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Abstract. We study linear systems, described by operators A, B, C for which the state space X is a

Banach space. We suppose that −A generates a bounded analytic semigroup and give conditions for

admissibility of B and C corresponding to those in G. Weiss’ conjecture. The crucial assumptions on
A are boundedness of an H∞–calculus or suitable square function estimates, allowing to use techniques

recently developed by N. Kalton and L. Weis. For observation spaces Y or control spaces U that
are not Hilbert spaces we are led to a notion of admissibility extending previous considerations by C.

Le Merdy. We also obtain a characterisation of wellposedness for the full system. We give several

examples for admissible operators including point observation and point control. At the end we study
a heat equation in X = Lp(Ω), 1 < p < ∞, with boundary observation and control and prove its

wellposedness for several function spaces Y and U on the boundary ∂Ω.

1. Introduction

In this paper we study linear control systems of the form x′(t) +Ax(t) = Bu(t), t ∈ [0, τ)
x(0) = x0,
y(t) = Cx(t), t ∈ [0, τ)

(1)

where 0 < τ ≤ ∞, −A is the generator of a C0–semigroup T (·) in a Banach space X, and y and u take
values in Banach spaces Y and U , respectively. If B : U → X and C : X → Y are bounded and the
spaces X, Y and U are of finite dimensions then (1) is the setup of classical linear systems theory. There
is a large literature (cf., e.g., the bibliography in [6]) on the case where X is an infinite–dimensional
Hilbert space. This allows applications to partial differential equations, but in order to model, e.g.,
observation on the boundary or control from the boundary one has to deal with “unbounded” operators
C and B. Writing B(Z,W ) for the space of all bounded linear operators from a Banach space Z to
a Banach space W and following the literature, cf., e.g., [13], one only requires C ∈ B(X1, Y ) and
B ∈ B(U,X−1), where X1 denotes the domain D(A) of A equipped with the graph norm and X−1

denotes the completion of X with respect to the norm ‖(λ0 −A)−1 · ‖X for a fixed λ0 in the resolvent
set ρ(A) of A (all those norms are equivalent).
The usual choice for function spaces in which observations y should lie or controls u are taken from is
L2([0, τ), Y ) and L2([0, τ), U), respectively (which is also the natural one if X, Y , U are Hilbert spaces).
An observation operator C ∈ B(X1, Y ) is called finite-time admissible for A (cf. [34, 13]) if, for some
(and hence for all) τ ∈ (0,∞), there exists M = Mτ > 0 such that ‖CT (·)x‖L2([0,τ),Y ) ≤M‖x‖X for all
x ∈ X1, which implies that CT (·) extends to a bounded linear operator from X to L2([0, τ), Y ). This
notion is invariant under scalings e−α·T (·) of the semigroup T (·), and if T (·) is exponentially stable, it is
equivalent to infinite-time admissibility (henceforth called admissibility for short), that is to existence
of M > 0 satisfying ( ∫ ∞

0

‖CT (t)x‖2Y dt
)1/2

≤M‖x‖X , x ∈ X1.

The notion of finite-time admissibility for a control operator B ∈ B(U,X−1) is dual, i.e., for some (and
hence all) τ ∈ (0,∞) there exists M = Mτ > 0 such that∥∥∥∥∫ τ

0

T−1(τ−t)Bu(t) dt
∥∥∥∥
X

≤M‖u‖L2([0,τ),U), u ∈ L2([0, τ), U),
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where the integral is taken in X−1 but its value is required to lie in X. Here T−1(·) denotes the unique
extension of the semigroup T (·) to the extrapolation space X−1 ⊃ X. Then T−1(·) is a C0-semigroup
in X−1 and its generator −A−1 is an extension of −A (cf. [8]). Again, the notion is invariant under
scalings, and for T (·) exponentially stable it is equivalent to infinite-time admissibility (henceforth
called admissibility for short), i.e., to existence of a constant M > 0 satisfying∥∥∥∥∫ ∞

0

T−1(t)Bu(t) dt
∥∥∥∥
X

≤M‖u‖L2(R+,U), u ∈ L2(R+, U).

In this paper we concentrate on the parabolic case, and we assume from now on that the semigroup T (·)
is bounded and analytic. Then A is a sectorial operator in X of type < π/2 (and A−1 is sectorial in X−1

of the same type). G. Weiss [35] observed that admissibility of an observation operator C ∈ B(X1, Y )
implies boundedness of the set

WC := {λ
1/2C(λ+A)−1 : λ > 0} ⊂ B(X,Y ), (2)

and conjectured that the converse holds in Hilbert spaces. This has become known as the Weiss conjec-
ture (actually, this is the form it takes for bounded analytic semigroups). The nice feature is, if this is
true, then it is possible to check for admissibility by looking at resolvents of the operator A. In system
theoretic terms this means that a property in the state space may be checked by conditions in the
frequency domain, i.e., by conditions on Laplace transform images.
The conjecture has been disproved in general (see [15, 14]). Similarly, admissibility of a control operator
B ∈ B(U,X−1) always implies boundedness of the set

WB := {λ
1/2(λ+A−1)−1B : λ > 0} ⊆ B(U,X), (3)

but the converse is not even true in Hilbert spaces.
There were, however, positive results on the Weiss conjecture for bounded analytic semigroups, if T (·)
is a diagonal semigroup, or more general, a normal semigroup ([35]). It was Le Merdy who realised a
connection to the H∞–calculus (for this notion we refer to Section 2). His result ([24]) combined with
[5] yields the following.

Theorem 1.1 (Le Merdy). Let X, Y , and U be Hilbert spaces. Let A have dense range and an
H∞(Σω)–calculus for some 0 < ω < π/2. Then C ∈ B(X1, Y ) and B ∈ B(U,X−1) are admissible if and
only if WC ⊂ B(X,Y ) from (2) and WB ⊂ B(U,X) from (3) are bounded.

Remark 1.2.
(a) The assumption on A is equivalent to the fact that A has dense range, −A generates a bounded

analytic semigroup and A has an H∞(Σν)–calculus for some 0 < ν < π (cf. [26, 8.Thm]).
(b) Since A is sectorial the set {λ1/2A

1/2(λ+A)−1 : λ > 0} ⊂ B(X) is always bounded (the proof
is similar to what is done in Remark 4.3 below). Hence, if the Weiss conjecture on observation
operators holds for an operator A, then A

1/2 must be admissible, i.e.,(∫ ∞

0

∥∥(tA)
1/2T (t)x

∥∥2

X
dt
t

)1/2

≤M‖x‖X , x ∈ X1, (4)

holds for some M > 0. This is called a quadratic estimate for A. Le Merdy [24, Thm 4.1] used
(4) to show that boundedness of WC ⊂ B(X,Y ) implies admissibility of C ∈ B(X1, Y ). The
arguments apply in general Banach spaces X and Y .

(c) By works of McIntosh and others [1, 5, 26, 27] it is known that, if X is a Hilbert space, then A
has an H∞(Σω)–calculus for some ω < π/2 if and only if (4) and( ∫ ∞

0

∥∥(tA′)
1/2T (t)′x′

∥∥2

X′
dt
t

)1/2
≤M‖x′‖X′ (5)

hold for some M > 0 (cf. [26]). Le Merdy showed ([24, Thm. 5.2]) that, in general, (4) does not
imply (5).

(d) As a by-product of our arguments, we will obtain below (Theorem 4.6) that (5) and boundedness
of WB ⊂ B(U,X) imply admissibility of B ∈ B(U,X−1) in general Banach spaces X and U .
This may be obtained from Le Merdy’s theorem by dualisation if X and U are reflexive, but
not in the general case we consider.
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(e) When leaving the Hilbert space setting, the simultaneous validity of quadratic estimates for
both operators A and A′ seem, however, to be extremely rare in applications. Consider, e.g.,
the operator A = −∆ on X = Lp(Rn), 1 < p <∞. Then A satisfies quadratic estimates only if
p ≤ 2 whereas quadratic estimates for A′ require p′ ≤ 2, i.e., p ≥ 2 (cf. [5]).

In this paper we investigate the situation for Banach spaces X, Y , and U . To give a flavour of our
main results we state the following for the case that only the state space X is a Banach space but
U and Y are Hilbert spaces (which includes the case that U and Y are finite-dimensional). Here we
assume that X has Pisier’s property (α) (cf. Definition 3.16), an assumption that holds in particular for
Lebesgue-spaces Lp, Sobolev-spaces Wm

p , Bessel-potential spaces Hs
p , or Besov-spaces Bsp,q, provided

p, q ∈ [1,∞).

Theorem 1.3. Let X have property (α). Suppose that A has dense range and an H∞(Σω)–calculus
for some 0 < ω < π/2. Let Y and U be Hilbert spaces and C ∈ B(X1, Y ), B ∈ B(U,X−1). Then C
and B are admissible if and only if the sets WC ⊂ B(X,Y ) from (2) and WB ⊂ B(U,X) from (3) are
l–bounded.

Here, l–boundedness is a notion which is equivalent to boundedness in Hilbert spaces, but stronger
than boundedness in general Banach spaces (we refer to Section 3 for definition and properties).

Remark 1.4.
(a) In contrast to the validity of both (4) and (5), the assumption on an H∞–calculus for A is

a reasonable one outside Hilbert spaces. It is satisfied for “many” differential operators in
divergence form, such as elliptic differential operators with Hölder continuous coefficients and
common boundary conditions, Schrödinger operators with singular potentials and many Stokes
operators (cf. [18, 21] and references therein).

(b) In the proof we make use of function spaces l(R+, Z) and their completions l(L2(R+), Z) where
Z is a Banach space. These spaces were introduced by Kalton and Weis ([20], [19]) who showed
that, in a Banach space X with finite cotype, boundedness of the H∞–calculus for a sectorial
operator A is equivalent to the validity of square function estimates for A and A′ based on norms
in l(R+,

dt
t , X) and l(R+,

dt
t , X

′), respectively. If X is a Hilbert space then l(I,X) = L2(I,X)
and we are back in the situation of Remark 1.2 (c). For general Banach spaces the l-space may
be viewed as a version of L2(I,X), but a version which carries much more of the Hilbert space
structure of L2(I) than the Bochner space (see Section 3 for more details).

(c) For a space Lp(Ω), 1 < p <∞, the space l(L2(R+), X) equals Lp(Ω, L2(R+)), which shows that
the result by Kalton and Weis is the general Banach space analog of a result in [5]: in a reflexive
Lp-space, A has an H∞(Σω)-calculus for some 0 < ω < π/2, if and only if∥∥∥∥( ∫ ∞

0

∣∣(tA)
1/2T (t)f

∣∣2 dt
t

)1/2
∥∥∥∥
p

≤ M‖f‖p, f ∈ Lp (6)∥∥∥∥( ∫ ∞

0

∣∣(tA′)1/2T (t)′g
∣∣2 dt

t

)1/2
∥∥∥∥
p′

≤ M‖g‖p′ , g ∈ Lp
′
. (7)

This kind of square function estimates is familiar from harmonic analysis.
(d) The result of [5] mentioned in (c) motivated Le Merdy [25] to show the following in spaces

X = Lp(Ω) and Y = Lq(Σ) where p, q ∈ (1,∞). : if C ∈ B(X1, Y ) and (6) holds for A, then
WC is R–bounded (which is equivalent to l–boundedness here, cf. Section 3) if and only if∥∥∥∥(∫ ∞

0

∣∣CT (t)f
∣∣2 dt)1/2∥∥∥∥

q

≤M‖f‖p, (8)

for some constant M > 0. In [25], an operator C ∈ B(X1, Y ) satisfying (8) is called R–
admissible.

In view of this remark, we replace, for general Banach spacesX, Y and U , the function spaces L2(R+, Y )
and L2(R+, U) by the spaces l(R+, Y ) and l(R+, U). We are thus led to the concept of l–admissibility
which coincides with admissibility in case Y and U are Hilbert spaces, and with R–admissibility in case
X = Lp(Ω), Y = Lq(Σ), U = Lr(Σ′) where p, q, r ∈ (1,∞). A rough version of our main results then
reads as follows.
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Theorem 1.5. Let X, Y and U have property (α). Suppose that A has dense range and an H∞(Σω)–
calculus for some 0 < ω < π/2. Then C ∈ B(X1, Y ), B ∈ B(U,X−1) are l–admissible if and only if the
sets WC ⊂ B(X,Y ) from (2) and WB ⊂ B(U,X) from (3) are l–bounded.

