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Abstract. Volterra observations systems with scalar kernels are studied. New
sufficient conditions for admissibility of observation operators are developed.

The obtained results are applied to time-fractional diffusion equations of dis-

tributed order.

1. Introduction

Consider the following scalar abstract Volterra system

(1) x(t) = x0 +
∫ t

0

a(t−s)Ax(s) ds, t ≥ 0.

Here, the operator A is supposed to be a closed operator with dense domain on a
Banach space X, x0 ∈ X, the kernel function a ∈ L1

loc is supposed to be of sub-
exponential growth so that its Laplace transform â(λ) exists for all λ with positive
real part, and it is assumed that (1) is parabolic in the sense of Prüss [26], that is

(P1) â(λ) 6= 0 and 1ba(λ) ∈ %(A) for all λ with positive real part,
(P2) there exists a constant M ≥ 0 such that ‖(1 − â(λ)A)−1‖ ≤ M for all λ

with positive real part.
In addition, we always assume that the kernel function a is 1-regular, that is, there
is a constant K > 0 such that

(2) |λâ′(λ)| ≤ K|â(λ)|

for all λ with positive real part.
In Prüss [26, Theorem I.3.1] it is shown that under these assumptions, equation (1)
admit a unique solution family, i.e. a family of bounded linear operators (S(t))t≥0

on X, such that
(a) S(0) = I and S(·) is strongly continuous on R+.
(b) S(t) commutes with A, which means S(t)(D(A)) ⊂ D(A) for all t ≥ 0, and

AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0.
(c) For all x ∈ D(A) and all t ≥ 0 the resolvent equations hold:

(3) S(t)x = x+
∫ t

0

a(t− s)AS(s)x ds.

Moreover, S ∈ C((0,∞),B(X)) and ‖S(t)‖ ≤ K.
For some results we need in addition that −A a sectorial operator of type ω ∈ (0, π)
or that the kernel a is sectorial of angle θ ∈ (0, π). Recall that −A is called sectorial
operator of type ω ∈ (0, π), if the operator A is a closed operator with dense domain
on X having its spectrum contained in some open sectorial region of the complex
plane, symmetric to the real axis and open to the left:

σ(A) ⊆ −Σω where Σω = {z ∈ C : | arg(z)| < ω}
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for some ω ∈ (0, π). Moreover, the resolvent of A is supposed to satisfy a growth
condition of the type ‖λR(λ,A)‖ ≤ M uniformly on each sector Σπ−ω−ε. Typical
examples of such operators are generators of bounded strongly continuous semi-
groups, where ω ≤ π/2. We mention that ’sectoriality’ may have different meanings
for different authors in the literature.
The kernel a is called sectorial of angle θ ∈ (0, π) if

â(λ) ∈ Σθ for all λ with positive real part.

In particular, when −A and a are both sectorial in the respective sense with angles
that sum up to a constant strictly inferior to π, the Volterra equation is parabolic.
The purpose of this article is to present conditions for the admissibility of observa-
tion operators to parabolic Volterra equations, that is, we consider the ’observed’
system

(V)

x(t) = x0 +
∫ t

0

a(t−s)Ax(s) ds, t ≥ 0,

y(t) = Cx(t).

The operator C in the second line is supposed to be an operator from X into another
Banach space Y that acts as a bounded operator from X1 → Y where X1 = D(A)
is endowed by the graph norm of A. In order to guarantee that the output function
lies locally in L2 we are interested in the following property.

Definition 1.1. A bounded linear operator C : X1 → Y is called finite-time
admissible for the Volterra equation (1) if there are constants η,K > 0 such that(∫ t

0

‖CS(r)x‖2 dr
)1/2

≤ Keηt‖x‖

for all t ≥ 0 and all x ∈ D(A).

The notion of admissible observation operators is well studied in the literature for
Cauchy systems, that is, a ≡ 1, see for example [17], [27], and [28]. Admissible
observation operators for Volterra systems are studied in [12], [18], [19] and [22].
The Laplace transform of S, denoted by H, is given by

H(λ)x =
1
λ

(I − â(λ)A)−1x, Reλ > 0.

The following necessary condition for admissibility was shown in [19].

