(s(t), t) =
∑
n∈Z

An

(
e2πin ϕ(t+s(t)) − e2πin ϕ(t−s(t))

)
=
∑
n∈Z

Ane
2πin ϕ(t+s(t))

(
1− e−2πin

)
= 0.

Finally, u(x, 0) = g(t) and ut(x, 0) = f(t) by direct calculation. �

The series representation of the solution is the key to obtain explicit and precise constants for
admissibility and exact observability in different situations, since they can be played back to
classical Fourier analysis.
Let us fix some often appearing constants:

m(t) = min{ϕ′(x) : x ∈ [t− s(t), t+ s(t)]} and

M(t) = max{ϕ′(x) : x ∈ [t− s(t), t+ s(t)]}.
(1.4)

Since on [0, 1], m(0) ≤ ϕ′(x) ≤M(0), we may use the unweighted Poincaré inequality on [0, 1] to
show that

(1.5)
∥∥(g, f)

∥∥2
H1

0 ([0,1];
dx

ϕ′(x) )×L2([0,1];
dx

ϕ′(x) )
:=
∥∥∇g∥∥2

L2([0,1];
dx

ϕ′(x) )
+
∥∥f∥∥2

L2([0,1];
dx

ϕ′(x) )
.

is an equivalent to ‖g‖2
L2([0,1];

dx
ϕ′(x) )

+ ‖g′‖2
L2([0,1];

dx
ϕ′(x) )

+ ‖f‖2
L2([0,1];

dx
ϕ′(x) )

. The notation

‖(g, f)‖2H1
0×L2

:= ‖g′‖2L2(0,1)
+ ‖f‖2L2(0,1)

(without specifying intervals or weights) always refers to the unweighted norms on [0, s(0)] = [0, 1].

Proposition 1.3. We have the following estimate

8π2m(0)
∑
n∈Z

n2|An|2 ≤ ‖(g, f)‖2H1
0×L2

≤ 8π2M(0)
∑
n∈Z

n2|An|2,

where the constants are given by (1.4).

Proof. Recall that g(x) = h(x)− h(−x) and F (x) = h(x) + h(−x) on [0, 1]. Therefore∥∥(g, f)
∥∥2
H1

0×L2
=
∥∥g′∥∥2

L2([0,1])
+
∥∥F ′∥∥2

L2([0,1])

=
∥∥h′(·) + h′(−(·))

∥∥2
L2([0,1])

+
∥∥h′(·)− h′(−(·))

∥∥2
L2([0,1])

= 2
∥∥h′∥∥2

L2([0,1])
+ 2
∥∥h′(−·)∥∥2

L2([0,1])
= 2
∥∥h′∥∥2

L2([−1,1])

by parallelogram identity. Estimating the maximum of ϕ′ and 1
ϕ′ on [−1, 1] allows to relate∥∥h′∥∥2

L2([−1,1],ϕ′(x) dx)
and

∥∥h′∥∥2
L2([−1,1])

, and the result follows by Parseval’s identity. �

Observe that for the concrete examples we discuss later, the minimum respectively maximum is
easy to calculate; we obtain therefore explicit constants in Proposition 1.3.
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1.2. Energy estimates. Define the energy of the problem (W.Eq) as

Eu(t) = 1
2

∫ s(t)

0

|ux(x, t)|2 + |ut(x, t)|2 dx.

for all t ≥ 0. When t = 0, we see that Eu(0) = 1
2‖(g, f)‖2

H1
0×L2(0,1)

. In the case of a 1D-wave

equation with time-invariant boundary (i.e. s ≡ 1) the energy is constant. In time-dependent
domains it decays when s′(t) > 0 and increases when s′(t) < 0.

Lemma 1.4. The function t 7→ Eu(t) is decreasing for t ≥ 0 if s′(t) > 0 and increasing when
s′(t) < 0. More precisely,

(1.6) d
dtEu(t) = s′(t)

2 (s′(t)2 − 1) |ux(s(t), t)|2.
Proof. Differentiating the constant zero function u(s(t), t) with respect to t yields ut(s(t), t) =
−s′(t) ux(s(t), t). We use this twice in the following calculation.

d
dtEu(t) = 1

2s
′(t)(u2t + u2x)

∣∣
x=s(t)

+ 1
2

∫ s(t)

0

∂
∂t (u

2
t + u2x) dx

= s′(t)
2 (1+s′(t)2) (u2x)

∣∣
x=s(t)

+

∫ s(t)

0

(ututt + uxutx) dx

= s′(t)
2 (1+s′(t)2) (u2x)

∣∣
x=s(t)

+

∫ s(t)

0

(utuxx + uxutx) dx

(integration by parts) = s′(t)
2 (1+s′(t)2) (u2x)

∣∣
x=s(t)

+
[
utux

]x=s(t)
x=0

= s′(t)
2 (1+s′(t)2) (u2x)

∣∣
x=s(t)

+utux
∣∣
x=s(t)

= s′(t)
2 (s′(t)2 − 1) |ux(s(t), t)|2.

Recall that ‖s′‖∞ < 1 to conclude that sign( ddtEu(t)) = −sign(s′(t)). �

Proposition 1.5. For (W.Eq) the following energy estimate holds

(1.7) m(t)
2M(0)

∥∥(g, f)
∥∥2
H1

0×L2
≤ Eu(t) ≤ M(t)

2m(0)

∥∥(g, f)
∥∥2
H1

0×L2

where the constants are given by (1.4).

Proof. Taking term by term derivatives in (1.1) gives

ux(x, t) = 2πi
∑
n∈Z

nAn
(
ϕ′(t+x)e2πinϕ(t+x) + ϕ′(t−x)e2πinϕ(t−x)

)
ut(x, t) = 2πi

∑
n∈Z

nAn
(
ϕ′(t+x)e2πinϕ(t+x) − ϕ′(t−x)e2πinϕ(t−x)

)
Therefore, using parallelogram identity as in the proof of Proposition 1.3,

2Eu(t) =

∫ s(t)

0

∣∣ux(x, t)
∣∣2 +

∣∣ut(x, t)∣∣2 dx

= 8π2
(∫ s(t)

0

∣∣∣∑
n∈Z

nAnϕ
′(t+x)e2πinϕ(t+x)

∣∣∣2 dx +

∫ s(t)

0

∣∣∣∑
n∈Z

nAnϕ
′(t−x)e2πinϕ(t−x)

∣∣∣2 dx
)

= 8π2

∫ t+s(t)

t−s(t)

∣∣∣∑
n∈Z

nAn
(
ϕ′(y)e2πinϕ(y)

)∣∣∣2 dy.