We also study wellposedness of the system (1). The idea of this concept is to have, for each τ > 0,
continuous dependency of the output (x(τ), y|[0,τ)) of the system on the input (x0, u|[0,τ)) (cf. [37]).
Since the output of (1) is given by

x(τ) = T (τ)x0 +
∫ τ

0

T−1(s)Bu(τ − s) ds

y(·) = CT (·)x0 + CT−1(·)B ∗ u

one has to study continuity of four different maps: continuity of x0 7→ T (τ)x0 is clear since T (·) is a
C0–semigroup, continuity of x0 7→ CT (·)x0 and u 7→

∫ τ
0
T−1(s)Bu(τ − s) ds just means admissibility

of C and B, respectively, and all that is left to study is continuity of the input–output–map F : u 7→
CT−1(·)B ∗ u. Again, the choice of function spaces for u and y plays a decisive role. Besides spaces
L2(I, U), L2(I, Y ) for Hilbert spaces U , Y and spaces l(I, U), l(I, Y ) for Banach spaces U , Y we
shall also consider continuity of the input–output–map Lp(I, U) → Lp(I, Y ) where 1 < p < ∞ and
U , Y are Banach spaces. Clearly, the input–output–map is a (singular) convolution operator and we
obtain our characterisations of wellposedness of the input–output–map (Theorem 4.10) by application
of Fourier multiplier results from [20] and [33]. Finally, we combine our results on l–admissibility of
unbounded observation and control operators and on wellposedness of the input–output–map and obtain
a characterisation of wellposedness for the full system (1) (see Theorem 4.11 and Corollary 4.12).

The paper is organised as follows: in Section 2 we recall basic facts on sectorial operators and the H∞-
calculus. In Section 3 we give an introduction to l-spaces and briefly survey the properties we shall need
in the sequel and the role they play in characterisations of the H∞–calculus. The quoted results are due
N. Kalton and L. Weis ([20]) with exception of Theorem 3.18 which is new. We also review some notions
from Banach space geometry. Section 4 contains our main results on [l–]admissibility (Theorems 4.2
and 4.5) as well as on [l–]wellposedness of the input-output map (Theorem 4.10) and of the full system
(Theorem 4.11, Corollary 4.12). These results are proved in Section 5 as well as Theorems 1.3 and 1.5.
The final Section 6 contains examples of unbounded [l–]admissible observation and control operators,
which are obtained via our main results. We concentrate on the case A = −∆ in Lp, 1 < p < ∞, and
give several examples, in particular point observation and control as well as observation on and control
from the boundary.
At the end we set up a well–posed linear system for a controlled heat equation with state space Lp(Ω)
where 1 < p < ∞ and Ω ⊂ Rn is a bounded and smooth domain. This is the Lp–version of a system,
which – for p = 2 – was studied in [2].
Acknowledgement: The research is supported in part by the ”Landesforschungsschwerpunkt Evo-
lutionsgleichungen des Landes Baden-Württemberg“ and the DFG project ”H

∞–Kalkül und seine
Anwendungen auf partielle Differentialgleichungen“ under contract number WE 2847/1-1.

2. Preliminaries on H∞–calculus and semigroups

We start with a brief overview of the H∞–calculus for sectorial operators. Details heron may be found
in e.g. in [26, 27, 5, 20]. Given some θ ∈ (0, π] let S(θ) be the open sector of all z ∈ C\{0} such that
| arg(z)| < θ. Let Γθ be the counterclockwise orientated boundary of S(θ). The set of all bounded and
holomorphic functions f on S(θ) is denoted by H∞(S(θ)). These functions form a Banach algebra for
the norm ‖f‖∞ := sup{|f(z)| : z ∈ S(θ)}. Let H∞

0 (S(θ)) be the sub-algebra of all functions f , for
which a number s > 0 exists such that

|f(z)| = O(|z|s) at zero and |f(z)| = O(|z|−s) at infinity.

A closed linear operator is said to be sectorial of type ω, ω ∈ (0, π), if its spectrum is contained in the
closure of S(ω), and if for any θ ∈ (ω, π), there is a constant Cθ such that

‖zR(z,A)‖ ≤ Cθ, z 6∈ S(θ).
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It is clear that if −A generates a bounded strongly continuous semigroup, then A is sectorial of type
π/2. Furthermore, −A generates a bounded analytic semigroup if and only if A is densely defined and
sectorial of type ω < π/2.
Now assume that A is a densely defined sectorial operator of type ω. Let θ ∈ (ω, π) and f ∈ H∞

0 (S(θ)).
Then setting

f(A) := 1
2πi

∫
Γ

f(z)R(z,A) dz,

where Γ = Γν for some ν ∈ (ω, θ) defines a bounded linear operator on X. By Cauchy’s theorem this
definition does not depend on the choice of ν ∈ (ω, θ). Notice that the imposition of a dense domain of
A is not necessary for the above definition, but since we intend to treat only generators of semigroups
we will not go into details here.
The mapping f 7→ f(A) is an algebra homomorphism from H∞

0 (S(θ)) to B(X). Moreover, the definition
of f(A) satisfies the following important consistency property with the ad-hoc functional calculus for
rational functions: let p, q are polynomials with all zeros of q in the resolvent set of A such that
f := p/q ∈ H∞

0 (S(θ)), then f(A) = p(A)(q(A))−1.

Definition 2.1. Let A be a densely defined sectorial operator of type ω ∈ (0, π) on a Banach space X
and let θ ∈ (ω, π). Then A is said to admit a bounded H∞(S(θ))–calculus if there is a constant M ≥ 0
such that

‖f(A)‖ ≤M ‖f‖θ, f ∈ H∞
0 (S(θ)).

If a densely defined sectorial operator A has dense range, then by [5, Theorem 3.8] it is also injective.
In this case, there is a natural extension of the above definition of f(A) to arbitrary functions f ∈
H∞(S(θ)) [26, 27]. However, in general f(A) then is a closed but possibly unbounded operator on X.
An application of the closed graph theorem reveals that A admits a bounded H∞(S(θ))–calculus in the
above sense if and only if f(A) is bounded for any f ∈ H∞(S(θ)).
In [26] it is shown, that in Hilbert spaces X the property of a densely defined sectorial operator A
with dense range to possess a bounded H∞(S(θ))–calculus or not, is strongly connected to quadratic
estimates, which we will recall in the sequel:
If A is sectorial of type ω and if F is a non-zero function belonging to H∞

0 (S(θ)) for some θ ∈ (ω, π),
we set

‖x‖F :=
(∫ ∞

0

∥∥F (tA)x
∥∥2

X
dt
t

) 1
2

, x ∈ X.

Note that ‖x‖F may be equal to +∞. These square functions were introduced by McIntosh in [26],
see also [27]. The next theorem is originally stated for Hilbert spaces X only, but the proof extends in
verbatim to the Banach space case.

Theorem 2.2 ([27, Thm. 5]). Let A be a densely defined sectorial operator of type ω on a Banach
space X, and assume that A has dense range. Let F,G ∈ H∞

0 (S(θ)) \ {0}, where θ > ω. Then there
exist two positive constants c1 > 0 and c2 > 0 such that

c1‖x‖G ≤ ‖x‖F ≤ c2‖x‖G, x ∈ X.

This leads to the following

Definition 2.3. Let A be as in Theorem 2.2, and let F ∈ H∞
0 (S(θ)) \ {0}, where θ > ω. We say that

A has a quadratic estimate if there is a constant c > 0 such that

‖x‖F ≤ c‖x‖X , x ∈ X.

By the above theorem, this definition does not dependent on F .

In [26, Section 8] it is shown that on Hilbert spaces a densely defined sectorial operator A of type ω with
dense range has a bounded H∞–calculus if and only if A and its dual A′ admit quadratic estimates.
This is not the case on non-Hilbertian spaces, as was shown in [5, Section 6]. However, when considering
Banach spaces of finite cotype the H∞–calculus still admits a similar characterisation if we change the
notion of quadratic estimates. This is the topic of the next section.
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3. Square function estimates and generalised square functions

Consider the Hilbert space X = L2(Ω). For classical quadratic estimates the norm of t 7→ ϕ(tA)x
is taken in L2(R+, dt/t, L

2(Ω)). When generalising this to spaces X = Lp(Ω), one may consider the
function norm in L2(R+, dt/t, L

p(Ω)). But it turns out that, for characterising boundedness of the
H∞–calculus, the function norm in Lp(Ω, L2(R+, dt/t)) is the right one (cf. [5]). Notice that by Fubini’s
theorem both norms coincide when p = 2.
In the sequel we will, following N. Kalton and L. Weis [20], survey a notion of square function estimates
based on a generalisation of the norm of Lp(Ω, L2(R+, dt/t)) to arbitrary Banach spaces X.
Let f ∈ Lp(Ω, L2(I)) for some measure spaces Ω, I. Then, for an orthonormal system (en) of L2(I) and
the bilinear product 〈f, g〉 =

∫
fg one has∫

I

|f(ω, t)|2dt =
∑
n∈N

|〈f(ω), ēn〉|2.

If g1, . . . , gN are independent N(0, 1)–distributed Gaussian random variables, then for any series of
complex numbers α1, . . . , αN one has

N∑
n=1

|αn|2 = E
∣∣∣∣ N∑
n=1

gnαn

∣∣∣∣2.
Both equations together lead to

‖f‖Lq(L2) =
(∫

Ω

(∫
I

∣∣f(t)(ω)
∣∣2dt)q/2

dω

)1/q

=
(∫

Ω

(
lim
N→∞

E
∣∣∣∣ N∑
n=1

gn〈f(·)(ω), ēn〉︸ ︷︷ ︸
=:uf (ēn)(ω)

∣∣∣∣2)q/2

dω

)1/q

Now, a Khintchine type result that may be found, e.g., in [7, Chap. 12] yields

= Cq

(∫
Ω

lim
N→∞

E
∣∣∣∣ N∑
n=1

gnuf (ēn)(ω)
∣∣∣∣qdω)1/q

.

By monotone convergence, this equals

= Cq lim
N→∞

(
E

∥∥∥∥ N∑
n=1

gnuf (ēn)
∥∥∥∥q
Lq(Ω)

)1/q

,

and Kahane’s inequality finally gives

∼ lim
N→∞

(
E

∥∥∥∥ N∑
n=1

gnuf (ēn)
∥∥∥∥2

Lq(Ω)

)1/2

.

The above calculation yields an equivalent formula which does no longer depend on the function space
structure of Lq(Ω) and allows the following generalisation:

Definition 3.1 ([20, Def. 4.1]). Let H be a Hilbert space and X a Banach space. We denote by
l+(H,X) the space of all linear operators u : H → X such that

‖u‖l = sup
{(

E
∣∣∣∣∣∣∣∣∑ gnu(en)

∣∣∣∣∣∣∣∣2)1/2

: (en) is a finite orthonormal system in H

}
<∞.

By l(H,X) we denote the closure of the finite dimensional operators in l+(H,X).

We note, that l(H,X) is a Banach space, that is contained in B(H,X) ([20]). For the most important
case H = L2(I, µ) there is a class of generating functions which may be defined as follows (see [20,
Definition 4.5]): Let P2(I, µ,X) be the class of all Bochner-measurable functions from I to X for which
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x′(f) ∈ L2(I,X) whenever x′ ∈ X ′. For f ∈ P2(I, µ,X) we define the operator uf ∈ B(L2(I, µ), X)
such that for x′ ∈ X ′ and h ∈ L2(I)

〈ufh, x′〉X,X′ =
∫
I

〈f(t), x′〉X,X′h(t) dµ(t).

For the details of this definition (e.g., the question why uf ∈ B(H,X ′′) can be regarded as an element
of B(H,X)) we refer to [20, Definition 4.5] or [9, Section 5.5]. Then if uf ∈ l+(L2(I), X) define

‖f‖l(I,X) := ‖uf‖l(L2(I),X).