Proposition 1.2. If C is a finite-time admissible observation operator for the
Volterra equation (1), then there is a constant M > 0 such that

(4) ‖
√

ReλCH(λ)‖ ≤M, Reλ > 0.

In [19] it is shown that (4) is also sufficient for admissibility if X is a Hilbert space, Y
is finite-dimensional and A generates a contraction semigroup. However, in general
this condition is not sufficient (see e.g. [17]).
We show that the slightly stronger growth condition on the resolvent

sup
r>0

∥∥ (1 + log+r)αr
1/2CH(r)

∥∥ <∞,
is sufficient for admissibility if α > 1/2 (see Theorem 3.6). This result generalises the
sufficient condition of Zwart [29] for Cauchy systems to general Volterra systems
(1).
Our second main result, Theorem 3.1 provides a subordination argument to obtain
admissibility for the observed Volterra equation from the admissibility of the ob-
servation operator for the underlying Cauchy problem. In the particular case of
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diagonal semigroups and one-dimensional output spaces Y this improves a direct
Carleson measure criterion from Haak, Jacob, Partington and Pott [12].
We proceed as follows. In Section 2 we obtain an integral representation for the
solution family (S(t))t≥0 and several regularity results of the corresponding kernel.
Section 3 is devoted to sufficient condition for admissibility of observation operators.
A subordination result as well as a general sufficient condition is obtain. Several
examples are included as well.
To enhance readability of the calculations, for rest of this article, K denotes some
positive constant that may change from one line to the other unless explicitly quan-
tified.

2. Regularity transfer

The main result of this section is formulated in the following proposition. Let s(t, µ)
denote the solution of the scalar equation

s(t, µ) + µ

∫ t

0

a(t−r)s(r, µ) dr = 1 t > 0, µ ∈ C.

Proposition 2.1. In addition to the general assumptions, we suppose that A gen-
erates a bounded C0-semigroup (T (t))t≥0 and that the kernel a is sectorial of angle
θ < π/2. Then there exists a family of functions (vt)t>0 such that

L(vt)(µ) = s(t, µ) and S(t) =
∫ ∞

0

vt(s)T (s) ds

satisfying
(a) supt>0 ‖vt‖L1(R+) <∞
(b) ‖vt‖L2(R+) ≤ K(t−

θ/π + t+
θ/π ) where K depends only on θ and the constant

in (2).
(c) ‖vt‖W 1,1(R+) ≤ K(1 + t−

2θ
π + t+

2θ
π ).

Moreover, for γ ∈ [0, 1], |µγs(t, µ)| ≤ Kt−
2γθ
π .

For the proof of this proposition the following two lemmas are needed.

Lemma 2.2. In addition to the general assumption on the kernel a, we suppose
that a is sectorial of angle θ ≤ π. Let ρ0 := 2θ/π. Then there exists a constant
c > 0 such that

|â(λ)| ≥

{
c|λ|−ρ0 |λ| ≥ 1
c|λ|ρ0 |λ| ≤ 1

for all λ ∈ C with Reλ > 0.

Proof. We borrow the argument from the proof of [25, Proposition 1]: we start
with the analytic completion of the Poisson formula for the harmonic function
H(λ) = arg â(λ), that is,

log â(λ) = κ0 +
i

π

∫ ∞
−∞

[
1− iρλ
λ− iρ

]
h(iρ)

dρ

1 + ρ2
,

where κ0 ∈ R is a constant. An easy calculation shows

|Re log â(λ)| ≤ κ0 + ρ0| log λ|

for real λ > 0, and thus

|â(λ)| = elog(|ba(λ)|) = eRe log ba(λ) ≥

{
cλ−ρ0 λ ≥ 1
cλρ0 0 ≤ λ ≤ 1

,
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where c := e−κ0 > 0. This estimate, together with [26, Lemma 8.1] stating the
existence of a constant c > 0 such that c−1 ≤

∣∣â(|λ|)/â(λ)
∣∣ ≤ c for all λ ∈ C with

Reλ > 0 completes the proof. �

Lemma 2.3. Let θ ∈ (0, π). Then there exists cθ > 0 such that

(5) 1 + |λ| ≤ Cθ |1 + λ|

for all λ ∈ Σπ−θ.