This yields the double inequality

4π2m(t) a(t) ≤ Eu(t) ≤ 4π2M(t) a(t)

where

a(t) =

∫ t+s(t)

t−s(t)

∣∣∣∑
n∈Z

nAne
2πinϕ(y)

∣∣∣2ϕ′(y) dy.
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By Lemma 1.2 and Proposition 1.3 we conclude. �

2. Point Observations

2.1. Boundary Observation. Recall the notation α(t) = t+s(t), β(t) = t−s(t) and γ = α◦β−1.

Theorem 2.1. For any admissible boundary curve s(t) and solution u to the moving boundary
wave equation (W.Eq) given by (1.1) the following double inequality holds:

(2.1) 2m(β−1(0))
M(0)

∥∥(g, f)
∥∥2
H1

0×L2
≤

∫ γ(0)

0

∣∣ux(0, t)
∣∣2 dt ≤ 2M(β−1(0))

m(0)

∥∥(g, f)
∥∥2
H1

0×L2

In particular, with the observations Cψ = ψx(0) the problem (W.Eq) is exactly observable in time
τ if and only if τ ≥ γ(0).

Proof. Differentiating u term by term, and evaluating at x = 0 we have for all τ > 0

‖ux(0, t)‖L2(0,τ,
1

ϕ′(t) )
=

∫ τ

0

∣∣∣4πi∑
n∈Z

nAnϕ
′(t)e2πinϕ(t)

∣∣∣2 dt
ϕ′(t) .

Consider β(t) = t−s(t) with domain t ∈ [0,+∞). Clearly, β(t) is strictly increasing and since
β(0) = −1 < 0, there exist a unique t0 such that β(t0) = 0. Let τ0 := t0+s(t0) = γ(0). Then, by
Lemma 1.2,

‖ux(0, t)‖2L2(0,τ0,
1

ϕ′(t) )
= 16π2

∑
n∈Z

n2|An|2

Clearly,
1

M(t0)
‖ux(0, t)‖2L2(0,τ0)

≤ ‖ux(0, t)‖2L2(0,τ0,
1

ϕ′(t) )
≤ 1

m(t0)
‖ux(0, t)‖2L2(0,τ0)

.

Combining this with Proposition 1.3, we find our double inequality. From this is obvious that
observation times τ ≥ τ0 suffice. On the other hand, if τ < τ0, ‖ux(0, t)‖2

L2(0,τ,
1

ϕ′(t) )
and

∑
n2|An|2

cannot be comparable, which is easy to see by a change of variables bringing it back the the
standard trigonometric orthonormal basis of L2(0, 1). This shows, again by Proposition 1.3, that
exact observation is impossible. �

Theorem 2.2. For the solution u given by (1.1) to the moving boundary wave equation (W.Eq)
the following double inequality holds:

(2.2) C1

∥∥(g, f)
∥∥2
H1

0×L2
≤

∫ γ−1(0)

0

∣∣ux(s(t), t)
∣∣2 dt ≤ C2

∥∥(g, f)
∥∥2
H1

0×L2

where C1 = m(0)
2M(0)(1+‖s′‖∞) (1+m(t0)

M(t0)
)2 and C2 = M(0)

2m(0)(1−‖s′‖∞) (1+M(t0)
m(t0)

)2.

In particular, with the observations M(t)ψ = ψx(s(t)) the problem (W.Eq) is exactly observable
in time τ if and only if τ ≥ γ−1(0).

Proof. Next we consider observation on the right boundary x = s(t). As in the proof of Theo-
rem 2.1, let t0 be such that β(t0) = t0−s(t0) = 0 and define τ0 := γ−1(0). Taking the derivative
of u(x, t) with respect to x term by term, substituting x = s(t) and exploiting (1.2) yields

ux(s(t), t) = 2πi
∑
n∈Z

nAn

(
e2πinϕ(t+s(t))ϕ′(t+ s(t))) + e2πinϕ(t−s(t))ϕ′(t− s(t))

)
= 2πi

∑
n∈Z

ϕ′(t− s(t))e2πinϕ(t−s(t))nAn
(

1 +
ϕ′(t+ s(t))

ϕ′(t− s(t))

)(2.3)

Then

(2.4) (1 + m(t0)
M(t0)

) ≤
(

1 +
ϕ′(t+ s(t))

ϕ′(t− s(t))

)
≤ (1 + M(t0)

m(t0)
)

Let ω(t) = 1−s′(t)
ϕ′(t−s(t)) . Then∥∥ux(s(t), t)

∥∥2
L2(0,τ0,ω(t) dt)

∼ 4π2

∫ τ0

0

∣∣∣∑
n∈Z

e2πinϕ(t−s(t))nAn

∣∣∣2ϕ′(t−s(t))(1−s′(t)) dt
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where the equivalence comes from (2.4). We make the change of variables ξ = ϕ(t−s(t)) and
observe that (1.2) gives an upper bound of the integral to be ϕ(β(τ0))) = 1 + ϕ(β(0)). So∥∥ux(s(t), t)

∥∥2
L2(0,τ0,ω(t) dt)

∼ 4π2

∫ ϕ(β(0))+1

ϕ(β(0))

∣∣∣∑
n∈Z

e2πinξnAn

∣∣∣2 dξ = 4π2
∑
n∈Z

n2|An|2

We summarise:

4π2(1 + m(t0)
M(t0)

)2
∑
n∈Z

n2|An|2 ≤
∥∥ux(s(t), t)

∥∥2
L2(0,τ0,ω(t) dt)

≤ 4π2(1 + M(t0)
m(t0)

)2
∑
n∈Z

n2|An|2

We conclude the proof observing that 1−‖s′‖∞
M(0) ≤ ω(t) ≤ 1+‖s′‖∞

m(0) which allows to remove the

weight function:

4π2m(0)
1+‖s′‖∞ (1 + m(t0)

M(t0)
)2
∑
n∈Z

n2|An|2 ≤
∥∥ux(s(t), t)

∥∥2
L2(0,τ0)

≤ 4π2M(0)
1−‖s′‖∞ (1 + M(t0)

m(t0)
)2
∑
n∈Z

n2|An|2

We conclude using Proposition 1.3. �

Let us finish this paragraph with a little observation. The
optimal times for boundary observations given in Theo-
rems 2.1 and 2.2 are precisely the times where a character-
istic emerging from the left (resp. right) boundary point
x = 0, resp. x = 1 hit again the boundary curve, see the
picture on the right.
A second remark is that since u(s(t), t) = 0, taking deriv-
ative with respect to t gives s′(t)ux(s(t), t) = −ut(s(t), t).
We may hence replace ux by ut in the inequality (2.2), at
the only price to modify the constants by a factor ‖s′‖∞ .

x

t

1

x = s(t)γ(0)

γ−1(0)

Somehow a similar result to Theorem 2.2 in a dual setting in terms of controllability have been
shown in [13] for the special case of a linear moving wall s(t) = 1 + εt by a transformation to a
cylindrical domain proposed by Miranda [29]. The minimal control time estimate was however far
from optimal. Their result (again only for the linear moving wall case) was subsequently improved
in [34] who found the same minimal control time as ourselves by a different method‡.