The space of all f ∈ P2(I, µ,X) for which uf ∈ l+(L2(I), X) or uf ∈ l(L2(I), X) is called l+(I,X) or
l(I,X) respectively. Contrary to the case X = Lq(I), for arbitrary Banach spaces X, l(I,X) does not
have to be a Banach space, see [20, Remark 4.7]. However, l(I,X) is dense in l(L2(I), X) [ibidem]. The
following shows that L2(I)⊗X is a subset of l(I,X):

Lemma 3.2. If ϕ is an element of L2(I) and x ∈ X, then f(t) := ϕ(t)x defines an element of l(I,X)
with ‖f‖l = ‖ϕ‖L2‖x‖X .

Proof. Let (en) a fixed orthonormal system in L2(I). Then by definition(
E

∥∥∥∥ n∑
k=1

gk(ek|ϕ)x
∥∥∥∥2

X

) 1
2

=
(

E
∣∣∣∣ n∑
k=1

gk(ek|ϕ)
∣∣∣∣2) 1

2

‖x‖X =
( n∑
k=1

∣∣(ek|ϕ)
∣∣2) 1

2

‖x‖X ≤ ‖ϕ‖L2‖x‖X .

Now, letting n→∞ we obtain the desired result by Parseval’s equality. �

Next we discuss how to extend a bounded operator S : H1 → H2 to an operator S⊗ : l(H1, X) →
l(H2, X). This is simply done by S⊗(u) := u ◦ S′. By [20, Proposition 4.4] we have that ‖S⊗‖ ≤ ‖S‖.
This result has some remarkable applications (see [20, Example 4.9]). Notice that for non-Hilbertian
spaces X, (b) is in contrast to the behaviour of the Bochner-space L2(I,X):

Remark 3.3.
(a) Since for intervals I ⊆ J the zero extension of functions of L2(I) to J and the restriction of

functions of L2(J) to I are both bounded operators, the restriction l(J,X) → l(I,X) and the
extension l(I,X) → l(J,X) are bounded (of norm at most one).

(b) Let f be in l(Rn, X) ∩ L1(Rn, X). Then we may extend the Fourier transform F and obtain
F⊗f ∈ l(Rn, X) and ‖F⊗f‖l(Rn,X) = ‖f‖l(Rn,X).

(c) If f ∈ l(R+, X) for some Banach space X, then the Laplace transform

f̂(λ) =
∫ ∞

0

e−λtf(t)dt

exists at least on the open right half plane C0. This is due to the fact that setting eλ := exp(λ·)
we have f̂(λ) = uf (e−λ) and thus ‖f̂(λ)‖X ≤ ‖e−λ‖L2 ‖f‖l = (2Re(λ))−

1/2 ‖f‖l.

Moreover, there is a sort of analogue of Hölder’s inequality for l–norms:

Proposition 3.4 ([20, Cor. 5.5]). Let (I, µ) be a σ–finite measure space. Let f ∈ l(I,X) and g ∈
l(I,X ′). Then ∫

I

∣∣〈f(t), g(t)〉
∣∣ dµ(t) ≤ ‖f‖l(I,X)‖g‖l(I,X′).

The analysis of bounded families of operators on l(H,X) (see Proposition 3.9 below) motivates the
following definition:

Definition 3.5. Let X, Y be Banach spaces and T be a set of operators in B(X,Y ).
(a) The set T is called l–bounded if there is a constant C such that for all m ∈ N, T1, . . . , Tm ∈ T

and x1, . . . , xm ∈ X(
E

∥∥∥∥ m∑
n=1

gnTnxn

∥∥∥∥2

Y

)1/2

≤ C

(
E

∥∥∥∥ m∑
n=1

gnxn

∥∥∥∥2

X

)1/2

(9)

where (gn) is a sequence of independent, N(0, 1)–distributed Gaussian variables.
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(b) The set T is called R–bounded if there is a constant C such that above inequality (9) holds
when substituting the Gaussian variables by a sequence (rn) of independent {±1}–distributed
Bernoulli variables. Notice that the Rademacher functions rn(t) := sign sin(2nπt) form such a
sequence on [0, 1].

(c) The infimum of all constants C, for which the above inequality holds, is called the l–bound
(respectively the R–bound) of the set T .

Remark 3.6. Clearly R–boundedness implies uniform boundedness. The converse holds provided that
X has cotype 2 and Y has type 2 (cf. [12, Ex. 6.13] for a counterexample). In particular, if X = Y
this holds true only for spaces that are isomorphic to Hilbert spaces. Notice that R–bounded sets are
always l–bounded (cf. [32, Sect. 3]) whereas the converse holds only if both X and Y have finite cotype
(see [7, Proposition 12.11 and Theorem 12.27]).
Recall that a Banach space X is said to be of type p ∈ [1, 2] if(

E
∥∥∥∥ m∑
n=1

gnxn

∥∥∥∥2

X

)1/2

≤ C

( m∑
n=1

‖xn‖pX
)1/p

,

whereas X is said to be of cotype q ∈ [2,∞] if( m∑
n=1

‖xn‖qX
)1/2

≤ C

(
E

∥∥∥∥ m∑
n=1

gnxn

∥∥∥∥2

X

)1/2

with obvious modification for q = ∞. Here, of course, C is required to be independent of the finite set
(xn)mn=1 in X. Observe that any Banach space X has cotype ∞ and type 1; X is said to have nontrivial
type if X has type p for some p > 1. In this case, X also has finite cotype ([29, Theorem 4.6.20]).

Lemma 3.7 ([3, Lemma 3.3]). Let X and Y be Banach spaces and T ⊂ B(X,Y ). If T is l–bounded
(R–bounded) with bound M , then its closed absolute-convex hull with respect to the strong operator
topology is l–bounded (R–bounded) too with a bound of at most 2M .

The following lemma is an important application of the foregoing result:

Lemma 3.8 ([20, Lemma 5.8]). Let (I, µ) be a σ-finite measure space and let N(t) be a strongly
measurable mapping from I to B(X,Y ). Suppose that {N(t) : t ∈ I} is an l–bounded set with bound C.
For scalar-valued functions h ∈ L1(I) and x ∈ X we define

Nh(x) :=
∫
I

h(t)N(t)x dµ(t)

Then the set {Th : ‖h‖L1(I) ≤ 1} is l–bounded in B(X,Y ) with bound less or equal to 2C.

To see the link between l–bounded sets and l–norms, we cite

Proposition 3.9 ([20, Proposition 4.11]). Let I be an interval, g ∈ L1
loc(I), g > 0 a.e. and µ = g(t) dt.

Let N : I → B(X,Y ) be a strongly continuous map. Then the set T = {N(t) : t ∈ I} is l–bounded with
bound C if and only if for all f ∈ l(I,X) one has

‖N(·)f(·)‖l(I,dµ,Y ) ≤ C‖f‖l(I,dµ,X).

We recall a dualisation result

Lemma 3.10 ([17, Lem. 3.1]). Let X,Y be Banach spaces of nontrivial type. Then T ⊆ B(X,Y ) is
l–bounded (or equivalently R–bounded) if and only if T ′ ⊆ B(Y ′, X ′) is.

Now we shall come back to the announced link between square function estimates and boundedness of
the H∞–calculus.

Definition 3.11. A sectorial operator A on a Banach space X is called l–sectorial of type ωl if the set
{λ(λ+A)−1 : λ ∈ S(π−θ)} is l–bounded for every θ ∈ (ωl, π).

Definition 3.12. Let A be an densely defined l–sectorial operator of type ω on X and for some θ > ω
let ϕ be a function in H∞

0 (S(θ))\{0}. We say that A satisfies a square-function estimate for ϕ if there
exists a constant M > 0 such that

∀x ∈ X : ‖ϕ(·A)x‖
l(R+,

dt
t ,X)

≤M‖x‖X .
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By [20, Prop. 7.7] (the analogue of Theorem 2.2 cited above), the property of A to satisfy square function
estimates (or not) does not depend on the particular choice of the function ϕ ∈ H∞

0 (S(θ))\{0}.

Theorem 3.13 ([20, Thm. 7.2]). Let A be a densely defined l–sectorial operator of type ω with dense
range. If A and its dual A′ satisfy square-function estimates, then A has a bounded H∞–calculus on
X. If X has finite cotype, then the converse holds, too.

For the last result in this section we recall some geometric properties of Banach spaces related to
randomised sums, i.e., to sums

∑
k≤n χkxk where the xk are elements of a given Banach space and the

χk are real-valued and symmetric random variables. The following inequality may be found, e.g., in [7,
12.2].

Proposition 3.14 (Contraction principle). Let 1 ≤ p <∞ and consider the randomised sum
∑
k≤n χkxk

on a Banach space X. Then for any choice of complex numbers ak with |ak| ≤ 1,(
E

∥∥∥∥∑
k≤n

akχkxk

∥∥∥∥p)1/p

≤ 2
(

E
∥∥∥∥∑
k≤n

χkxk

∥∥∥∥p)1/p

.

We mention an important consequence of the contraction principle. A proof may be found e.g. [21, Cor.
2.17].

Lemma 3.15 ([20, Lemma 5.9]). Let (I, µ) be a σ-finite measure space and let N(t) be strongly inte-
grable. Suppose that there exists a constant C such that for all x ∈ X∫

I

‖N(t)x‖ dµ(t) ≤ C‖x‖.

Then, using the notations of 3.8, the set {Nh | h ∈ L∞(I), ‖h‖ ≤ 1} is l–bounded with a bound of at
most 2C.

If we take not one, but two independent sequences of independent symmetric, real valued random
variables (χi), (χ′j) then their products χi(·)χ′j(·) will be prevail their symmetry but lose their indepen-
dence. This can easily be seen since for independent {±1}–distributed Bernoulli variables r1, r2, r′1, r

′
2

the case
r1r

′
1 = 1, r1r

′
2 = 1, r2r

′
1 = 1, r2r

′
2 = −1

is impossible. For the general case of symmetric real valued random variables notice that their signs are
Rademacher random variables. Since products of independent random variables are not independent
we do not have a contraction principle for such product-randomised sums in general spaces X.

Definition 3.16 (Pisier [30]). We say that X has property (α), if for two independent sequences (rn),
(r′n) of Rademacher sequences there is a constant C so that for all xij ∈ X and |aij | ≤ 1 the estimate(

E E′
∥∥∥∥ n∑
i,j=1

rir
′
jaijxij

∥∥∥∥2)1/2

≤ C

(
E E′

∥∥∥∥ n∑
i,j=1

rir
′
jxij

∥∥∥∥2)1/2

(10)

holds.

Remark 3.17. If a Banach space X has property (α) then by [30, Remark 2.2] X does not contain
ln∞’s uniformly, which by [7, Theorem 14.1] implies that X has finite cotype. Examples of spaces with
property (α) are, e.g., Lp–spaces for p ∈ [1,∞).

Now we present a powerful extension theorem whose implications are crucial for the characterisations
in the next section. It will be proved in Section 5.

Theorem 3.18. Let H1 and H2 be two separable Hilbert spaces. Let Y be a Banach space with prop-
erty (α). Let A be a bounded set in B(H1,H2). Then the set A⊗ := {A⊗ : A ∈ A} is l–bounded in
B

(
l(H1, Y ), l(H2, Y )

)
.

The following corollary was found in the case of reflexive Lp-spaces X and Y by Le Merdy [25, Propo-
sition 3.3]. Here in fact we apply the above Theorem for H1 = L2(I) and H2 = C.
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Corollary 3.19. Let X and Y be Banach spaces and Y have property (α). Let ϕ ∈ B(X, l(I, Y )). Then
the set {∫

I

a(t)ϕ(t)dt : a ∈ L2(I), ‖a‖2 ≤ 1
}

is l–bounded in B(X,Y ).

Applying this to the special functions hλ(t) := λ
1/2e−λt, Re(λ) > 0 yields the following result in the case

that Y has property (α). The assertion even holds without any restriction on Y , as L. Weis pointed
out to the authors:

Proposition 3.20. Let X, Y be Banach spaces and N : R+ → B(X,Y ) be strongly measurable. If
M > 0 and N(·)x ∈ l(R+, Y ) with an estimate ‖N(·)x‖l ≤M‖x‖ for all x ∈ X, then for every θ < π/2
the set {λ1/2N̂(λ) : λ ∈ S(θ)} is l–bounded where N̂(·) denotes the Laplace transform of N .

