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Abstract. We introduce the notion of uniform γ–radonification of a family of
operators, which unifies the notions of R–boundedness of a family of operators
and γ–radonification of an individual operator. We study the properties of
uniformly γ–radonifying families of operators in detail and apply our results
to the stochastic abstract Cauchy problem

dU(t) = AU(t) dt + B dW (t), U(0) = 0.

Here, A is the generator of a strongly continuous semigroup of operators on
a Banach space E, B is a bounded linear operator from a separable Hilbert
space H into E, and WH is an H–cylindrical Brownian motion. When A and
B are simultaneously diagonalisable, we prove that an invariant measure exists
if and only if the family

{
√

λR(λ, A)B : λ ∈ Sϑ}
is uniformly γ–radonifying for some/all 0 < ϑ < π

2
, where Sϑ is the open

sector of angle ϑ in the complex plane. This result can be viewed as a partial
solution of a stochastic version of the Weiss conjecture in linear systems theory.

1. Introduction

In recent years it has become apparent that many classical results in operator
theory and harmonic analysis can be generalised from their traditional Hilbert space
setting to Banach spaces, provided the notion of uniform boundedness is replaced
with R–boundedness. This notion appeared implicitly in the work of Bourgain [4]
and was formalised by Berkson and Gillespie [2] and Clément, de Pagter, Sukochev,
and Witvliet [5]. It has accomplished remarkable progress in the theory of parabolic
evolution equations. A highlight is the recent solution of the Lp-maximal regularity
problem by Weis [45], who proved an extension of the Mihlin multiplier theorem
for operator-valued multipliers taking R–bounded values in a UMD space E and
used it to deduce that the generator A of a bounded analytic semigroup on a UMD
space E has Lp-maximal regularity if and only if λ 7→ λ(λ − A)−1 is R–bounded
on C+. Soon, an alternative approach to the Lp-maximal regularity problem via
H∞–calculus appeared. In the Hilbert space setting this calculus was introduced
by McIntosh [31], who characterised it by means of square function estimates.
This characterisation extends to Banach spaces, provided the square functions are
replaced with γ–radonifying norms [6, 24, 25, 29].
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These developments have been documented in detail in the memoir by Denk,
Hieber, and Prüss [7] and the lecture notes by Kunstmann and Weis [26], where
extensive references can be found.

In a parallel development, γ–radonifying norms have been used recently to extend
the theory of stochastic integration to the Banach space setting, first for operator-
valued functions taking values in arbitrary Banach spaces [36, 37] and subsequently
for operator-valued processes taking values in UMD spaces [34]. In both papers,
the role of the Itô isometry is taken over by an isometry in terms of γ–radonifying
norms. Applications to stochastic evolution equations in Banach spaces have been
worked out, for linear equations [8, 15, 38] and nonlinear equations [35, 44].

Further applications of R–boundedness and γ–radonifying norms have been given
in various areas on analysis, such as harmonic analysis [1, 2, 12, 17, 18, 22], Banach
space theory [10, 24, 41, 43], interpolation theory [23], control theory [13, 14, 28, 29],
and noncommutative analysis [21, 40]; this list of references is far from complete.

In this paper we unify the notions of R–boundedness (or rather, its Gaussian
analogue γ-boundedness) and γ–radonification by introducing the concept of uni-
formly γ–radonifying families of operators. As we shall demonstrate in Sections 2
and 3 this is a happy marriage: uniformly γ–radonifying families enjoy many of the
good properties both of R–bounded families and of γ–radonifying operators.

In Section 4 we apply our abstract results to study some properties of operator-
valued Laplace transforms. It turns out that the Laplace transforms of γ–radon-
ifying operators Φ : L2(R+;H) → E are uniformly γ–radonifying both in half-
planes and in sectors properly contained in C+.