2.2. Internal Point observation. Next, we turn our attention to observation on an internal
point. In the situation where s(t) = 1 and hence ϕ(x) = x, the solution u to (W.Eq) is given by
a sine-series (due to Dirichlet boundary conditions),

u(x, t) =
∑
n∈Z

ane
iπnt sin

(
nπx

)
.

Consequently, internal point observation at x=a is not possible when a ∈ Q since then infinitely
many terms in the sum vanish, independently of the leading coefficient. One way to counter this
problem is to obtain observability results for the average of |u|2 in a small neighbourhood of a
fixed internal point a, see [17]. It is also well known that another way to counter this problem
is to consider a moving interior point, see for example [8, 22, 21]. We follow in this article the
idea that fixed domain with moving observers should somehow behave similar to moving domains
with fixed observers. The following result confirms this intuition: for any fixed point a ∈ (0, 1),
consider a Neumann observer defined by Cu = ux(a, t) to the solution u of the moving boundary
wave equation (W.Eq).

‡Caution: when writing out the parametrisation of the boundary integral in [34, formula (2.2)], the authors

forget a factor (1+ε)1/2. This wrong factor then appears in many subsequent estimates in their paper.
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Theorem 2.3. Let s be an monotonic admissible boundary curve and ϕ be a C2-solution to (1.2).
Assume additionally that ϕ′ is strictly decreasing if s(·) is increasing or that ϕ′ is strictly increasing
if s(·) is decreasing, respectively.
Then solution u to the wave equation (W.Eq) satisfies the following double inequality:

C1(a)
∥∥(g, f)

∥∥2
H1

0×L2
≤

∫ a+γ(−a)

0

∣∣ux(a, t)
∣∣2 dt ≤ C2(a)

∥∥(g, f)
∥∥2
H1

0×L2
,

where the constants C1 and C2 depend only on s(·) and a. We provide them explicitly in the proof.

Proof. Let t1 = β−1(−a) and τa = a+ γ(−a). Term by term differentiation of (1.1) with respect
to x gives

ux(a, t) = 2πi
∑
n∈Z

nAn

(
e2πinϕ(t+a)ϕ′(t+ a) + e2πinϕ(t−a)ϕ′(t− a)

)
First we suppose that ϕ′ is strictly decreasing. We first calculate a weighted L2-norm with ωa(t) =

1
ϕ′(t−a) :

A−B ≤ ‖ux(a, t)‖L2(0,τa,ωa(t) dt) ≤ A+B

with

A := 2π
∥∥∥∑
n∈Z

nAne
2πinϕ(t−a)ϕ′(t− a)

∥∥∥
L2(0,τa,ωa(t) dt)

B := 2π
∥∥∥∑
n∈Z

nAne
2πinϕ(t+a)ϕ′(t+ a)

∥∥∥
L2(0,τa,ωa(t) dt)

.

To estimate A, the change of variables s = t− a together with Lemma 1.2 therefore gives

A2 = 4π2
∑
n∈Z

n2|An|2.

For B, we have

B2 = 4π2

∫ τa

0

∣∣∣∑
n∈Z

nAn(e2πinϕ(t+a)ϕ′(t+ a))
∣∣∣2ωa(t) dt

Since ϕ′ is strictly decreasing, 0 < ϕ′(t+a)
ϕ′(t−a) < 1 for all t ∈ [0, τa] and so qa := max[0,τa]

ϕ′(t+a)
ϕ′(t−a) < 1.

We then have

B2 ≤ 4π2qa

∫ τa

0

∣∣∣∑
n∈Z

nAne
2πinϕ(t+a)ϕ′(t+ a))

∣∣∣2 1
ϕ′(t+a) dt

= 4π2qa

∫ a+τa

a

∣∣∣∑
n∈Z

nAne
2πinϕ(s)

∣∣∣2ϕ′(s) ds

Recall that a + τa = 2a + γ(−a). Since s′ ≥ 0, we have γ′ ≥ 1 and so 2a + γ(−a) ≤ γ(a). By
Lemma 1.2 we infer

B2 ≤ 4π2qa

∫ γ(a)

a

∣∣∣∑
n∈Z

nAne
2πinϕ(s)

∣∣∣2ϕ′(s) ds = 4π2qa
∑
n∈Z

n2|An|2.

Putting both on A and B estimates together, and using Proposition 1.3, we get the lower estimate

‖ux(a, t)‖2L2(0,τa)
≥ m(t1)

∥∥ux(a, t)
∥∥2
L2(0,τa,ωa(t) dt)

≥ 4π2m(t1)(1−√qa)2
∑
n∈Z

n2|An|2

≥ C1(a)
∥∥(g, f)

∥∥2
H1

0×L2

with C1(a) = m(t1)
2M(0) (1−

√
qa)2. The upper estimate is similar; we find C2(a) = M(t1)

2m(0) (1+
√
qa)2.

In the case where ϕ′ is strictly increasing we use ω̃a(t) = 1
ϕ′(t+a) as a weight function and change

the rôles of A and B. The result follows the same lines then. �
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We observe that the same proof also gives the double inequality

C1(a)
∥∥(g, f)

∥∥2
H1

0×L2
≤

∫ a+γ(−a)

0

∣∣ut(a, t)∣∣2 dt ≤ C2(a)
∥∥(g, f)

∥∥2
H1

0×L2
.

Discussion. One may formulate (W.Eq) as an abstract non-autonomous Cauchy problem, for
example as follows: let Ht = L2([0, s(t)]) and define

D(A(t)) = H1
0 ([0, s(t)] ∩H2([0, s(t)]) and A(t)f = f ′′

Then A(t) is the generator of an analytic semigroup on Ht. For t ≥ 0, we let Ht = H1
0 ([0, s(t)])×

L2([0, s(t)]) and

D(a(t)) = D(A(t))×H1
0 ([0, s(t)]) and a(t) =

(
0 I

A(t) 0

)
.