Now we give a useful corollary of Theorem 3.18 for H1 = C and H2 = L2(I):

Corollary 3.21. Let X be a Banach space and U be a Banach space with property (α). If ϕ : I →
B(U,X) is strongly measurable such that ‖

∫
I
ϕ(t)u(t) dt‖X ≤ K‖u‖l for all u ∈ l(I, U), then the set{∫

I

a(t)ϕ(t) dt : a ∈ L2(I), ‖a‖2 ≤ 1
}

is l–bounded in B(U,X).

It seems not to be clear if an analogue of Proposition 3.20 holds in the situation of 3.21, too.

4. Main results

Let U , X and Y be Banach spaces. We now consider linear control systems of the forms x′(t) +Ax(t) = 0, t > 0,
x(0) = x0,
y(t) = Cx(t), t > 0,

and
{
x′(t) +Ax(t) = Bu(t), t > 0,
x(0) = x0.

(11)

on [0,∞). Here, C ∈ B(X1, Y ) and B ∈ B(U,X−1) are unbounded with respect to X.

Admissibility of observation and control operators

Definition 4.1. Let −A be generator of a bounded strongly continuous semigroup T (·) on X and
C ∈ B(X1, Y ). Then C is called an l–admissible observation operator for A, if there exists a M > 0
such that for all x ∈ X one has

‖CT (·)x‖l(R+,Y ) ≤M‖x‖X .

We shall establish a characterisation of l–admissibility of observation operators for an l–bounded an-
alytic semigroup, that is an analytic semigroup with {T (z) : z ∈ S(θ)} being l–bounded for some
positive angle θ. Indeed, if −A denotes the generator of such a semigroup, an equivalent formulation is
that A is densely defined and l–sectorial of type ωl < π/2 (this can be shown similar to the proof [33,
Thm. 2.10]). The following theorem extends a result obtained by Le Merdy [25] for Lp–spaces.

Theorem 4.2. Let X and Y be Banach spaces and let A be densely defined l–sectorial operator of
type ωl < π/2 that has dense range. Consider an observation operator C ∈ B(X1, Y ) and let WC :=
{λ1/2C(λ+A)−1 : λ > 0}.

(a) If Y has property (α), then l–admissibility of C implies l–boundedness of WC .
(b) If A satisfies square function estimates in the sense of Definition 3.12, then l–boundedness of

WC implies l–admissibility of C.

Remark 4.3. Notice that the assumption of square function estimates is necessary: Let Γ be the
positively orientated boundary of some sector S(θ) with θ ∈ (ωl, π). Since for positive numbers α, β
with α+ β = 1 we have

λαAβ(λ+A)−1x = 1
2πi

∫
Γ

λαzβ

λ− z
R(z,A)x dz = 1

2πi

∫
Γ

λαzβ−1

λ− z
zR(z,A)x dz,
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the uniform boundedness of the functions hλ(z) := λαzβ−1

λ−z in L1(Γ) implies together with Lemma 3.8
l–boundedness of {λαAβ(λ+A)−1 : λ > 0}. In particular, the choice α=β=1/2 shows l–boundedness of
the set WC in case C = A

1/2 . Therefore, if for any Banach space Y and any operator C ∈ B(X1, Y ),
l–boundedness of the set WC implies l–admissibility of C, then A

1/2 must be l–admissible for A proving
that A satisfies square function estimates. This shows that the assumption of square function estimates
in the foregoing theorem cannot be omitted.

We now turn to control operators:

Definition 4.4. Consider the system (11) for a generator −A of a C0-semigroup T (·) and a control
operator B ∈ B(U,X−1). Then B is called an l–admissible control operator for A, if the integral in the
following formula exists as Pettis integral in X−1, takes values in X and allows the estimate∥∥∥∥∫ ∞

0

T−1(t)Bu(t) dt
∥∥∥∥ ≤ K‖u‖l(R+,U).

Notice that in reflexive Banach spaces U and X of finite cotype, B is an l–admissible control operator
for A if and only if B′ is an l–admissible observation operator for A′. In the general case, the following
holds true:

Theorem 4.5. Let X and U be Banach spaces and let A be a densely defined l–sectorial opera-
tor of type ωl <

π/2 with dense range. Consider a control operator B ∈ B(U,X−1) and let WB :=
{λ1/2(λ+A−1)−1B : λ > 0}.

(a) If U has property (α), then l–admissibility of B implies l–boundedness of WB in B(U,X).
(b) If A′ satisfies a square function estimate in the sense of Definition 3.12 on X ′, then l–boundedness

of WB in B(U,X) yields l–admissibility of B.

A review of the proof of the foregoing theorem, which will be given in Section 5 shows that the following
result for the case of classical L2(R+, X)–norms can be derived by slight modifications. Notice that this
characterisation is new for non-reflexive spaces.

Theorem 4.6. Let X and U be Banach spaces and let T (·) be a bounded and analytic semigroup
T (·) whose generator −A has dense range. Assume A′ to satisfy a quadratic estimate as in (5). Then
B ∈ B(U,X−1) is an admissible control operator for A if and only if the operators λ

1/2(λ+A)−1B are
uniformly bounded in B(U,X) for λ > 0.

Similar to the classical Bochner-norm theory, l–admissibility may also be considered on finite time
intervals:

Definition 4.7. Let τ > 0. Then an observation operator C ∈ B(X1, Y ) is said to be l–admissible on
[0, τ ], if the estimate ∥∥CT (·)x

∥∥
l([0,τ ],Y )

≤M‖x‖X
holds for every x ∈ X1. Analogously a control operator B ∈ B(U,X−1) is called l–admissible on [0, τ ]
provided that the following integral exists as a Pettis integral in X−1, takes values in X and allows the
estimate ∥∥∥∥∫ τ

0

T−1(τ − s)Bu(s) ds
∥∥∥∥
X

≤ K‖u‖l([0,τ ],U).

Lemma 4.8. Let T (·) be an l–bounded analytic semigroup with generator −A and let B : U → X−1

and C : X1 → Y be bounded.
(a) B is finite-time l–admissible for A if and only if for any α > 0, B is l–admissible for the scaled

semigroup e−α·T (·).
(b) If C is finite-time l–admissible for A if and only if for any α > 0, C is l–admissible for the

scaled semigroup e−α·T (·).
In particular, finite-time l–admissibility does not depend on the length τ of the given time interval.

Proof. The proof is a standard argument exploiting the semigroup property and a geometric series. �
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Remark 4.9. If C ∈ B(X,Y ) and T (·) is a bounded and analytic semigroup, then C is always
finite-time l–admissible. Analogously the corresponding assertion for B ∈ B(U,X) is true. This is an
immediate consequence of the estimate

‖f‖l([0,τ ],X) ≤
∫ τ

0

t
1/2‖f ′(t)‖X dt+ τ

1/2‖f(τ)‖X ,

for f ∈ C([0, τ ]) ∩ C1((0, τ ]) (see [20, Example 4.6]) and the fact that for bounded and analytic
semigroups we have ‖ ddtTtx‖ ≤

M
t ‖x‖.

Wellposedness of the full system

Now we consider wellposedness of the full linear system x′(t) +Ax(t) = Bu(t), t > 0,
x(0) = x0,
y(t) = Cx(t), t > 0.

(12)

For the concept of wellposedness we refer to the remarks in the introduction and to [37] where the
case y ∈ L2([0, τ), Y ), u ∈ L2([0, τ), U) for Hilbert spaces Y and U , and the case y ∈ Lp([0, τ), Y ),
u ∈ Lp([0, τ), U), p ∈ [1,∞], for Banach spaces X, Y , U is studied.
In view of the results presented so far in this section we shall also consider the case of l–spaces instead
of L2 or Lp. The observation y(·) in (12) is given by y(·) = CT (·)x0 + CT (·)B ∗ u. Hence it rests to
study continuous dependence of y(·) = CT (·)B ∗ u on u(·). Again, this is best done on the interval
[0,∞). Below we give conditions for ‖y‖Lp(R+,Y ) ≤M‖u‖Lp(R+,U), 1 < p <∞, and for ‖y‖l(L2(R+),Y ) ≤
M‖u‖l(L2(R+),U).

Let −A be the generator of a bounded analytic semigroup on X. Then the input-output map F∞ is
given by F∞(u) := CT−1(·)B ∗ u. As it is done in [23, Sect. 4] for bounded operators C ∈ B(X,Y )
and B ∈ B(U,X), the map F∞ can be regarded as a Fourier multiplier. Note that our assumption on
A implies that the imaginary axis with possible exception of zero is contained in the resolvent set of
A. In order to consider the symbol of F∞ we resort to a construction due to G. Weiss ([34, 36]): the
Yoshida–extension CΛ of C : X1 → Y is given by

x ∈ D(CΛ) and CΛx = y ⇐⇒ y = lim
λ→+∞

Cλ(λ+A)−1x.

We recall that the transfer function, i.e., the Laplace transform image of CT−1(·)B, is called regular
if resolvents of A−1 map the range B(U) of the operator B into D(CΛ) (there are several equivalent
formulations of regularity, cf. [36, 37, 38]). We also call the system (12) regular if it has a regular
transfer function.
In the sequel we shall only consider regular systems, i.e., those for which the Laplace transform of
CT−1(·)B can be written as λ 7→ CΛ(λ+A−1)−1B. We call the input-output map Lp–wellposed, if F∞
is bounded from Lp(R+, U) to Lp(R+, Y ). In [4, Proposition 1] it is shown that a necessary condition for
Lp–boundedness of F∞ (for a regular system) is R–boundedness of the symbol on its Lebesgue–points,
i.e., R–boundedness of the set

{CΛ(iξ+A−1)−1B : ξ 6= 0} ⊂ B(U, Y ). (13)

To achieve a sufficient condition we need the notion of a UMD space. A Banach space X is said to have
the UMD property if the Hilbert–transform is a bounded operator on Lp(R, X) for some (and thus
all) p ∈ (1,∞). UMD refers to the fact that X is a UMD space if and only if all martingale difference
sequences induce an unconditional decomposition of the space Lp(Ω, X). Typical examples of UMD
spaces are Lp(Ω)–spaces, Sobolev spaces W s

p (Ω) or Besov spaces Bsp,q(Ω) for p, q ∈ (1,∞) and their
closed subspaces. For equivalent definitions, properties and further references on UMD–spaces we refer,
e.g., to [21]. We mention here that UMD–spaces have nontrivial type and thus finite cotype (cf. [21, Ch.
3]), whence by Remark 3.6 the notions of R–boundedness and l–boundedness coincide in UMD–spaces.
If the system (12) is regular and U and Y are UMD–spaces then, by the Mikhlin-Weis theorem [33,
Theorem 3.4], R–boundedness of the set of operators in (13) together with R–boundedness of the
following set {

ξ
d

dξ
CΛ(iξ+A−1)−1B : ξ 6= 0

}
⊂ B(U, Y ) (14)



LINEAR SYSTEMS IN BANACH SPACES – 6th July 2005 13

is sufficient to ensure Lp–boundedness of F∞ for 1 < p <∞. Note that

ξ
d

dξ
CΛ(iξ+A−1)−1B = −i ξ

1/2CR(iξ,−A) · ξ
1/2R(iξ,−A−1)B, ξ 6= 0,

since C ∈ B(X1, Y ) and B ∈ B(U,X−1). If U and Y have property (α) and B and C are l–admissible
then Theorems 4.2 and 4.5 show that the set in (14) is l–bounded, hence R–bounded (see Remark 3.6).
For UMD–spaces U , Y with property (α), Lp–wellposedness of F∞ for a regular system in this situation
is thus characterised by l–boundedness of (13).
Besides Lp–wellposedness it seems natural to take into account also a notion of l–wellposedness of
the input-output map. For this notion we require the convolution operator F∞ to be bounded from
l(R+, U) to l(R+, Y ). Again considering F∞ for a regular system as a Fourier multiplier we obtain by
Proposition 3.9 equivalence of l–wellposedness and l–boundedness of the set in (13). Notice that the
condition that is only necessary in the Lp–case is necessary and sufficient in the l–case without any
geometric assumptions on the spaces U , X, or Y .
We sum up the above arguments in the following theorem.