|λ|

λ

λ̃

θ
−1

α

α̃

Figure 1. Illustration of (5)

Proof. Clearly, α > α̃, see Figure 1. Since α̃ = θ
2 , the assertion follows then from

the fact that |1+λ|
1+|λ| = sin(α)

sin(θ−α) ≥ sin(α) ≥ sin(θ/2). �

Proof of Proposition 2.1. (a) is [26, Proposition I.3.5]. This latter result is also
the principal inspiration of the next part:

(b) Let σ(λ, µ) =
(
Ls(·, µ)

)
(λ), i.e. σ(λ, µ) = 1

λ(1+µba(λ)) . Fix t > 0 and ε > 0.
Then

s(t, µ) = 1
2πi

∫ ε+i∞

ε−i∞
eλtσ(λ, µ) dλ.

Then, by partial integration

s(t, µ) = lim
R→∞

1
2πi

[
1
t e
λtσ(λ, µ)

]λ=ε+iR

λ=ε−iR
− 1

2πi

∫ ε+iR

ε−iR

1
t e
λt d

dλ
σ(λ, µ) dλ

= − 1
2πi

∫ ε+i∞

ε−i∞

1
t e
λt d

dλ
σ(λ, µ) dλ

An elementary calculation gives

d

dλ

1
λ(1 + µâ(λ))

= −
1 + µâ(λ)

(
1 +

(
λba′(λ)ba(λ)

))
λ2(1 + µâ(λ))2
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By 1-regularity of the kernel,
∣∣∣λba′(λ)ba(λ)

∣∣∣ ≤ C and so Lemma 2.3 yields for any
δ > 0,(∫ ∞

−∞

∣∣∣s(t, δ + iy)
∣∣∣2 dy)1/2

≤ Cθ(1 + C)
eεt

2πt

(∫ ∞
−∞

(∫ ∞
−∞

1
(ε2+x2)(1 + |δ+iy||â(ε+ix)|)

dx

)2

dy

)1/2

≤
√

2Cθ(1 + C)
eεt

2πt

(∫ ∞
0

(∫ ∞
−∞

1
(ε2+x2)(1 + |y||â(ε+ix)|)

dx

)2

dy

)1/2

≤
√

2Cθ(1 + C)
eεt

2πt

∫ ∞
−∞

(∫ ∞
0

1
(ε2+x2)2(1 + |y||â(ε+ix)|)2

dy

)1/2

dx

=
√

2Cθ(1 + C)
eεt

2πt

∫ ∞
−∞

1
(ε2+x2)|â(ε+ ix)|1/2

(∫ ∞
0

1
(1 + u)2

du

)1/2

dx

=
√

2Cθ(1 + C)
eεt

2πt

∫ ∞
−∞

1
(ε2+x2)|â(ε+ ix)|1/2

dx

Now we split the integral into two parts, by considering the cases ε2+x2 ≥ 1
and ε2+x2 < 1 to apply Lemma 2.2 which is controlling |1/â|. Substituting
x = εt in both parts easily gives

‖s(t, ·)‖H2 ≤ C̃θ
eεt

t

(
ε−1−θ/π + ε−1+θ/π

)
,

which yields the assertion by letting ε = 1/t.
(c) We argue in the same spirit as above: by partial integration

d
dµ

(
µs(t, µ)

)
= 1

2πi

∫ ε+i∞

ε−i∞

1
t e
λt d2

dµ dλ

(
µσ(λ, µ)

)
dλ

An elementary calculation gives

d2

dλ dµ

µâ(λ)
(λ(1 + µâ(λ)))2

=
1 + µâ(λ)

(
1 + 2

(
λba′(λ)ba(λ)

))
λ2(1 + µâ(λ))3

By 1-regularity of the kernel,
∣∣∣λba′(λ)ba(λ)

∣∣∣ ≤ C and so Lemma 2.3 yields for any
δ > 0,∫ ∞

−∞

∣∣∣ d
dµ

(
µs(t, δ + iy)