Natural examples of uniformly γ–radonifying families of operators arise in the
theory of stochastic evolution equations. These will be presented in the final Sec-
tion 5 of the paper, where we apply our results on Laplace transforms to stochastic
evolution equations. We prove that a necessary condition for the existence of in-
variant measures for the linear stochastic Cauchy problem

dU(t) = AU(t) dt + B dWH(t), U(0) = 0,

where WH is an H–cylindrical Brownian motion and B : H → E is a bounded
operator, is that the family

{
√

λR(λ, A)B : λ ∈ Sϑ}
should be uniformly γ–radonifying for all 0 < ϑ < π

2 , where Sϑ is the open sector
of angle ϑ in the complex plane. For simultaneously diagonalisable operators A and
B we show that this condition is also sufficient. This result is a partial solution of
a stochastic version of the Weiss conjecture in linear systems theory (see [47] and
the subsequent work [19, 28, 46, 48, 49]) in which L2-admissibility of the control
operator is replaced with the existence of an invariant measure.

2. Uniformly γ–radonifying families

In this section we introduce the notion of a uniformly γ–radonifying family of op-
erator and study its properties. This notion unifies the concepts of R–boundedness
(or rather, γ–boundedness) and γ–radonification, which we shall discuss first.

Let E and F be Banach spaces. A subset S of B(E,F ) is called R–bounded if
there exists a constant C > 0 such that for all n > 1, all x1, . . . , xn ∈ E, and all
S1, . . . , Sn ∈ S we have

E
∥∥∥ n∑

k=1

rkSkxk

∥∥∥2

6 C2E
∥∥∥ n∑

k=1

rkxk

∥∥∥2

.

Here, (rk)k>1 is a Rademacher sequence, i.e. a sequence of independent {−1,+1}-
valued random variables on some probability space (Ω, P) with the property that
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P(rk = ±1) = 1
2 . The least admissible constant C is called the R–bound of S ,

notation R(S ). A similar definition may be given in terms of Gaussian sums, which
leads to the concept of a γ–bounded family with γ–bound γ(S ). By a standard
randomisation argument, every R–bounded family S is γ–bounded with γ(S ) 6
R(S ). If E and F are Hilbert spaces, the notions of γ–boundedness and R–
boundedness coincide with that of uniform boundedness and we have γ(S ) =
R(S ) = supS∈S ‖S‖.

Throughout this paper, unless otherwise stated H is a separable infinite-dimens-
ional Hilbert space and E is a Banach space. Let (γk)k>1 be a Gaussian sequence,
i.e., a sequence of independent real-valued standard Gaussian random variables on
some probability space (Ω, P). A linear operator T : H → E is called γ–radonifying
if for some orthonormal basis (hk)k>1 of H the sum∑

k>1

γkThk

converges in L2(Ω; E). If this is the case, the sum
∑

k>1 γkThk converges in E

almost surely and in Lp(Ω; E) for all 1 6 p < ∞, for every orthonormal basis
(hk)k>1 of H. The linear space of all γ–radonifying operators from H to E is
denoted by γ(H,E). Endowed with the norm

‖T‖2
γ(H,E) := E

∥∥∥ ∑
k>1

γkThk

∥∥∥2

,

which is independent of the basis (hk)k>1, the space γ(H,E) is a Banach space.
Furthermore, it is a two-sided operator ideal in B(H,E), the space of all bounded
linear operators from H to E. For proofs and more information we refer to the
review paper [33].

Definition 2.1. A subset T of B(H,E) is uniformly γ–radonifying if for all or-
thonormal bases (hk)k>1 of H and sequences (Tk)k>1 in T the Gaussian sum∑

k>1 γkTkhk converges in L2(Ω; E).

It is important to note that this definition refers to all orthonormal bases of
H. Evidently, this definition trivializes for finite-dimensional Hilbert spaces; it is
mainly for this reason that we restrict our attention to infinite-dimensional H.

By considering the constant sequence Tk = T we see that every operator T in a
uniformly γ–radonifying subset T of B(H,E) is γ–radonifying, i.e., T ⊆ γ(H,E).

We begin our investigations with proving some simple permanence properties of
uniformly γ–radonifying families of operators, resembling those of R–bounded and
γ–bounded families of operators. In what follows, T denotes a subset of B(H,E).