Theorem 4.10. Let X, U and Y be Banach spaces. Let −A be the generator of an l–bounded analytic
semigroup on X. Assume that the observation and control operators B, C are l–admissible and that the
system is regular. Then the following are equivalent:

(a) The input-output map F∞ is l–wellposed.
(b) The set {CΛ(iξ+A−1)−1B : ξ 6= 0} is l–bounded in B(U, Y ).

Moreover, (a) and (b) are implied by each of the following conditions:
(c) The input-output map F∞ is Lp–wellposed for some p ∈ (1,∞).
(d) The input-output map F∞ is Lp–wellposed for all p ∈ (1,∞).

If U and Y are UMD spaces which have property (α) then (a) implies (d), whence all four assertions
are equivalent.

This finally yields a characterisation for l–wellposedness of the full system (12), by which we mean that
B and C are l–admissible and that F∞ is l–wellposed.

Theorem 4.11. Let X, U , Y be a Banach spaces. Assume that −A is the generator of an l–bounded
analytic semigroup, that A has dense range. Let C ∈ B(X1, Y ) and B ∈ B(U,X−1), assume that the
system (12) is regular and consider the following sets:{√

λC(λ+A)−1 : λ > 0
}
⊂ B(X,Y ), (15){√

λ(λ+A−1)−1B : λ > 0
}
⊂ B(U,X), (16){

CΛ(λ+A−1)−1B : λ ∈ iR \ {0}
}
⊂ B(U, Y ). (17)

(a) If (12) is l–wellposed and U and Y have property (α), then the sets in (15), (16) and (17) are
l–bounded.

(b) If A, A′ have square function estimates and the sets in (15), (16) and (17) are l–bounded, then
(12) is l–wellposed.

Corollary 4.12. Let X be a Banach space of finite cotype, and U and Y have property (α). Assume
that −A generates an l–bounded analytic semigroup, that A has dense range and a bounded H∞(S(θ))–
calculus for some θ < π/2. Let C ∈ B(X1, Y ) and B ∈ B(U,X−1), assume that the system (12) is regular.
Then the system (12) is l–wellposed if and only if the sets in (15), (16) and (17) are l–bounded.
If U and Y are Hilbert spaces, then (12) is L2–wellposed if and only if the sets in (15) and (16) are
l–bounded, and the set in (17) is bounded.

Remark 4.13. In general, the determination of CΛ or D(CΛ) is not easy (see [34, 36]). In applications,
however, one may use the following argument, which often gives sufficient information. Suppose that
Z is a Banach space satisfying X1 ⊂ Z ⊂ X with continuous injections such that the part AZ of A in
Z is sectorial and densely defined. Suppose that C̃ ∈ B(Z, Y ) is an extension of C ∈ B(X1, Y ). Then
Z ⊂ D(CΛ) and CΛ is an extension of C̃. Indeed, for z ∈ Z we have by the assumptions on AZ

λ(λ+A)−1z = λ(λ+AZ)−1z → z in ‖ · ‖Z , (λ→ +∞)
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which implies Cλ(λ+A)−1z → C̃z(λ→ +∞) in ‖ · ‖Y by continuity of C̃ : Z → Y .
We thus find the following sufficient condition for regularity: Suppose that Z is a Banach space as
described above such that C has a continuous extension C̃ : Z → Y . Let W := ((1 + A−1)Z, ‖(1 +
A−1)−1 ·‖Z). Then W is Banach space, X ⊂W ⊂ X−1 with continuous injections, and the part (A−1)W
of A−1 in W is densely defined and sectorial in W . If B(U) ⊂W then the system (12) is regular.

Remark 4.14. If, in the proofs, we make use of Proposition 3.20 instead of Corollary 3.19, some
assumptions on Y in the foregoing results may be weakened: Theorem 4.2 (a) is valid without any
assumption on Y ; in the last assertion of Theorem 4.10, it is sufficient that Y is a UMD space (implying
finite cotype); Theorem 4.11 (a) is valid without any assumption on Y .

5. Proofs of the main theorems

Proof of Theorem 4.2. The necessity follows immediately from λ
1/2C(λ+A)−1x =

∫∞
0
λ

1/2e−λtCT (t)x,
by Proposition 3.20. We now prove the sufficiency part. It is well known from [5, Thm 3.8] that for
sectorial operators dense range implies injectivity. We may thus write

CT (t) = CA−
1/2(tA)

1/2T (t)t−
1/2 = CA−

1/2ϕ0(tA)t−
1/2

where ϕ0(z) := z
1/2e−z. We decompose ϕ0(z) = ϕ(z)ψ(z) where

ϕ(z) := zα(1+z)−1, ψ(z) := z
1/2−α(1 + z)e−z

for some α ∈ (0, 1/2). Let Γ be the positively orientated boundary of S(θ) where θ ∈ (ωl, π/2). Then, for
x ∈ R(A

1/2(I+A)−1)

CA−
1/2ϕ0(tA)x = CA−

1/2 1
2πi

∫
Γ

ϕ(tz)R(z,A)x dz.

By [17, Lemma 4.2], this equals

= CA−
1/2 1

2πi

∫
Γ

ϕ(tz)z−
1/2A

1/2R(z,A)x dz

= 1
2πi

∫
Γ

ϕ(tz)z
1/2CR(z,A)x dz

z =: K(t)x.

In the last equality we made use of x ∈ R(A
1/2(I+A)−1). Now∥∥K(t)x

∥∥ ≤ 1
2π

∫
Γ

|ϕ(tz)|
∥∥z1/2CR(z,A)x

∥∥ |dz|
|z| .

For z ∈ Γ,
z

1/2CR(z,A) = |z|
1/2C(|z|+A)−1

[
2 cosh(±θ/2)zR(z,A)− I

]
.

Hence l–sectoriality of A and l–boundedness of WC yield that {z1/2CR(z,A) : z ∈ Γ} is l–bounded.
Scaling invariance of Γ and the measure dz/z implies that ht(z) := ϕ(tz) is uniformly bounded in
L1(Γ, |dz|/|z|), whence the set {K(t) : t > 0} ⊂ B(X,Y ) is l–bounded by Lemma 3.8.
Now we conclude that ∥∥CT (t)x

∥∥
l(R+,Y )

=
∥∥CA−1/2ϕ(tA)ψ(tA)t−

1/2x
∥∥
l(R+,Y )

=
∥∥K(t)ψ(tA)x

∥∥
l(R+,

dt
t ,Y )

≤ c1
∥∥ψ(tA)x

∥∥
l(R+,

dt
t ,X)

≤ c2
∥∥x∥∥,

where we used Proposition 3.9 and the assumed square function estimate for A in the last two steps. �

Notice that some slight modifications in the above proof yield a short proof of [24, Thm. 4.1].

Proof of Theorem 1.3. By [17, Lem. 3.1] property (α) implies property (∆). Therefore, by [17, Thm.
5.3] A is R–sectorial of angle ωR = θ =< π/2. By Remark 3.6 A is l–sectorial of the same angle,
so −A generates an l–bounded analytic semigroup. Property (α) implies finite cotype of X and the
boundedness of the H∞–calculus of A ensures square function estimates for A and A′ by Theorem 3.13.
Therefore, Theorem 4.2 applies. �
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In order to prove Theorem 4.5 we first state the following representation lemma:

Lemma 5.1. Let A be a densely defined sectorial operator of type ω < π/2 with dense range on a Banach
space X. Let B ∈ B(U,X−1) a control operator and assume the set WB := {λ1/2(λ+A−1)−1B : λ > 0}
to be uniformly bounded in B(U,X). Then for all α ∈ (0, 1/2) and u ∈ U the following representation is
valid in X−1:

T−1(t)Bu = 1
2πi

∫
Γ

λ−αe−λt(A−1)αR(λ,A−1)Budλ. (18)

Here Γ is the positively orientated boundary of some sector S(θ) with θ ∈ (ω, π/2).

Proof. Let
ϕn(z) := n(n+z)−1 − 1

n ( 1
n+z)−1 = z(n+z)−1( 1

n+z)−1(n− 1
n ).

notice that ϕn ∈ H∞
0 (S(θ)) for all θ ∈ (0, π). Moreover, ϕn(A−1)x ∈ D(A−1)∩R(A−1) for all x ∈ X−1

and ϕn(A−1) is an approximate identity, that is ϕn(A−1)x → x for n → ∞ and x ∈ X−1. We have
T−1(t)Bu = limn→∞ T−1(t)ϕn(A−1)Bu and write, for any n ∈ N,

T−1(t)ϕn(A−1)Bu = (A−1)αT−1(t)(A−1)−αϕn(A−1)Bu

= (A−1)α 1
2πi

∫
Γ

z−αe−tzϕn(z)R(z,A−1)Budz.

Here we use that z−αϕn(z) ∈ H∞
0 for all α ∈ (0, 1). Next we want to show, that (A−1)α and the integral

commute. By closedness of (A−1)α and Hille’s theorem we have to verify that the following Bochner
integral exists ∫

Γ

z−αe−tzϕn(z)(A−1)αR(z,A−1)Budz (19)

in X−1. Moreover, we shall show that the integrand may be estimated in norm and uniformly in n by an
integrable function, which enables use of dominated convergence later on. We have ‖(A−1)αR(z,A−1)‖ ≤
M |z|α−1 and shall exploit the additional assumption on WB . First we double the resolvent:

R(z,A−1)Bu =
∫
γz

R(λ,A−1)2Budλ, where γz = {z + sei arg z : s > 0}.

Notice that the integral converges absolutely. Now, by
∥∥(A−1)αR(λ,A−1)2B

∥∥ ≤ M |λ|α−1|λ|−1/2 and
the assumption α < 1/2 the Bochner integral∫

γz

(A−1)αR(λ,A−1)2Budλ

exists in X−1 and satisfies an estimate against c|z|α−1/2 . Therefore, also the integral in (19) exists as
a Bochner integral. Indeed, by ‖ϕn‖H∞(S(θ)) ≤ M < ∞ the integrand satisfies an estimate against
c′|z|−1/2 exp(−tRe(z)) in norm, uniformly in n ∈ N.
This shows the formula

T−1(t)ϕn(A−1)Bu =
∫

Γ

z−αe−tzϕn(z)(A−1)αR(z,A−1)Budz,

and the desired result follows by dominated convergence theorem. �

Proof of Theorem 4.5. A is l–sectorial of type ωl < π/2. Chose some σ ∈ (ωl, π/2) and let Γ := ∂S(σ)
the positively orientated integration path as above. By Lemma 5.1 we have

T−1(t)Bu(t) = 1
2πi

∫
Γ

z−αe−λt(A−1)α(λ+A−1)−1Bu(t) dλ

for all α ∈ (0, 1/2). Let x′ ∈ D(A′). Then∣∣〈∫ ∞

0

T−1(t)Bu(t) dt, x′〉
∣∣

= 1
2π

∣∣〈∫ ∞

0

T−1(t/2)
∫

Γ

λ−αe−
λ/2t(A−1)α(λ+A−1)−1Bu(t) dλ dt, x′〉

∣∣
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Setting ht(λ) := t
1/2−αe−

λ/2tλ−α−
1/2 and R(λ) := λ

1/2(λ+A−1)−1B we obtain

≤ 1
2π

∫ ∞

0

∣∣〈∫
Γ

ht(λ) R(λ) dλ u(t), tα−
1/2

(
(A−1)αT−1(t/2)

)′
x′

〉∣∣ dt
Applying Proposition 3.4 this may be estimated by

≤ 1
2π

∥∥t 7→ ∫
Γ

ht(λ) R(λ) dλ u(t)
∥∥
l(R+,X)

∥∥t 7→ tα−
1/2

(
(A−1)αT−1(t/2)

)′
x′

∥∥
l(R+,X′)

.