)∣∣∣ dy
≤ Cθ(1 + 2C)

eεt

2πt

∫ ∞
−∞

∫ ∞
−∞

1
(ε2+x2)(1 + |δ+iy||â(ε+ix)|)2

dx dy

≤ Cθ(1 + 2C)
eεt

2πt

∫ ∞
−∞

∫ ∞
−∞

1
(ε2+x2)(1 + |y||â(ε+ix)|)2

dx dy

= 2Cθ(1 + 2C)
eεt

2πt

∫ ∞
−∞

1
(ε2+x2)

1
|â(ε+ix)|

∫ ∞
0

1
(1 + u)2

du dx

= Cθ(1 + 2C)
eεt

2πt

∫ ∞
−∞

1
(ε2+x2)

1
|â(ε+ix)|

dx

≤ K(t−
2θ
π + t+

2θ
π )
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by choosing ε = 1/t. This shows that ft(µ) = d
dµ

(
µs(t, µ)

)
∈ H1(C+).

Note that C+ := Σπ
2

is the open right half plane. We may apply Hardy’s
inequality (see e.g. [8, p.198], [14, Theorem 4.2]),∫ ∞

0

|f̌t(r)|
r

dr ≤ 1
2

∫ ∞
−∞
|ft(iω)| dω

so that f̌t(r)
r ∈ L1(R+) is Laplace transformable for every t > 0. Since

L
( f̌t(r)

r

)
(σ) =

∫ ∞
σ

ft(µ) dµ = σs(t, σ),

we find that µ 7→ µs(t, µ) ∈ H∞(C+) with a norm controlled by a multiple
of (t

+2θ
π + t−

2θ
π ). This implies that v′t ∈ L1(R+). Together with (a) the

claim follows.
Finally, the same technique gives an estimate for the growth of s(t, µ):

µγs(t, µ) ≤ K
|µ|γeεt

t

∫ ∞
−∞

1
(ε2 + r2)(1 + |µ||â(ε+ ir)|)

dr

≤ K
eεt

t

∫ ∞
−∞

1
(ε2 + r2)|â(ε+ ir)|γ

|µ|γ |â(ε+ ir)|γ

(1 + |µ||â(ε+ ir)|)
dr

≤ K
eεt

t

∫ ∞
−∞

1
(ε2 + r2)|â(ε+ ir)|γ

dr

ε= 1
t

≤ K(t−
2γθ
π + t+

2γθ
π ).

�

3. Sufficient conditions for finite-time admissibility

In this section we present the two main results of this paper.

Theorem 3.1. Let A generate an exponentially stable strongly continuous semi-
group (T (t))t≥0 and let C : X1 → Y be bounded. Further we assume that the kernel
a ∈ L1

loc(R+) is of sub-exponential growth, 1-regular and sectorial of angle θ < π/2.
Then finite-time admissibility of C for the semigroup (T (t))t≥0 implies that of C
for the solution family (S(t))t≥0.

Proof. We first note that the assumptions of the theorem apply that equation (1)
is parabolic. By Proposition 2.1 there exists a family of functions vt such that
‖vt‖L2(R+) ≤ K(t−

θ/π + t+
θ/π ) for some constant K > 0 independent of t > 00 and

S(t) =
∫ ∞

0

vt(r)T (r) dr, t > 0.

For x ∈ D(A) we have thus

CS(t)x =
∫ ∞

0

vt(r)CT (r)x dr.

Note that finite-time admissibility of C for (T (t))t≥0 implies the existence of a
constant M > 0 such that

‖CT (·)x‖L2(R+) ≤M‖x‖, x ∈ D(A),

thanks to the exponential stability of (T (t))t≥0. Thus the result follows from
Cauchy-Schwarz inequality. �

By replacing the Cauchy-Schwarz inequality by Hölder’s inequality, similar argu-
ments can be used to obtain sufficient conditions for Lp-admissibility.
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Corollary 3.2. Assume in addition to the hypotheses of the theorem that one of
the following conditions is satisfied:

(a) Y is finite-dimensional, X is a Hilbert space and A generates a contraction
semigroup;

(b) X is a Hilbert space and A generates a normal, analytic semigroup;
(c) A generates an analytic semigroup and (−A)1/2 is an finite-time admissible

observation operator for (T (t))t≥0.