With this notation (W.Eq) rewrites as

(2.5)

{
x′(t) = a(t)x(t)

x(0) = x0 = (g, f) ∈ H0.

The observation of t 7→ ux(a, t) discussed in the theorem is then realised with observation operators
C(t) : D(a(t)) → C defined by C(t)(v, w)t = vx(a). Theorem 2.3 states in particular exact
observability on [0, τ ] if and only if τ ≥ a+γ(−a). It is remarkable that this holds true, although,
for a dense subset of values of t0 (precisely if a/s(t0) ∈ Q) the “frozen” evolution equations

x′(t) + a(t0)x(t) = 0 y(t) = C(t)x(t)

are not exactly observable by the sine-series argument given above for the case s(t) = 1. This
could now lead to the intuition that the non-observability on for all t > 0 such that a/s(t) ∈ Q
is an “almost everywhere phenomenon”, and may be ignored. This idea is partially contradicted
by the following result, where the observation position depends on time and may be such that the
ratio a(t)/s(t) ∈ Q for all t > 0.

Theorem 2.4. Let s(t) = 1 + εt and a(t) = as(t) for some a ∈ (0, 1). Then the solution u to the
wave equation (W.Eq) satisfies the following admissibility and observation inequality:

C1(a, ε)
∥∥(g, f)

∥∥2
H1

0×L2
≤

∫ 2
1−ε

0

∣∣ut(a(t), t)
∣∣2 dt ≤ C2(a, ε)

∥∥(g, f)
∥∥2
H1

0×L2

The constants C1 and C2 depend only on a and ε. We provide them explicitly in the proof.

Proof. Recall that the solution u of the equation (W.Eq) can be written in the form (1.1) with
ϕ(t) = Cε ln(1+εt), see the table on page 2. Taking the derivative respected to t gives

ut(x, t) = 2πi
∑
n∈Z

nAn

(
e2πinϕ(t+x)ϕ′(t+x)− e2πinϕ(t−x)ϕ′(t−x)

)
Substituting x = a(t), we get

ut(a(t), t) = 2πi
∑
n∈Z

nAn

(
e2πinϕ(t+a(1+εt))ϕ′(t+ a(1+εt))− e2πinϕ(t−a(1+εt))ϕ′(t− a(1+εt))

)
By calculation, we have the followings identities

ϕ(t± a(1+εt)) = ϕ(t) + ϕ(±a)

ϕt(t± a(1+εt)) = 1
εϕ
′(t)ϕ′(±a)

Plugging them into the preceding equation we get

ut(a(t), t) = 2πi
ε

∑
n∈Z

An

(
e2πin (ϕ(t)+ϕ(a))ϕ′(t)ϕ′(a)− e2πin (ϕ(t)+ϕ(−a))ϕ′(t)ϕ′(−a))

)
= 2πi

ε

∑
n∈Z

Ane
2πinϕ(t)ϕ′(t)

(
e2πinϕ(a)ϕ′(a)− e2πinϕ(−a)ϕ′(−a)

)
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Let t0 = 1
1−ε . Then [t0−s(t0), t0+s(t0)] = [0, 2

1−ε ] and so, using Lemma 1.2,∥∥ut(a(t), t)
∥∥2
L2(0,

2
1−ε ,

1
ϕ′(t) )

= 4π2

ε2

∫ 2
1−ε

0

∣∣∣∣∑
n∈Z

e2πinϕ(t)ϕ′(t)nAn

(
e2πinϕ(a)ϕ′(a)− e2πinϕ(−a)ϕ′(−a)

)∣∣∣∣2 1
ϕ′(t) dt

= 4π2

ε2

∑
n∈Z

n2|An|2
∣∣e2πinϕ(a)ϕ′(a)− e2πinϕ(−a)ϕ′(−a))

∣∣2
Now we need to estimate the multiplicative term

M2
n =

∣∣e2πinϕ(a)ϕ′(a)− e2πinϕ(−a)ϕ′(−a))
∣∣2

= ϕ′(a)2 + ϕ′(−a)2 − 2ϕ′(a)ϕ′(−a) cos
(

2πn(ϕ(a)− ϕ(−a))
)
.

Clearly, (ϕ′(a)− ϕ′(−a))2 ≤M2
n ≤ (ϕ′(a) + ϕ′(−a))2 ; by direct calculation,

(ϕ′(a)− ϕ′(−a))2 = C2
ε

4ε4a2

(1−ε2a2)2
and (ϕ′(a) + ϕ′(−a))2 = C2

ε

4ε2

(1−ε2a2)2

Therefore, by Proposition 1.3,

16π2ε2a2

(1−ε2a2)2η2ε

∑
n∈Z

n2|An|2 ≤ ‖ut(a(t), t)‖2L2(0,
2

1−ε ,
1

ϕ′(t) )
≤ 16π2

(1−ε2a2)2η2ε

∑
n∈Z

n2|An|2

Now we apply Proposition 1.3 to conclude. We find

C1(a, ε) = 1−ε
1+ε

2ε2a2

(1−ε2a2)2η2ε
and C2(a, ε) = 1+ε

1−ε
2

(1−ε2a2)2η2ε
. �

2.3. Simultaneous exact observability. A last result in this section concerns simultaneous
exact observability : consider a system of two coupled 1D wave equations, one of which has
a fixed boundary, and the second has the moving domain 0 ≤ x ≤ s(t) as above. Assume
that we can observe only the combined force exerted by the strings at the common endpoint

ϕ(t) = u
(1)
x (0, t) + u

(2)
x (0, t), for t ∈ [0, T ]. The question is whether we can still exactly observe all

initial data. Our system is defined as

(W2)


utt − uxx = 0 (x, t) ∈ Ω
vtt − vxx = 0 −1 ≤ x ≤ 0
u(0, t) = u(s(t), t) = v(−1, t) = v(0, t) = 0 t ≥ 0
u(x, 0) = g(x), ut(x, 0) = f(x) x ∈ [0, 1]

v(x, 0) = g̃(x), vt(x, 0) = f̃(x) x ∈ [−1, 0]

Theorem 2.5. Let s(·) be an admissible boundary curve and assume additionally that either

lim inf
t→∞

γ′(t) > 1 or γ′(t) = 1 + ax−δ + o(t−δ), 0 < δ < 1, a > 0.