Proposition 2.2 (Strong closure). If T is uniformly γ–radonifying, then the clo-
sure T in the strong operator topology of B(H,E) is uniformly γ–radonifying.

Proof. Let (T k)k>1 be a sequence in T . Given an ε > 0 and an orthonormal basis
(hk)k>1 of H, choose a sequence (Tk)k>1 in T such that ‖T khk − Tkhk‖ < 2−kε
for all k > 1. Then, for all 1 6 M 6 N ,(

E
∥∥∥ N∑

k=M

γkT khk

∥∥∥2) 1
2

6
(
E

∥∥∥ N∑
k=M

γkTkhk

∥∥∥2) 1
2

+
(
E

∥∥∥ N∑
k=M

γk(T khk − Tkhk)
∥∥∥2) 1

2

6
(
E

∥∥∥ N∑
k=M

γkTkhk

∥∥∥2) 1
2

+
N∑

k=M

‖T khk − Tkhk‖

6
(
E

∥∥∥ N∑
k=M

γkTkhk

∥∥∥2) 1
2

+ ε.
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The result follows by letting M,N →∞. �

Lemma 2.3. If T is uniformly γ–radonifying, then for all orthonormal bases
(hk)k>1 of H we have

lim
n→∞

(
sup
T

E
∥∥∥ ∞∑

k=n

γkTkhk

∥∥∥2)
= 0,

where the supremum is taken over all sequences T = (Tk)k>1 in T .

Proof. If the lemma was false, we could find an orthonormal basis (hk)k>1 of H, a
number δ > 0, an increasing sequence of indices 1 6 n1 < N1 < n2 < N2 < . . . ,
and for each j = 1, 2, . . . a finite set of operators Tnj , . . . , TNj ∈ T such that

E
∥∥∥ Nj∑

k=nj

γkTkhk

∥∥∥2

> δ2, j = 1, 2, . . .

Putting Tk := 0 if Nj < k < nj+1 for some j > 0 (with the convention that N0 = 0)
we obtain a sequence (Tk)k>1 for which the sum

∑
k>1 γkTkhk fails to converge in

L2(Ω; E), and we have arrived at a contradiction. �

Proposition 2.4 (Absolute convex hull). If T is uniformly γ–radonifying, then
the absolute convex hull of T is uniformly γ–radonifying.

Proof. Considering real and complex parts separately and possibly replacing some
of the γk by −γk, it suffices to prove the statement in the lemma for the convex hull
of T . Furthermore, by the contraction principle for Banach space-valued Gaussian
sums, T ∪{0} is uniformly γ–radonifying and therefore we may assume that 0 ∈ T .

Fix an orthonormal basis (hk)k>1 of H and an ε > 0, and choose n0 > 1 so large
that

sup
T

E
∥∥∥ ∞∑

k=n0

γkTkhk

∥∥∥2

< ε2.

Let (Sk)k>1 be a sequence in conv(T ) and fix indices M,N satisfying n0 6 M 6 N .
Noting that

conv(T )× · · · × conv(T ) = conv(T × · · · ×T )

we can find λ1, . . . , λN ∈ [0, 1] with
∑N

j=1 λj = 1 such that Sk =
∑N

j=1 λjTjk with
Tjk ∈ T for all k = M, . . . , N . Then,(

E
∥∥∥ N∑

k=M

γkSkhk

∥∥∥2) 1
2

6
N∑

j=1

λj

(
E

∥∥∥ N∑
k=M

γkTjkhk

∥∥∥2) 1
2

<

N∑
j=1

λjε = ε.

�

Combining Propositions 2.2 and 2.4 we obtain that the strongly closed absolutely
convex hull of every uniformly γ–radonifying set is uniformly γ–radonifying. As in
the case of R–boundedness, cf. [7, 26, 45], this may be used to show that uniform
γ–radonification is preserved by taking integral means. In this way a number of
well-known R–boundedness results can be carried over to uniformly γ–radonifying
families. To give a few examples we formulate analogues of [26, Corollary 2.14] and
[45, Propositions 2.6 and 2.8].