If there exists a constant M > 0 such that

(6) ‖C(λ−A)−1‖ ≤ M√
Reλ

, Reλ > 0,

then C is a finite-time admissible observation operator for (S(t))t≥0.

Proof. Under the assumption of the corollary, the inequality (6) implies that C is
a finite-time admissible observation operator for (S(t))t≥0, see [16], [13], [23]. Thus
the result follows from Theorem 3.1. �

The following corollary is an immediate consequence of the Carleson measure cri-
terion of Ho and Russell [15].

Corollary 3.3. Assume in addition to the hypotheses of the theorem that A ad-
mits a Riesz basis of eigenfunctions (en) on a Hilbert space X with corresponding
eigenvalues λn. If Y = C and if

µ =
∑
n

|Cen|2δ−λn

is a Carleson measure on C+, then C is finite-time admissible for the solution
family (S(t))t≥0.

A nice sufficient condition for admissibility for Cauchy problems is given by Zwart
[29]. For the convenience of the reader we reproduce it here:

Theorem 3.4 (Zwart). Let A be the infinitesimal generator of an exponentially
stable C0-semigroup (T (t))t≥0 on the Hilbert space H and let C : X1 → Y be
bounded, where Y is another Hilbert space. If for some α > 1/2,

(7) sup
Reλ>0

∥∥ (1 + log+Reλ)α(Re (λ))
1/2CR(λ,A)

∥∥ <∞,
then C is a finite-time admissible observation operator.

Notice that the condition (7) can be reformulated by saying that in the sense of
Evans, Opic and Pick (see [10, 9, 11])

∀x ∈ X : ‖CR(·, A)x‖1/2,∞.A <∞

where A = (0, α), see also Cobos, Frenandez-Cabrera and Triebel [7] for logarithmic
type interpolation functors.
Combining Theorem 3.1 and Theorem 3.4 we receive the following corollary.

Corollary 3.5. Let in addition to the assumptions of Theorem 3.4, a be of sub-
exponential growth, 1-regular and sectorial of type < π/2. Then C is finite-time
admissible for the solution family

(
S(t)

)
t≥0

.

In some situations, the condition of sectoriality of angle < π/2 in the above corol-
lary may be inconvenient. Under much weaker assumptions one can also obtain
admissibility by the following direct argument.



8 BERNHARD H. HAAK AND BIRGIT JACOB

Theorem 3.6. Assume that A is a closed operator with dense domain on X, the
kernel function a ∈ L1

loc is of sub-exponential growth, 1-regular, and (1) is parabolic.
Let C : X1 → Y be bounded and assume that for some α > 1/2,

(8) sup
r>0

∥∥ (1 + log+r)αr
1/2CH(r)

∥∥ <∞.
Then C is finite-time admissible for (S(t))t≥0.

Note that the exponent α > 1/2 is optimal in the sense that for α < 1/2 it is even
wrong in the case a ≡ 1, see [20]. About the case α = 1/2 nothing is known at the
moment.

Proof. Let λ ∈ C+ and let ϕ such that λ = |λ|e2iϕ. Then, by resolvent identity,

(1 + (log+(Reλ))αλ
1/2CH(λ)

= (1 + (log+(Reλ))αλ−
1/2C

1
â(λ)

R(
1

â(λ)
, A)

= (1 + log+|λ|)α|λ|
1/2CH(|λ|) e−iϕ â(|λ|)

â(λ)

[
I +

( 1
â(|λ|)

− 1
â(λ)

)
R(

1
â(λ)

, A)
]

= (1 + log+|λ|)α|λ|
1/2CH(|λ|) e−iϕ

[
I + (

â(λ)
â(|λ|)

− 1)(I − â(λ)A)−1
]
.

By [26, Lemma 8.1], c−1 ≤
∣∣â(|λ|)/â(λ)

∣∣ ≤ c for some c > 0. This together with
the parabolicity of (1) yields uniform boundedness of expression in brackets and so
the assumed estimate (8) gives

(9) ‖λ 7→ CH(r+λ)‖H∞(C+) ≤ K(1 + log+r)−αr−
1/2 .