The assumed square function estimate for A′, applied to the function φα(z) = zαe−
z/2 yields

≤ M
∥∥x′∥∥∥∥t 7→ (∫

Γ

ht(λ)R(λ) dλ
)
u(t)

∥∥
l(R+,X)

. (20)

By an argument similar to that in the proof of 4.2 above, the functions λ 7→ λht(λ) are uniformly
bounded in L1(Γ, |dλ|/|λ|) for t > 0. Thus by Lemma 3.8 the set {

∫
Γ
ht(λ)R(λ) dλ : t > 0} ⊂ B(X) is

l–bounded. We use Proposition 3.9, and since D(A′) is norming for X, we obtain l–admissibility of B.

Now let U have finite cotype and B be l–admissible. We have

λ
1/2(λ+A−1)−1B =

∫ ∞

0

λ
1/2e−λt · T−1(t)B dt,

and uniform boundedness of the functions t 7→ hλ(t) := λ
1/2e−λt, λ > 0, in L2(R+) yields l–boundedness

of WB ⊆ B(U,X) by Corollary 3.21. �

Proof of Theorem 1.5. The proof is very similar to that of Theorem 1.3 above and makes use of Theo-
rem 4.5. �

Now we turn to the proof of Theorem 3.18. We first show the following lemma:

Lemma 5.2. Let Y be a Banach space with property (α). Then there exists a constant c > 0 such that
for all J,K,N ∈ N, and independent sequences of independent Gaussian random variables (gn) and
(g′k) and complex numbers (αnjk) the following estimate holds true:(

E E′
∥∥∥∥ K∑
k=1

N∑
n=1

g′kgn

J∑
j=1

αnjkynj

∥∥∥∥2

Y

)1/2

≤ c max
n=1,...,N

∥∥(
αnjk

)
jk

∥∥
lK2 →lJ2

(
E E′

∥∥∥∥ K∑
k=1

N∑
n=1

g′kgnynk

∥∥∥∥2

Y

)1/2

.

Proof. The proof is based on two observations: First, by Remark 3.17 property (α) implies finite cotype,
and thus by [7, 12.11, 12.27] Gaussian and Bernoulli sums have equivalent p-th moments. Therefore
secondly property (α) implies that there exists some CY > 0 depending only upon the property (α)–
constant such that

1
CY

E
∥∥∥∥∑

(k,j)

g(k,j)ykj

∥∥∥∥2

≤ E E′
∥∥∥∥K,J∑
k,j

gkg
′
jykj

∥∥∥∥2

≤ CY E
∥∥∥∥∑

(k,j)

g(k,j)ykj

∥∥∥∥2

holds (see, e.g., [21, II, Lemma 4.11]). We now prove the lemma: consider the matrices Mn := (αnjk)j,k.
We extend them to a block-diagonal matrix of J×K–matrices by setting β(j,m),(n,k) := δnmαnjk,
m = 1, . . . , N . Then (

E E′
∥∥∥∥ K∑
k=1

N∑
n=1

g′kgn

J∑
j=1

αnjkynj

∥∥∥∥2

Y

)1/2

≤CY
(

E
∥∥∥∥ ∑

(k,n)

g(k,n)

∑
(j,m)

β(j,m),(n,k)y(j,m)

∥∥∥∥2

Y

)1/2

.

Now, by [7, Lemma 12.17] we have an estimate against

≤CY
∥∥(
β(j,m),(n,k)

)∥∥
lJ×N
2 →lN×K

2

(
E

∥∥∥∥ ∑
(j,m)

g(j,m)y(j,m)

∥∥∥∥2

Y

)1/2

.
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The norm of the matrix (β(j,m),(n,k)) may be simplified due to its block-diagonal structure and becomes

=CY max
n=1,...,N

{∥∥(
αnjk

)∥∥
lK2 →lJ2

}(
E

∥∥∥∥ ∑
(j,m)

g(j,m)y(j,m)

∥∥∥∥2

Y

)1/2

≤C2
Y max
n=1,...,N

{∥∥(
αnjk

)∥∥
lK2 →lJ2

}(
E E′

∥∥∥∥ J,N∑
j,n=1

gjg
′
nyjn

∥∥∥∥2

Y

)1/2

. �

Proof of Theorem 3.18. The l–boundedness of A⊗ is equivalent to the uniform boundedness (in N ∈ N)
of the diagonal operators

(A⊗ν ) : l
(
lN2 (Z), l(H1, Y )

)
→ l

(
lN2 (Z), l(H2, Y )

)
.

for some A1, . . . , AN ∈ A. Let N ∈ N and fix an operator v : lN2 (Z) → l(H1, Y ). Let (en) be the
canonical basis of lN2 and (fk) some countable orthonormal system in H2. Then

∥∥(A⊗ν )v
∥∥
l(lN2 (Z),l(H2,Y ))

=
(

E
∥∥∥∥ N∑
n=1

gn(A⊗ν )v(en)
∥∥∥∥2

l(H2,Y )

)1/2

=
(

E
∥∥∥∥ N∑
n=1

gnA
⊗
n v(en)

∥∥∥∥2

l(H2,Y )

)1/2

=
(

E
∥∥∥∥ N∑
n=1

gnv(en)A′n

∥∥∥∥2

l(H2,Y )

)1/2

=
(

E lim
K→∞

E′
∥∥∥∥ K∑
k=1

g′k

( N∑
n=1

gnv(en)A′n

)
(fk)

∥∥∥∥2

Y

)1/2

,

= lim
K→∞

(
E E′

∥∥∥∥N,K∑
n,k

g′kgnv(en)(A
′
nfk)

∥∥∥∥2

Y

)1/2

.

(21)

The last equality holds by the dominated convergence theorem. ForK fixed, the subspace span {A′n(fk) :
n = 1, . . . , N, k = 1, . . . ,K} is finite-dimensional. Call its dimension J and chose some orthonormal
basis (hj) of this subspace. We then may write A′n(fk) =:

∑
j αnjkhj . Therefore(

E E′
∥∥∥∥N,K∑
n,k

g′kgnv(en)(A
′
nfk)

∥∥∥∥2

Y

)1/2

=
(

E E′
∥∥∥∥N,K∑
n,k

g′kgn
∑
j

αnjkv(en)(hj)
∥∥∥∥2

Y

)1/2

.

By Lemma 5.2 we have the estimate

≤ C ′ max
n=1,...,N

∥∥(αnjk)jk
∥∥
lK2 →lJ2

(
E

∥∥∥∥∑
n,k

g′kgnv(en)(hk)
∥∥∥∥2

Y

)1/2

.

Next we show that the norms
∥∥(αnjk)jk

∥∥
lK2 →lJ2

are uniformly bounded. To this end, write

∥∥(αnjk)
∥∥
lK2 →lJ2

= sup
‖(λk)‖

lK2
≤1

∥∥∥∥(
∑
k

αnjkλk)
∥∥∥∥
lJ2

= sup
(λk)

∥∥∥∥∑
j,k

αnjkλkhj

∥∥∥∥
H1

= sup
(λk)

∥∥∥∥A′n( K∑
k=1

λkfk)
∥∥∥∥
H1

≤
∥∥A′n∥∥H2→H1

≤M.

Notice that the above estimates are independent of he choice of N,K, J . To obtain the desired result,
we now apply (21) backward. �
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Remark 5.3. In general, property (α) cannot be omitted in the foregoing theorem. However, if H1 = C
we may apply [16, Lemma 3.1] in the above proof after equation (21) which shows that in this special
case the result remains true even if Y has finite cotype.

Proof of Corollary 3.19. Setting H1 = L2(I) and H2 = C we obtain from Theorem 3.18 for

a⊗ :
{
l(I, Y ) → Y
f 7→

∫
I
a(t)f(t)dt

that {a⊗ : a ∈ U} is l–bounded in B(l(I, Y ), Y ) whence {a⊗ ◦ϕ : a ∈ U} is l–bounded in B(X,Y ). By
the above remark, Corollary 3.19 holds even under the weaker assumption of finite cotype for Y . �

Proof of Corollary 3.21. Let (ak) be a dense sequence in the unit ball U of L2(I). Let n ∈ N and
u1, . . . , un ∈ U . Then we have by assumption(

E
∥∥∥∥ n∑
k=1

gk

∫
I

ak(t)ϕ(t)uk dt
∥∥∥∥2

X

)1/2

=
(

E
∥∥∥∥∫

I

ϕ(t)
( n∑
k=1

gk(ak(t)⊗ uk)
)
dt

∥∥∥∥2

X

)1/2

≤ K

(
E

∥∥∥∥ n∑
k=1

gk(ak ⊗ uk)
∥∥∥∥2

l(R+,U)

)1/2

= K

(
E

∥∥∥∥ n∑
k=1

gkuak⊗uk

∥∥∥∥2

l(L2(R+),U)

)1/2

.

The operators Tk : λ 7→ λak are bounded from C to L2(I), thus by Theorem 3.18 the set {T⊗k : k ∈ N}
is l–bounded from l(C, U) to l(L2(I), U). If h ∈ L2(I) and uk ∈ U ' l(C, U) we have (T⊗k uk)(h) =
(ak|h)uk and therefore we have T⊗k = uak⊗uk

. This yields(
E

∥∥∥∥ n∑
k=1

gk

∫
I

ak(t)ϕ(t)uk dt
∥∥∥∥2

X

)1/2

≤ K ′
(

E
∥∥∥∥ n∑
k=1

gkuk

∥∥∥∥2

U

)1/2

.

Now Lemma 3.7 shows the assertion. �

6. Examples

In this section we present several l–admissible observation and control operators in Lp–spaces, and we
prove l–wellposedness of a controlled heat equation. First we recall some notation (cf., e.g., [7], [21],
[11]).

Definition 6.1. Let rj(·) be the sequence of Rademacher functions. For a Banach space X, define

Rad(X) :=
{
(xj)j∈N :

∞∑
j=1

rj(·)xj converges in L2([0, 1], X)
}
.

When equipped with one of the following (by Kahane’s inequality equivalent) norms ‖(xj)‖Radp(X),
1 ≤ p <∞, given by ∥∥(xj)j

∥∥
Radp(X)

:=
∥∥∑

j

rj(·)xj
∥∥
Lp([0,1],X)

,

Rad(X) becomes a Banach space.

Remark 6.2. A set {Tj : j ∈ N} ⊆ B(X,Y ) is R–bounded if and only if the corresponding diagonal
operator T := (Tj) is bounded from Radp(X) to Radp(Y ). Moreover the norm of T equals the R–bound
of the set {Tj : j ∈ N}. By Fubini’s theorem the mapping

IX : Lp(Ω,Radp(X)) → Radp(Lp(Ω, X))

given by IXf := (fj)j∈N for f(·) =
(
fj(·)

)
j∈N ∈ L

p(Ω,Radp(X)) defines an isometry. Moreover, when-
ever f ∈ L1(Rn,Radp(X)),

Fnf =
(
Fnfj

)
j∈N and F−1

n f =
(
F−1
n fj

)
i∈N,

where Fn denotes Fourier transform on Rn.
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We turn to the examples. As state space we take X = Lp(Rn) where 1 < p < ∞. As state equation
we consider the homogeneous heat equation d

dtv(t) = ∆nv(t) for functions v : [0,∞) → Lp(Rn) where
∆n is the realisation of the Laplace operator ∆ in X = Lp(Rn). For simplicity, we shall give examples
of l–admissible operators for A := ε − ∆n where ε > 0. Those operators are finite time l–admissible
for A0 := −∆n. The arguments below may be adapted to give examples of l–admissible operators for
A0 but that would involve homogeneous Besov spaces which we want to avoid. In the following we let
1 ≤ k ≤ n, and in case k < n, we write (x, y) for the variable in Rn where x ∈ Rn−k and y ∈ Rk. We
also understand Lp(R0) = Lp({0}) = C.

Observation operators

We consider unbounded observation operators C acting from X = Lp(Rn) to Y = Lp(Rn−k) which are
of the form (Cψf)(x) = 〈ψ, f(x, ·)〉k where ψ ∈ S ′(Rk). l–Admissibility of such operators is characterised
by

Proposition 6.3. Let 1 < p <∞, n ≥ k ≥ 1, X = Lp(Rn), Y = Lp(Rn−k), A = ε−∆n, ε > 0. Then
ψ ∈ S ′(Rk)∩H−2

p′ (Rk) induces an l–admissible observation operator Cψ from X to Y if and only if the
set {

µ
〈
(µ2+ε−∆k)−1ψ, ·

〉
: µ > 0

}
⊂ B(Lp(Rk),C) (22)

is R–bounded.