Moreover assume that ϕ′ is bounded on R+. Let (u, v) be the solution to (W2). Then, for all λ > 0
there exists τ0 > 2 such that for all τ ≥ τ0

(2.6) λ
(∥∥(g, f)

∥∥2
H0

1×L1
+
∥∥(g̃, f̃)

∥∥2
H0

1×L2

)
≤

∫ τ

0

∣∣ux(0, t) + vx(0, t)
∣∣2dt

Our assumptions include the cases of linear moving boundaries, parabolic boundaries and hyper-
bolic boundaries. However, for the shrinking domain they are not satisfied.

Proof. By the triangle inequality we have(∫ τ

0

∣∣ux(0, t) + vx(0, t)
∣∣2 dt

)1/2

≥ A(τ)−B(τ)

where

A(τ) =
(∫ τ

0

∣∣vx(0, t)
∣∣2 dt

)1/2

and B(τ) =
(∫ τ

0

∣∣ux(0, t)
∣∣2 dt

)1/2
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It is well known that the solution v of the wave equation with the fixed boundary can be expressed
as a pure sine series

(2.7) v(x, t) =
∑
n∈Z

ane
πin t sin

(
nπx

)
,

where (nan)n∈Z ∈ `2 and hence (an)n∈Z ∈ `2. Consequently, for all t ≥ 0, the energy of v is
constant: indeed, by direct computation,

Ev(t) = 1
2

∫ 1

0

∣∣∂v(x,t)
∂t

∣∣2 +
∣∣∂v(x,t)

∂x

∣∣2 dx = π2

2

∑
n∈Z

n2a2n

We also have ∫ 2

0

∣∣vx(0, t)
∣∣2 dt =

∫ 2

0

∣∣∣∑
n∈Z

πnane
iπnt

∣∣∣2 dt = 4Ev(0).

Hence, using periodicity of v, we obtain (recall τ ≥ 2)

A(τ)2 =

∫ τ

0

∣∣vx(0, t)
∣∣2 dt ≥ 4b τ2 c Ev(0)

Next we turn to an estimate for B(τ). Recall that

ux(0, t) = 4πi
∑
n∈Z

nAnϕ
′(t)e2πinϕ(t)

Let t0 = 0 and tn = γ(n)(t0). By construction of tn and (1.2),

ϕ(tn+1)− ϕ(tn) = ϕ(γ(tn))− ϕ(tn) = 1.

Hence, by Lemma 1.2, e2πinϕ(x) is an orthonormal system on L2([tn, tn+1], ϕ′(t) dt).
An inspection of the proof of Theorems A.1 and A.2 shows that if lim inft→∞ γ′ > 1, tn → +∞
exponentially, whereas the asymptotics γ′(t) = 1 + at−δ + o(t−δ) ensures tn ∼ cn1/δ. Let N(τ) be
the unique integer satisfying tn ≤ τ < tn+1. Let C = sup{ϕ′(t) : t ≥ 0}. Then

B(τ) =

∫ τ

0

∣∣ux(0, t)
∣∣2 dt ≤

∫ τ

0

∣∣ux(0, t)
∣∣2 1
ϕ′(t) dt

≤ C
N(τ)∑
j=0

∫ tj+1

tj

∣∣ux(0, t)
∣∣2 1
ϕ′(t) dt

≤ 16π2C(N(τ)+1)
∑
n∈Z

n2|An|2

≤ 2C
m(0) (N(τ)+1)

(
‖g(1)(x)‖2H0

1 (0,1)
+ ‖f (1)(x)‖2L2(0,1)

)
.

We obtained so far that∫ τ

0

∣∣ux(0, t) + vx(0, t)
∣∣2 dt ≥ A(τ)2 −B(τ)2

≥ 4b τ2 c Ev(0)− 2C
m(0) (N(τ)+1)

(
‖g(1)(x)‖2H0

1 (0,1)
+ ‖f (1)(x)‖2L2(0,1)

)
The first term grows linearly in τ . The second term is o(τ) since in case of exponential growth of
the sequence tn, N(τ) behaves logarithmically and in case that tn ∼ cn1/δ, N(τ) ∼ τ δ with δ < 1.
Hence, the difference tends to infinity with τ → +∞, which means that for all λ > 0 there exists
τ0 > 0 such that for τ ≥ τ0,∫ τ

0

∣∣ux(0, t) + vx(0, t)
∣∣2 dt ≥ 2λ

(
E(u)(0) + Ev(0)

)
= λ

(∥∥(g, f)
∥∥2
H1

0×L2
+
∥∥(g̃, f̃)

∥∥2
H1

0×L2

)
. �



EXACT OBSERVABILITY OF A 1D WAVE EQUATION ON A NON-CYLINDRICAL DOMAIN 11

3. Additional results

Variants of the construction. We mention that for our usual choice of ϕ, a series of the type

u(x, t) :=

∞∑
n=0

Cn

∫ t+x

t−x
exp(2πinϕ(y)) dy

will solve the wave equation on the moving boundary domain with boundary condition u(0, t) =
ut(s(t), t) = 0.

3.1. Duality. Without detailed proofs we state dual results to our results formulated as null-
controllability in the sense of ’transposition’.

Dirichlet control on boundary. Let s be an admissible boundary curve, v the solution to the wave
equation on Ω. Let (Gv)(t) = (v(0, t), v(s(t), t)) be the trace of v on the two boundary points.
Then for either choice, ζ(t) = (y(t), 0) or ζ(t) = (0, y(t)) the boundary controlled wave equation

(3.1)


vtt − vxx = 0 (x, t) ∈ Ω

(Gv)(t) = ζ(t) t ≥ 0
v(x, 0) = g ∈ L2([0, 1]) x ∈ [0, 1]
vt(x, 0) = f ∈ H−1([0, 1]) x ∈ [0, 1]

is null-controllable in times τ = γ(0) in case ζ(t) = (y(t), 0) and in time τ = γ−1(0) in case
ζ(t) = (0, y(t)). The null control can be achieved by the control function y(t) = −ux(0, t), or
y(t) = −ux(s(t), t), respectively where u(·) is the solution to (W.Eq).