Since (S(t))t≥0 is bounded,

‖λ 7→ H(r+λ)x‖H2(C+) = ‖e−rtS(t)x‖H2(C+) ≤ Kr−
1/2 ‖x‖ ∀r > 0

and together with (9), we infer

(10) ‖λ 7→ CH(r+λ)2x‖H2(C+) ≤
K

(1 + log+r)αr
‖x‖ ∀r > 0.

Moreover, the estimate∥∥λ 7→ 1
r+λ

CH(r+λ)x
∥∥
H2(C+)

≤
∥∥λ 7→ CH(r+λ)x

∥∥
H∞(C+)

∥∥λ 7→ 1
r+λ

∥∥
H2(C+)

implies

(11)
∥∥λ 7→ 1

r+λ
CH(r+λ)x

∥∥
H2(C+)

≤ K

(1 + log+r)αr
‖x‖ ∀r > 0.

Since d
dλH(λ) =

(
λba′(λ)ba(λ)

)
H(λ)2 − 1

λ

(
1 + λba′(λ)ba(λ)

)
H(λ) we infer from (10) and (11)

that ∥∥∥µ 7→ d

dµ
CH(r + µ)x

∥∥∥
H2(C+)

≤ K

(1 + log+r)αr
‖x‖ ∀r > 0.

Finally, (inverse) Laplace transform yields∥∥∥t 7→ rte−rtCS(t)x
∥∥∥
L2(R+)

≤ K

(1 + log+r)α
‖x‖ ∀r > 0

and that is the estimate we need in the following dyadic decomposition argument:
notice that xe−x ≥ 2e−2 for x ∈ [1, 2]. Fix some t0 > 0. Then,∫ t0

0

∥∥CS(t)x
∥∥2
dt =

∞∑
n=1

∫ t02−n+1

t02−n

∥∥CS(t)x
∥∥2
dt
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≤ e4

4

∞∑
n=1

∫ t02−n+1

t02−n

∥∥t2nt−1
0 et2

nt−1
0 CS(t)x

∥∥2
dt

≤ K

∞∑
n=1

1
(1 + log+(2nt−1

0 ))2α
‖x‖2 ≤ K‖x‖2.

�

4. Example

In this section we apply the obtained results to time-fractional diffusion equations
of distributed order.
Let A generate an exponentially stable strongly continuous semigroup (T (t))t≥0.
For ω > 0 and 0 < α < β ≤ 1 we study a time-fractional diffusion equation of
distributed order of the form

ωDα
t x(t) +Dβ

t x(t) = Ax(t), t ≥ 0,(12)
x(0) = x0,

where Dα
t x =

(
− ∂
∂t

)α
x denotes the Caputo derivative of x, given by the Phillips

functional calculus of the right shift semigroup, that is,

Dγ
t x(t) =

1
Γ(1−γ)

∫ t

0

(t− s)−γx′(s) ds.

for γ ∈ (0, 1). Time-fractional diffusion equations of distributed order have at-
tracted attention as a possible tool for the description of anomalous diffusion and
relaxation phenomena in many areas such as turbulence, disordered medium, in-
termittent chaotic systems, mathematical finance and stochastic mechanics. For
further information on time-fractional diffusion equations of distributed order we
refer the reader to [1, 2, 3, 4, 5, 6, 21, 24].
Using the Laplace transform equation (12) is equivalent to

x(t) = x0 +
∫ t

0

a(t−s)Ax(s) ds,

where
a(t) = a(t) = tβ−1Eβ−α,β(−ωtβ−α)

Here Eγ,δ, where γ, δ > 0, denotes the Mittag-Leffler function

Eγ,δ(z) =
∞∑
k=0

zk

Γ(γk + δ)

The Laplace transformation of the kernel a is given by

â(λ) =
λ−α

ω + λβ−α
.

Thus the kernel a satisfies the assumption of Theorem 3.1.

We note that this example does e.g. not satisfy the assumption of [12, Theorem
3.10] due to the ’mixed’ growth conditions near infinity and the origin, such that,
even when A is the Dirichlet Laplacian on a bounded domain, the latter result
cannot be used to guarantee admissibility whereas a ’standard’ Carleson measure
criterion and the subordination result of Corollary 3.3 still applies.
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