Observe that both X and Y are spaces of finite cotype whence R–boundedness coincides with l–
boundedness. Also l–admissibility coincides with the notion of R–admissibility from [25]. The restriction
to distributions in H−2

p′ (Rk) is necessary to ensure that C ∈ B(X1, Y ).

Proof. We fix ψ and write C = Cψ for short. Since A has a bounded H∞-calculus we know by Theorem
4.2 that C is l–admissible if and only if the set{√

λC(λ+A)−1 : λ > 0
}
⊂ B(Lp(Rn), Lp(Rn−k))

is l–bounded (which is equivalent to R–bounded here). This proves the claim for k = n, so let k < n.
We write (x, y) for the variable in Rn where x ∈ Rn−k and y ∈ Rk. In a first step we write Tmλ

:=√
λC(λ+A)−1 as a Fourier multiplier operator Lp(Rn) = Lp(Rn−k, Lp(Rk)) → Lp(Rn−k) with an

operator valued symbol mλ : Rn−k → B(Lp(Rk),C), ξ 7→ mλ(ξ). To this end we write Fn−k for the
Fourier transform on Rn−k and denote by f̂(ξ, y) the partial Fourier transform with respect to x→ ξ.
Writing Ak := ε−∆k, we have

√
λC(λ+A)−1f = F−1

n−k
(
ξ 7→

√
λ

〈
ψ, (λ+|ξ|2 −Ak)−1f̂(ξ, ·)

〉 )
,

i.e., Tmλ
f = F−1

n−k(ξ 7→ mλ(ξ)Fn−kf(ξ)) where mλ(ξ) =
√
λ 〈ψ, (λ+|ξ|2−Ak)−1 · 〉 : Lp(Rk) → C for

ξ ∈ Rn−k.
We make the following observation: Let (λj)j∈N be some sequence in (0,∞) and assume the set {Tmλ

:
λ > 0} ⊂ B(X,Y ) to be R–bounded. Consider the following diagram:

Radp(Lp(Rn−k), Lp(Rk))
(Tmλj

)
// Radp(Lp(Rn−k,C))

Lp(Rn−k,Radp(Lp(Rk)))
( eTmλj

)
//

��
I

Lp(Rk)

OO

Lp(Rn−k,Radp(C))
��

IC

OO

Notice that by Remark 6.2 for functions f = (fj) of the Schwartz class S(Rn−k,Radp(Lp(Rk))), one
has

T̃mλj
f = F−1

n−k(ξ 7→ mλj (ξ)f̂(ξ, ·)) =
(
F−1
n−k

)[
ξ 7→

(
mλj (ξ)

)(
f̂(ξ, ·)

)]
,

indicating that T̃mλj
is in fact a bounded Fourier multiplier. Thus by the necessity criterion [4, Prop. 1]

the set
{
(mλj

(ξ))j : ξ ∈ Rn−k
}

is R–bounded in B(Radp(Lp(Rk)),Radp(C)).
Now we show R–boundedness of the set {mλ(ξ) : λ > 0, ξ ∈ Rn−k} in B(Lp(Rn),C): Let (ξj)j ⊆ Rn−k,
(λj)j ⊆ R+ and (fj)j ⊆ Lp(Rk) be some finite sequences, which for convenience of notation we extend
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by zero elements to infinite sequences. We set fjl := fjδjl, where δjl denotes the Kronecker symbol.
Then

E
∥∥∥∥∑

j

εjmλj
(ξj)fj

∥∥∥∥2

C
= E E′

∥∥∥∥∑
j,l

εjε
′
lmλj

(ξj)fjl

∥∥∥∥2

C
by [7, 11.2]

= E
∥∥∥∥∑

l

εl
(
mλj

(ξl)
)(
fjl

)
j

∥∥∥∥2

Radp(C)

≤M E
∥∥∥∥∑

l

εl
(
fjl

)
j

∥∥∥∥2

Radp(Lp(Rk))

= M E E′
∥∥∥∥∑
j,l

εjε
′
lfjl

∥∥∥∥2

Lp(Rk)

= M E
∥∥∥∥∑

j

εjfj

∥∥∥∥2

Lp(Rk)

again by [7, 11.2].

Thus necessity of (22) is proved. On the other hand, by [11, Thm. 3.2] the set {Tmλ
: λ > 0} is

R–bounded provided the symbols mλ(ξ) satisfy R–versions of the conditions in Mikhlin’s multiplier
theorem. To be precise, we shall show that for any multi-index α ∈ Nn−k0 the set

{ξαm(α)
λ (ξ) : ξ 6= 0, λ > 0}

is R–bounded (in fact it would suffice to show this for α ≤ (1, . . . , 1), but the proof below shows it
for all α ∈ Nn−k0 without extra effort). By a simple induction one can show that this is equivalent to
R–boundedness of all sets

{D̂αmλ(ξ) : ξ 6= 0, λ > 0}
where D̂α := D̂α1

1 · · · D̂αn−k

n−k and D̂j := ξj
∂
∂ξj

.
Another induction shows that, for any multi-index α, there exists a ϕα,ν : Rn−k → C of class C∞ which
is homogeneous of degree 2ν (i.e., ϕα,ν(ρξ) = ρ2νϕα,ν(ξ) for ξ ∈ Rn−k, ρ ∈ R), such that

D̂αmλ(ξ) =
√
λ

|α|∑
ν=0

ϕα,ν(ξ)〈ψ, (λ+|ξ|2 +Ak)−(ν+1)·〉,

where Ak := ε−∆k. We write λ = σ2 and µ2 = σ2 + |ξ|2 with σ, µ > 0. By homogeneity and the
domination σ < µ we only have to show the R–boundedness of the sets{

µ2ν+1
〈
(µ2 +Ak)−(ν+1)ψ, ·

〉
: µ > 0

}
⊂ B(Lp(Rk),C)

for ν ∈ N0. Since {µ2(µ2 +Ak)−1 : µ > 0} is an R–bounded subset of B(Lp(Rk)) it is sufficient to have
R–boundedness for ν = 1, i.e. R–boundedness of the set{

µ
〈
(µ2+ε−∆k)−1ψ, ·

〉
: µ > 0

}
as asserted. �

Remark 6.4. In Remark 3.6 we mentioned that bounded sets are R–bounded in B(X,Y ) if X has
cotype 2 and Y has type 2. This applies, e.g., to sets in B(Lp(Rk),C) if p ≤ 2.

Application 6.5. In virtue of the above remark we consider the case p ≤ 2 and ε > 0. Then for
ψ ∈ H−2

p′ (Rk) condition (22) is equivalent to boundedness of {λ1/2∆k(λ−∆k)−1ψ} in H−2
p′ (Rk). By [31,

1.14.2] this is equivalent to ψ ∈ (H−2
p′ (Rk), Lp′(Rk))1/2,∞ = B−1

p′,∞(Rk) = (B1
p,1(Rk))′.

Example 6.6. We are in particular interested in the case ψ = δ0 ∈ S ′(Rk). Then Cψ may be interpreted
as observation on an (n−k)–dimensional linear subspace of Rn. By Proposition 6.3 and the following
Proposition 6.7 we obtain that ψ = δ0 ∈ S ′(Rk) induces an l–admissible observation operator if p ∈
(k,∞). Taking k = 1 we obtain that observation on an (n−1)–dimensional linear subspace always
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defines an l–admissible observation (for A = ε−∆) on X=Lp(Rn), 1 < p <∞. But one has to take p
large when modelling observation on a lower dimensional subspace. In particular, one has to take p > n
when modelling point observation.
In [28, Ex. 3.2, p. 50] it is shown that δ0 ∈ Bsp′,q(Rk) for s ≤ −k/p and q = ∞ and that this result
is optimal in the sense that it becomes false for strictly bigger s or for s = −k/p and finite q. Thus
δ0 ∈ B−1

p′,∞(Rk) if and only if k ≤ p. Together with the consideration in Application 6.5 this shows that
the bound on p we obtain in Proposition 6.7 cannot be improved. It also shows that we may still take
p = 2 for k = 2.

Proposition 6.7. Let k ∈ N and ε > 0. Then, for p ∈ (k,∞), the set

{µ〈(µ2 + ε−∆k)−1δ0, ·〉 : µ > 0}

is an R-bounded subset of B(Lp(Rk),C).

Proof. First observe that by Lemma 3.10, R-boundedness of the set in question is equivalent to the
existence of a constant C > 0 such that∥∥∥( ∑

j

|αjµj(µ2
j + ε−∆k)−1δ0|2

)1/2∥∥∥
p′
≤ C

( ∑
j

|αj |2
)1/2

for any choice of µj > 0 and scalars αj . This estimate surely holds if

C :=
∥∥∥ sup
µ>0

|µ(µ2 + ε−∆k)−1δ0|
∥∥∥
p′
<∞. (23)

We use the representation of resolvents in terms of the heat semigroup (Tk(t)) on Rk. This yields, for
x ∈ Rk,

µ((µ2 + ε−∆k)−1δ0)(x) =
∫ ∞

0

µe−(µ2+ε)t(Tk(t)δ0)(x) dt. (24)

Now we use the Gaussian kernel

(Tk(t)δ0)(x) = ct−k/2e−b
|x|2

t

and sup over µ > 0 in the integrand in (24). We obtain

sup
µ>0

|µ((µ2 + ε−∆k)−1δ0)(x)| ≤ c′
∫ ∞

0

t−(k+1)/2e−εte−b
|x|2

t dt.

Taking the norm ‖ · ‖p′ and substituting x = y
√
t we have for C from (23)

C ≤ c′
∥∥y 7→ e−b|y|

2∥∥
p′

∫ ∞

0

t−(k+1)/2e−εttk/(2p
′) dt

The integral on the right hand side is finite for −k(1− 1/p′) > −1, i.e., for p > k. �

Remark 6.8. For p > 2, R–boundedness of general subsets of B(Lp(Ω),C) or, in the dual situation,
of B(C, Lp′(Ω)) may be proved using the following abstract characterisation of R–boundedness based
on the results [10, Thms VI.4.2’,VI.4.5’]. This was pointed out to the authors by L. Weis.

Theorem 6.9. Let (Ω,Σ, µ) be a σ–finite measure space, p ∈ (2,∞) and (fj) a sequence in Lp
′
(Ω).

Let the operators Tj : Lp(Ω) → C be given by Tj(g) :=
∫
Ω
gfj dµ and let operators Sj : C → Lp

′
(Ω) be

given by Sj(λ) := λfj. Then the following characterisations hold true:
(a) The set {Tj : j ∈ N} is R–bounded if and only if there exists some positive function w ∈

L
p
p−2 (Ω) with ‖w‖ p

p−2
≤ 1 such that the functions fj are uniformly bounded in L2(Ω, w−1dµ).

(b) The set {Sj : j ∈ N} is R–bounded if and only if there exists a positive function w ∈ L
p

p−2 (Ω)
with ‖w−1‖ p

p−2
≤ 1 such that the functions fj are uniformly bounded in L2(Ω, w dµ).

Control operators
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Observe that, in the situation discussed above, the dual operator C ′ψ of Cψ is given by g 7→ g ⊗ ψ.
Indeed, for g ∈ Lp′(Rn−k), f ∈ Lp(Rn) we have

〈g, Cψf〉 =
∫

Rn−k

g(x)〈ψ, f(x, ·)〉 dx = 〈ψ,
∫
g(x)f(x, ·) dx〉 = 〈g ⊗ ψ, f〉.

Hence we obtain the following characterisation by dualising Proposition 6.3 (recall also Lemma 3.10).

Proposition 6.10. Let 1 < p <∞, n ≥ k ≥ 1, X = Lp(Rn), U = Lp(Rn−k), A = ε−∆n, ε > 0. Then
for φ ∈ S ′(Rk) ∩H−2

p (Rk) the operator Bφ : g 7→ g ⊗ φ is an l–admissible control operator if and only
if the set {

µ(µ2+ε−∆k)−1φ : µ > 0
}
⊂ B(C, Lp(Rk)) (25)

is R–bounded.