Simultaneous Null Control. Next we focus on the dual statement to Theorem 2.3 in terms of null-
controllability. Instead of one wave equation on Ω, we consider two wave equations with mixed
boundary conditions, one on the cylindrical domain [0, a] × R+ and one on the non-cylindrical
domain {(x, t) : a ≤ x ≤ s(t)}. Both equations are coupled via the control function ζ in the
following way:

(3.2)



vtt − vxx = 0 0 ≤ x ≤ a
wtt − wxx = 0 a ≤ x ≤ s(t)
v(0, t) = w(s(t), t) = 0 t ≥ 0
v(a−, t) = w(a+, t) t ≥ 0
vx(a−, t)− wx(a+, t) = ζ(t) t ≥ 0
v(x, 0) = g(x), vt(x, 0) = f(x) x ∈ [0, a]
w(x, 0) = g(x), wt(x, 0) = f(x) x ∈ [a, 1]

Then Theorem 2.3 implies that (3.2) is null-controllable in time τ ≥ a+γ(−a). The control can
be achieved by letting ζ(t) = ux(a, t) where u(·) is the solution to (W.Eq).

3.2. Boundary stabilization. Finally we consider a linear boundary stabilisation of the wave
equation (W.Eq) by a feedback of the Neumann observation on the moving boundary. Since the
boundary depends on time, it seems reasonable to consider time-dependent boundary feedbacks
as well. We are thus lead to study for a positive function λ

(3.3)


utt − uxx = 0 (x, t) ∈ Ω
u(0, t) = 0 t ≥ 0
ut(s(t), t) = −λ(t)ux(s(t), t) t ≥ 0
u(x, 0) = g(x) x ∈ [0, 1]
ut(x, 0) = f(x) x ∈ [0, 1]

The solution of a wave equation of the general form u(x, t) = a(t + x) + b(t − x). The Dirichlet
boundary condition on x=0 forces a = −b. Next, we find u(x, 0) = a(x) − a(−x) = g and
ut(x, 0) = a′(x) − a′(−x) = f . Hence, g′ + f = 2a′ fixes a′ (in an L2 sense) on [0, 1] whereas
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g′ − f = 2a′(−x) fixes a′ on [−1, 0). Most interestingly is the impact of the boundary condition
ut + λux

∣∣
x=s(t)

= 0: we get

0 = ut(s(t), t) + λ(t)ux(s(t), t))

= (a′(t+ s(t))− a′(t− s(t))) + λ(t) (a′(t+ s(t)) + a′(t− s(t)))
= (1 + λ(t))a′(t+ s(t))− (1− λ(t))a′(t− s(t))

(3.4)

so that

(3.5)
a′(t+ s(t))

a′(t− s(t))
=

1− λ(t)

1 + λ(t)
or

a′ ◦ γ
a′

=
1− λ
1 + λ

◦ β−1,

where we re-used our definition α(t) = t+s(t), β(t) = t−s(t), and γ = α ◦ β−1. Since the initial
data fixes a′ on [−1, 1] = [−1, γ(−1)], this fixes the function a′ for all t > −1 by iteration of γ.
The problem (3.3) has therefore a uniquely determined solution uλ. Let us turn to the calculation
of the actual energy of the solution:

Eλ(t) = 1
2

∫ s(t)

0

|ut(x, t)|2 + |ux(x, t)|2 dx

= 1
2

∫ s(t)

0

|a′(t+ x)− a′(t− x)|2 + |a′(t+ x) + a′(t− x)|2 dx

=

∫ s(t)

0

|a′(t+ x)|2 + |a′(t− x)|2 dx =

∫ t+s(t)

t−s(t)
|a′(y)|2 dy

=

∫ α(t)

β(t)

|a′(y)|2 dy.

Using the boundary conditions of (3.3), we get from the first equality together with (3.5)

E′λ(t) = s′(t)
2

(
|ut(s(t), t)|2 + |ux(s(t), t)|2

)
+
[
ut(x, t)ux(x, t)

]x=s(t)
x=0

=
(
s′(t)
2 (1 + λ(t)2)− λ(t)

)
|ux(s(t), t)|2

= 2s′(t)(1+λ(t)2−4λ(t)
(1+λ(t))2 |a′(t− s(t))|2.

(3.6)

It is obvious that the energy decays if s′ < 0, for whatever choice of λ > 0. In the case that s′ > 0,
a simple calculation shows that the energy decays strictly for λ ∈ (as, bs) where

as = 1
‖s′‖∞

(
1−

√
1− ‖s′‖2∞

)
and bs = 1

‖s′‖∞

(
1 +

√
1− ‖s′‖2∞

)
Observe that 1 ∈ (as, bs).

(a) If we calculate, for fixed t, the optimal value for a time-varying coefficient λ(t) in (3.6) we find
the maybe surprising result λ(t) = 1 for all t > 0. Indeed, in this case a′(t+ s(t)) = 0 for all t > 0
and, whence a(t) is constant for t > 1. We observe therefore extinction in finite time: precisely
u(x, t) = 0 for min(t+ x, t− x) > 1. Inspecting the illustration on page 6, this corresponds to the
time t = γ−1(0), i.e. the time the characteristic emerging from x=1 needs to come back to the
moving boundary after reflection on the axis x=0. This phenomenon is well known in the case of
the time-independent case s(t)=1, see e.g. [23, Theorem 0.5]

We now discuss what happens for fixed λ ∈ (as, bs), λ 6= 1 and increasing boundary curves. First,
(3.5) implies that a′ ◦ γ = q · a′ where q = 1−λ

1+λ satisfies |q| < 1. We let t0 = 0 and tn+1 = γ(tn),

n ≥ 0. Then (tn) is an increasing sequence and E(tn) ≥ E(t) ≥ E(tn+1) for t ∈ [tn, tn+1] by
monotony. Writing x0 = −1 and xn+1 = γxn,

E(tn) =

∫ α(tn)

β(tn)

|a′(y)|2 dy =

∫ xn+1

xn

|a′(y)|2 dy

=

∫ γ(xn)

γ(xn−1)

|a′(y)|2 dy =

∫ xn

xn−1

|a′(γ(x))|2γ′(x) dx
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= q2
∫ γ(xn)

xn−1)

|a′(x)|2γ′(x) dx

so that

(3.7) q2(min γ′) Eλ(tn−1) ≤ Eλ(tn) ≤ q2(max γ′) Eλ(tn−1)

where the minimum and maximum is calculated on [xn−1, xn].

(b) As a by-product of the proof of Theorem A.2, we know that whenever γ′(x) = 1+a(1−δ)x−δ+
o(x−δ) (with a > 0, δ > 0, δ 6= 1), then tn ∼ n1/δ. Therefore, approximately n = tδ iterations are
necessary to reach t from t0 = 0 so that

E(t) . ln(tδ)q2t
δ

= δ ln(t) exp(2tδ ln |q|).

Since ln |q| < 0 this implies an exponential type of decay of the energy, but in a manner that
cannot be observed in the case when s(t)=1, since then the solution uλ is given by a semigroup.

(c) Let s(t) = 2 − 1
1+t . In this case, for any λ > 0, the energy eventually decays, as can be seen

by looking at (3.6). Moreover, we can explicitly calculate

γ(t) = t+ 4− 4
3+t+

√
t2+6t+5

γ′(t) ∼ 1 + 2t−2 +O(t−3) at infinity.

Hence γ is not of the form discussed in (b). Since we have no monotony of Eλ on (0,∞), but only
on some interval [a,∞), (3.7) takes the form

q2γ′(xn)) Eλ(tn−1) ≤ Eλ(tn) ≤ q2γ′(xn−1)) Eλ(tn−1),

but only for n ≥ n0. Observe however that the orbits tn and xn grow asympotically linear in n.
Therefore, when iterating the double energy inequality above, the infinite product

∏
n≥n0

γ′(xn)

converges to some strictly positive qualtity. Using q2 < 1, we conclude that the system energy has
exponential decay E(t) ∼λ exp(t ln(q2))E(0), for all λ > 0 .

Appendix A. Differentiable solutions for general boundary functions

In this section we discuss the solvability of (1.2) by a differentiable function ϕ. Our hypotheses
are that the boundary function s be of class C1 at least and that limt→∞ s′(t) = s exists. This
last condition is of course only of interest if we seek for solutions ϕ satisfying (1.2) for t ∈ R+,
since it can easily be arranged if we consider only t ∈ [0, τ ].
Let s(·) be of class C1 and ‖s′‖∞ < 1. Let α(t) = t+ s(t) and β(t) = t− s(t). Both functions, α
and β are strictly increasing and continuous. Moreover, α(t) = α(0)+tα′(ξt) > α(0)+t(1−‖s′‖∞)
yields limt→+∞ α(t) = +∞. Hence α is a bijection from [0,∞) to [1,∞); similarly β is a bijection
from [0,∞) to [−1,∞). We then consider the bijection

γ := α ◦ β−1 : [−1,∞)→ [+1,∞).

Observe that

(A.1) γ′(t) =
α′ ◦ β−1

β′ ◦ β−1
=

1 + s′(β−1(t))

1− s′(β−1(t))
,

so that γ is strictly increasing by ‖s′‖∞ < 1. The sign of s′(β−1(t)) determines whether γ is
strictly contractive or strictly expansive. We also note for further reference that if s ∈ C2,

γ′′(t) =
2s′′(β−1(t))

(1− s′(β−1(t)))3
.

The functional equation (1.2) can now be rephrased as

(A) ϕ ◦ γ = ϕ+ 1.
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This equation is known as ’Abel’s equation’ and intensively studied, see for example [24, 25] and
references therein.
We will consider only the case where lim s′(t) = s exists. Since s(t) > 0 for all t, lim s′(t) = s < 0
is impossible. We may therefore either have s = 0 or s ∈ (0, 1). We first discuss the situation of a
non-zero limit, which means that γ′(t)→ ` = 1+s

1−s > 1.

Theorem A.1. Let ` > 1 and assume that γ′(x) = ` + O(x−δ) for δ > 0. Then Abel’s equation
(A) admits a strictly increasing solution ϕ ∈ C1([−1,∞)). If additionally γ ∈ C2[0,∞), γ′′ =
O(x−1−δ) and γ′ is decreasing, then ϕ is of class C2([−1,∞)).

We mention as a simple example that for linear moving wall as well as the hyperbolic boundary
the hypothesis of the preceding theorem are satisfied.

Proof of Theorem A.1. Put ψ = `ϕ. Then ψ satisfies the Schröder equation ψ ◦ γ = `ψ. Since
γ(−1) = +1 and γ has no fixed points (otherwise s(t) = 0), γ(x) > x for all x ≥ −1. Observe that
by assumption, there exists some ξ > 0 such that γ′(x) ≥ 1+`

2 > 1 for all x ≥ ξ. Let a0 = −1 and

an = γ(n)(a0). If (an) were bounded, we could extract a subsequence that converges to a fixed
point of γ. So an →∞. Let k be such that ak > ξ. Hence

an+k+1 − ξ ≥ γ(an+k)− γ(ξ) > 1+`
2 (an+k − ξ)

shows that an → +∞ exponentially. By monotonicity of γ we infer the same for γ(n)(x) ≥ an for
all x ≥ −1. This, together with γ′(x) = `+ O(x−δ) shows that

P (x) =

∞∏
n=0

γ′(γ(n)(x))

`

converges absolutely and uniformly on [−1,∞). P vanishes nowhere and satisfies P ◦ γ = `
γ′P .

We define

ψ(x) :=

∫ x

1

P (t) dt+ C

where the constant C is to be determined. By construction, ψ is strictly increasing and satisfies

ψ ◦ γ(x) =

∫ γ(x)

γ(−1)
P (t) dt+ C = `

∫ x

−1
P (t) dt+ C = `

∫ 1

−1
P (t) dt+ `ψ + C(1− `)

So that, letting C = `
`−1

∫ 1

−1 P (t) dt > 0 ensures ψ ◦γ = `ψ as required. Then ϕ := lnψ
ln(`) is of class

C1, strictly increasing.
If additionally γ′ decreases towards ` at infinity, a new lecture of the above growth rate of (xn)

shows that lim sup `n

xn
≤ 1 for any x0 ≥ −1. Therefore, the (termwise differentiated product P )

yields a series ∑
n

γ′′(xn)
(n−1∏
j=0

γ′(xj)
)(∏

k 6=n

γ′(xn)

`

)
that converges normally on [−1,∞). We infer that P is of class C1, hence ψ and ϕ of class C2. �

In the situation that lim s′(t) = s = 0 and hence lim γ′(t) = 1 things are more delicate. If γ is
such that γ′(x) = 1 + o(x−δ) at infinity, for all x, y,

lim
n→∞

γ(n+1)(x)− γ(n)(x)

γ(n+1)(y)− γ(n)(y)
= 1.

We leave the proof as exercise, as it is a modification of [24, Lemma 7.3]. Consequently, whenever

ϕ(x) := lim
n→∞

γ(n)(x)− γ(n)(x0)

γ(n+1)(x0)− γ(n)(x0)

exists, ϕ is a solution to Abel’s equation (A). This is the P. Lévy’s algorithm, see e.g. [24, Chapter
VII]. In order to ensure existence of a solution we will in general have to get a finer control of the
asymptotics. The next result in this direction is based on ideas of Szekeres [35, Theorem 1c], see
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also [24, Theorem 7.2]). The principal idea is similar to Theorem A.1, but we have to transform
differently and to be more careful how to construct an infinite product.