Example 6.11. Again we are interested in the case φ = δ0 ∈ S ′(Rk). Here k = n corresponds
to point control and k = 1 corresponds to control from a hyperplane. By dualising the assertion of
Proposition 6.7 we obtain that φ = δ0 ∈ S ′(Rk) induces an l–admissible control operator if p′ ∈ (k,∞),
i.e., if p ∈ (1, k

k−1 ). Hence control from a hyperplane is always l–admissible, but control from a point
needs p ∈ (1, n

n−1 ). Again, we may take p = 2 for k = 2 by Peetre’s result.

Remark 6.12. Combining the results of Examples 6.6 and 6.11, we see that as far as admissibility is
concerned, we may combine observation on hyperplanes with control from hyperplanes in any dimension
n for any p ∈ (1,∞). In particular, we may combine point observation and point control in dimension
n = 1 for any p ∈ (1,∞). But the combination of point observation and point control in dimension
n = 2 requires p = 2, and it is not possible in dimensions n ≥ 3. However, we may, e.g., combine point
observation with control from a hyperplane by taking p > n, etc.

A controlled heat equation

Next we illustrate our results with a controlled heat equation. The example is very much inspired by
[2] where the same problem is studied in the state space X = L2(Ω), i.e., in a Hilbert space context.
Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω ∈ C∞ and 1 < p < ∞. Denote the the outer
normal unit vector on ∂Ω by ν : ∂Ω → Rn. We consider the following problem

x′(t)−∆x(t) = 0, (t > 0)
∂x(t)
∂ν

∣∣
∂Ω

= u(t), (t > 0)
x(0) = x0

y(t) = x(t)
∣∣
∂Ω
, (t > 0),

(26)

where x(·) takes values in X := Lp(Ω), and u(·) and y(·) take values in function spaces on the boundary.
For the modelling we follow closely [2]. We let A := −∆ with homogeneous Neumann boundary condi-
tions, i.e., we have D(A) = {x ∈ W 2

p (Ω) : ∂x∂ν
∣∣
∂Ω

= 0} due to the smoothness of ∂Ω. Similar to [2] we
are only interested in l–admissibility for finite time intervals. This of course is equivalent to discussing
l–admissibility on R+ for 1 +A. The operator 1 +A has a bounded H∞-calculus on each sector S(ω),
ω > 0, and −A generates a bounded analytic semigroup which is even R-analytic of angle π/2 (cf., e.g.,
[21]). Moreover, D(A

1/2) = W 1
p (Ω) in this case, and this space equals the Bessel potential space H1

p (Ω)
(cf. [31]).

Example 6.13. Denoting the Dirichlet trace operator γ0 : x 7→ x
∣∣
∂Ω

by C we are looking for a space
Y on ∂Ω such that C : D(A) → Y is l–admissible on finite time intervals for the operator A. We will
do so by finding spaces Y such that C : D(A) → Y is l–admissible for 1+A. Since 1+A has a bounded
H∞-calculus, we know by Theorem 4.2 that l–admissibility of C : D(A) → Y is equivalent to

{λ
1/2C(λ+ 1 +A)−1 : λ > 0} is R-bounded in B(X,Y ).

This certainly holds if C is bounded in ‖ · ‖Z→Y where D(A) ⊂ Z ⊂ X is a Banach space such that

{λ
1/2(λ+ 1 +A)−1 : λ > 0} is R-bounded in B(X,Z). (27)

Since
{λ

1/2(1 +A)
1/2(λ+ 1 +A)−1 : λ > 0} is R-bounded in B(X),
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(cf. [22, Lem. 10]), condition (27) holds for Z = D((1 +A)
1/2) = D(A

1/2) = H1
p (Ω). Since γ0 : H1

p (Ω) →
B

1−1/p
p,p (∂Ω) is continuous (cf. [31]), we obtain that C is l–admissible for 1 + A if we choose Y =

B
1−1/p
p,p (Ω).

Another possible choice of Z is provided by [12, Lem. 6.10]: condition (27) also holds for the real in-
terpolation space (X,D(A))1/2,2 = B1

p,2(Ω) (we refer to [31] for its definition). Since γ0 : B1
p,2(Ω) →

B
1−1/p
p,2 (∂Ω) is continuous (cf. [31]), we obtain that C is l–admissible for 1+A if we choose Y = B

1−1/p
p,2 (Ω).

Since Besov spaces Bαp,q grow with q ∈ [1,∞], the smallest space Y we thus obtained is B1−1/p
p,min(p,2)(∂Ω).

Observe that, for p = 2, we have

B1
p,p(Ω) = B1

p,2(Ω) = H1
2 (Ω) and Y = B1−1/p

p,p (∂Ω) = B
1/2
2,2(∂Ω) = H

1/2
2 (∂Ω)

which is just the space obtained in [2]. Notice, however, that our proof, being based on Theorem 4.2,
is essentially different from the proof given there.
Concerning the control operator B we proceed again as in [2]. Multiplying the heat equation (26) with
a fixed function v ∈ C∞(Ω) and integrating by parts we obtain

〈x′(t), v〉Ω + 〈∇x(t),∇v〉Ω =
∫
∂Ω

u(t)v dσ,

where 〈·, ·〉Ω denotes the usual duality pairing on Lp(Ω) × Lp
′
(Ω) and σ denotes the surface measure

on Γ := ∂Ω. Denoting extensions of the usual L2(Γ)-duality by 〈·, ·〉Γ we thus have∫
∂Ω

u(t)v dσ = 〈u(t), γ0v〉Γ,

which means that B = γ′0 = C ′ if we identify X−1 with the dual space of (D(A′)). Notice that
A′ = −∆ with Neumann boundary conditions in X ′ = Lp

′
(Ω). Since the spaces involved are reflexive,

we obtain that B : U → X−1 is a finite time l–admissible control operator for the operator A if and
only if C : D(A′) → U ′ is a finite time l–admissible observation operator for the operator A′. By our
previous results the largest space we obtain for finite time l–admissibility of B : U → X−1 is thus
U = (B1−1/p′

p′,min(2,p′)(∂Ω))′ = B
−1/p
p,max(2,p)(∂Ω). Again, for p = 2, we reobtain the space U = B

−1/2
2,2 (∂Ω) =

H
−1/2
2 (∂Ω) as it was obtained in [2] by a different proof.

We remark that the result (for observation operators) from [25], which is restricted to the case Y =
Lq(Ω), may not be applied to this example in order to derive the results above.

Notice that if Ψ : B1−1/p
p,min(2,p)(∂Ω) → Ck and Φ : Cm → B

−1/p
p,max(2,p)(∂Ω) are bounded operators then,

by what was shown above, ΨC : X1 → Ck and BΦ : Cm → X−1 are finite time l–admissible for A.
Since Ck, Cm are Hilbert spaces this means that these operators are finite time admissible in the usual
L2-sense.

Example 6.14. We consider in particular the case of averaged observation and piecewise constant
control (in [2] called type 2 output and and type 2 input, respectively). To this end we fix smoothly
bounded open subsets Γ1, . . . ,Γk, Q1, . . . , Qm ⊂ ∂Ω where k,m ∈ N and define

Ψy := (|Γj |−1

∫
Γj

y dσ)kj=1, Φ(uj)mj=1 :=
m∑
j=1

uj1Qj
.

We have to check that Ψ : B1−1/p
p,min(2,p)(∂Ω) → Ck and Φ : Cm → B

−1/p
p,max(2,p)(∂Ω) are bounded. For Φ this

boils down to the question when 1Q ∈ Bαp,q(∂Ω) for a smoothly bounded open subset Q ⊂ ∂Ω. By [31,
2.8.7] the operator v 7→ 1Qv is bounded on Bαp,q for α ∈ [0, 1/p). Applying this to a function v equal to

one on Q we obtain 1Q ∈ Bαp,q(∂Ω) for α < 1/p, hence in particular 1Q ∈ B−1/p
p,q (∂Ω) and boundedness of

Φ follows. For the boundedness of Ψ we have to show that 1Γj
∈ (B1−1/p

p,q (∂Ω))′ = B
−1/p′

p′,q′ (∂Ω), which
is clear from the preceding argument.

We turn to wellposedness and regularity of the full system (26). We formulate the result as a theorem
making use of the admissibility results presented above. All that is left is the study of the input–output
function.
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Theorem 6.15. Let 1 < p < ∞ and X = Lp(Ω) where Ω ⊂ Rn is a smoothly bounded open set. Let
A, B, C be as above, and let Φ, Ψ be as in Example 6.14.

(a) For q ∈
[
min(p, 2),max(p, 2)

]
and Y = B

1−1/p
p,q (∂Ω), U = B

−1/p
p,q (∂Ω), the system (A,B,C) is

regular and l-wellposed on finite time intervals.
(b) For Y = Ck and U = Cm the system (A,BΦ,ΨC) is regular and wellposed on finite time

intervals.

Proof. (a). By Theorem 4.11 (or rather Corollary 4.12) we have to check that (λ+A−1)−1 maps B(U)
into D(CΛ) and that {CΛ(λ + A−1)−1B : λ ∈ C+} is an R–bounded subset of B(U, Y ). We shall
use interpolation. To this end we recall that R–boundedness can be interpolated by the real and the
complex method if the spaces involved have nontrivial type [18, Prop. 3.7]. The set {(λ + A)−1 : λ ∈
C+} ⊂ B(Lp(Ω), D(A)) is R–bounded since A is R–sectorial in Lp(Ω). By self–duality we also obtain
that {(λ+A−1)−1 : λ ∈ C+} ⊂ B(D(A′)′, Lp(Ω)) is R–bounded. Here we recall that X−1 is canonically
isomorphic to D(A′)′.
Case q = p: By complex interpolation [·, ·]1/2 we obtain that {(λ + A−1)−1 : λ ∈ C+} is R–bounded
(H1

p′(Ω))′ → H1
p (Ω). The part of A in Zp := H1

p (Ω) = D(A1/2) is sectorial and densely defined, and
Wp := ((1+A−1)H1

p (Ω), ‖(1+A−1)·‖H1
p(Ω)) equals (H1

p′(Ω))′ with equivalent norms. The operators C =

γ0 : H1
p (Ω) → B

1−1/p
p,p (∂Ω) and B = γ′0 : B−1/p

p,p (∂Ω) →
(
H1
p′(Ω)

)′ are bounded. For Y = B
1−1/p
p,p (∂Ω)

and U = B
−1/p
p,p (∂Ω), we hence obtain regularity of the system by Remark 4.13 and l–wellposedness by

Corollary 4.12.
Case q = 2: By real interpolation (·, ·)1/2,2 we obtain that {(λ + A−1)−1 : λ ∈ C+} is R–bounded.
(B1

p′,2(Ω))′ → B1
p,2(Ω). The part of A in Z2 := B1

p,2(Ω) = (X,D(A))1/2,2 is sectorial and densely
defined, and W2 := ((1 +A−1)B1

p,2(Ω), ‖(1 +A−1) · ‖B1
p,2(Ω)) equals (B1

p′,2(Ω))′ with equivalent norms.

The operators C = γ0 : B1
p,2(Ω) → B

1−1/p
p,2 (∂Ω) and B = γ′0 : B−1/p

p,2 (∂Ω) →
(
B1
p′,2(Ω)

)′ are bounded.

For Y = B
1−1/p
p,2 (∂Ω) and U = B

−1/p
p,2 (∂Ω), we hence obtain regularity of the system by Remark 4.13

and l–wellposedness by Corollary 4.12.
For q between 2 and p we obtain the spaces Y = B

1−1/p
p,q (∂Ω) and U = B

−1/p
p,q (∂Ω) by complex

interpolation between the cases q = 2 and q = p. Observe that we may apply Remark 4.13 to the space
Zq := [Zp, Z2]θ where q−1 = (1− θ)/p+ θ/2.
(b). Use (a) and Example 6.14 and the last assertion of Corollary 4.12. �
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[10] José Garćıa-Cuerva and José L. Rubio de Francia. Weighted norm inequalities and related topics, volume 116 of

North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Math-
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