Theorem A.2. If γ′(x) = 1 + a(1 − δ)x−δ + o(x−δ) at infinity, where a > 0 and δ > 0, δ 6= 1,
then Abel’s equation (A) has a strictly positive and strictly increasing C1-solution ϕ.

We mention as an example that the parabolic and shrinking domains mentioned in the introduction
satisfy the hypothesis of the theorem.

Proof. First observe that γ(x)
x = 1 + ax−δ + o(x−δ), by integrating γ′ on [0, x] or [x,∞) according

to δ < 1 or δ > 1. First we transform our problem into a multiplicative version. To this
end, let g : [−1,∞) → (0,∞) be a C1-function. Then, whenever ϕ solves Abel’s equation (A),
ψ(x) = g(x)ϕ′(x) satisfies

(ψ ◦ γ)(x) = g(γ(x))ϕ′(γ(x)) = g(γ(x))
ϕ′(x)

γ′(x)
=

g(γ(x))

g(x)γ′(x)
ψ(x) =: m(x)ψ(x)

Let xn = γ(n)(x). If (xn) were bounded, it would converge to a fixed point of γ — but there is
none. So xn → +∞. Assume that we chose the function g such that

(A.2)
∑
n

∣∣∣∣g(xn)γ′(xn)

g(xn+1)
− 1

∣∣∣∣
converges uniformly on compact intervals. Then the infinite product

(A.3) P (x) =

∞∏
n=0

1
m(γ(n)(x))

=

∞∏
n=0

g(xn)γ′(xn)

g(xn+1)
,

defines a continuous function P that solves ψ ◦ γ = m · ψ. From P we then easily regain ϕ. We
chose g(x) = γ(x)1−δ. Then P (x) > 0 for all x. Moreover we have the following asymptotics for
x→∞:

1 − γ′(x)

(
x

γ(x)

)1−δ

= 1 − 1
(1+ax−δ+r1(x))

1−δ

(
1 + a(1−δ)x−δ + r̃1(x)

)
= 1 −

(
1− a(1−δ)x−δ + r2(x)

) (
1 + a(1−δ)x−δ + r̃2(x)

)
=a2(1−δ)2x−2δ + r(x).

where r1, r2, r̃1r̃2 = o(x−δ) and r = o(x−2δ) for x→∞. Next, we need a growth rate for the orbits

xn = γ(n)(x0): Observe that a = limn→∞
γ(xn)−xn
x1−δ
n

= limn→∞
xn+1−xn
x1−δ
n

. Rewriting the right hand

side we obtain

a = lim
n→∞

(xδn − xδn+1)
(
xn+1

xn

)−δ xn+1

xn
− 1(

xn+1

xn

)−δ
− 1

.

Using xn+1

xn
= γ(xn)

xn
→ 1 as n→∞ the last fraction has limit −1/δ and we obtain

δa = lim
n→∞

(xδn+1 − xδn).

Taking Cesaro sums,

δa = lim
n→∞

1

n

n−1∑
j=0

(xδj+1 − xδj) = lim
n→∞

1

n
xδn.

We infer finally xn ∼ c n1/δ when n→∞. Putting both parts together,∣∣∣∣g(xn)γ′(xn)

g(xn+1)
− 1

∣∣∣∣ = a2(1−δ)2x−2δn + r(xn) = a2(1−δ)2n−2 + r(xn)

where r(xn) = o(n−2). Therefore (A.2) converges absolutely and uniformly on compact intervals
so that (A.3) converges to a strictly positive function P . For C > 0 to be determined in a moment,
we let

ϕ(x) := C

∫ x

1

P (t)

γ(t)1−δ
dt.
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P and γ being strictly positive, ϕ is positive, strictly increasing and of class C1. Moreover,

ϕ(γ(x)) = C

∫ γ(x)

γ(−1)

P (t)

γ(t)1−δ
dt = C

∫ x

−1

P (γ(s))

γ(γ(s))1−δ
γ′(s) ds

= C

∫ x

−1

P (s)m(s)

γ(γ(s))1−δ
γ′(s) ds = C

∫ x

−1

P (t)

γ(t)1−δ
dt

= ϕ(x) + C

∫ 1

−1

P (t)

γ(t)1−δ
dt,

so that adjusting C (the integral being strictly positive) we obtain a solution of Abel’s equation
(A). �
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[9] Carlos Castro, Nicolae Ĉındea, and Arnaud Münch, Controllability of the linear one-dimensional wave equation
with inner moving forces, SIAM J. Control Optim. 52 (2014), no. 6, 4027–4056.

[10] Jeffery Cooper and Walter A. Strauss, Energy boundedness and decay of waves reflecting off a moving obstacle,
Indiana Univ. Math. J. 25 (1976), no. 7, 671–690.

[11] Norman C. Corbett, Initial moving-boundary value problems associated with the wave equation, Ph.D. thesis,

University of Manitoba, 1991.
[12] , A symmetry approach to an initial moving boundary value problem associated with the wave equation,

Can. Appl. Math. Q. 18 (2010), no. 4, 351–360.

[13] Lizhi Cui, Xu Liu, and Hang Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical
domains, Journal of Mathematical Analysis and Applications 402 (2013), no. 2, 612 – 625.

[14] V. V. Dodonov and A. V. Dodonov, The nonstationary Casimir effect in a cavity with periodical time-dependent

conductivity of a semiconductor mirror, J. Phys. A 39 (2006), no. 21, 6271–6281.
[15] Viktor Dodonov, Modern nonlinear optics, part 1, 2nd edition ed., vol. 119, ch. Nonstationary Casimir effect

and analytical solutions for quantum fields in cavities with moving boundaries, pp. 309–394, Wiley,New York,
2002.

[16] Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Gradu-

ate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000, With contributions by S. Brendle,
M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R.
Schnaubelt.

[17] Caroline Fabre and Jean-Pierre Puel, Pointwise controllability as limit of internal controllability for the wave
equation in one space dimension, Portugal. Math. 51 (1994), no. 3, 335–350.

[18] L. Gaffour, Analytical method for solving the one-dimensional wave equation with moving boundary, Journal

of Electromagnetic Waves and Applications 12 (1998), 1429–1430.
[19] L. Gaffour and G. Grigorian, Circular waveguide of moving boundary, Journal of Electromagnetic Waves and

Applications 10 (1996), no. 1, 97–108.
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