Proposition 2.5. Let (S, µ) be a σ-finite measure space and let T be a uniformly
γ–radonifying subset of B(H,E). If f : S → B(H,E) is strongly µ-measurable (in
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the sense that s 7→ f(s)h is strongly µ-measurable for all h ∈ H) with f(s) ∈ T for
µ-almost all s ∈ S, then for all φ ∈ L1(S, µ) the operator

Tφh :=
∫

S

φ(s)f(s)h dµ(s), h ∈ H,

belongs to B(H,E) and the family {Tφ : ‖φ‖1 6 1} is uniformly γ–radonifying.

Proposition 2.6. Let G ⊆ C be an open domain and let f : G → B(H,E) be an
analytic function with f(z) ∈ γ(H,E) for all z ∈ G. Then for every compact subset
K ⊆ G the family {f(z) : z ∈ K} is uniformly γ–radonifying.

Proposition 2.7. Let G ⊆ C be a simply connected Jordan domain such that
C \ G has nonempty interior. Let f : G → B(H,E) be uniformly bounded and
strongly continuous, analytic on G, and assume that {f(z) : z ∈ ∂G} is uniformly
γ–radonifying. Then {f(z) : z ∈ G} is uniformly γ–radonifying.

In the situation of Proposition 2.7 it follows that f(z) ∈ γ(H,E) for all z ∈ G.
It will follow from Theorem 3.3 below that f : G → γ(H,E) is continuous.

The next lemma shows that uniform γ–radonification is preserved under left and
right multiplication.

Proposition 2.8 (Ideal property). Let H̃ be a separable infinite-dimensional Hil-
bert space and Ẽ a Banach space. If T is a uniformly γ–radonifying subset of
B(H,E) and R : H̃ → H and S : E → Ẽ are bounded operators, then ST R is a
uniformly γ–radonifying subset of B(H̃, Ẽ).

Proof. The left ideal property is trivial. To prove the right ideal property we first
consider the case of complex scalars. For H̃ = H the right ideal property then
follows from the well-known fact that the convex hull of the unitary operators on
H space are uniformly dense in the closed unit ball of B(H) (this is the so-called
Russo-Dye theorem [42]; at the cost of picking up a constant 2 we could alternatively
use the elementary fact that every operator in B(H) of norm less than 1

2 is a convex
combination of at most four unitaries).

In the case of different Hilbert spaces H and H̃ write TR = TRU∗ ◦ U , where
U is an isometry from H̃ onto H and note that T RU∗ is uniformly γ–radonifying
by the preceding observation.

In the case of real scalars, let (h̃k)k>1 be an orthonormal basis of H̃ and write∑
k>1 γkTkSh̃k =

∑
k>1 γkT C

k SCh̃C
k , where T C

k and SC are the complexifications of
Tk and S, and h̃C

k = h̃k + i0. Since (h̃C
k )k>1 is an orthonormal basis for H̃C, the

right-hand side converges in L2(Ω; EC). �

We continue with a preliminary boundedness result for uniformly γ–radonifying
families. It will be strengthened in Theorem 2.10 below.

Proposition 2.9. Let T be a uniformly γ–radonifying subset of B(H,E). Then
T is a bounded subset of γ(H,E).

Proof. The fact that T is contained in γ(H,E) has already been noted. It suffices
to prove that supk>1 ‖Tk‖γ(H,E) < ∞ for every sequence (Tk)k>1 in T .

Fix an orthonormal basis (hk)k>1 of H. By Proposition 2.8 and a closed graph
argument, there exists a constant C > 0 such that for all S ∈ B(H) we have

E
∥∥∥ ∑

k>1

γkTkShk

∥∥∥2

6 C2‖S‖2.
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In particular, for all x∗ ∈ E∗ this implies∑
k>1

∣∣(Shk, T ∗k x∗)H

∣∣2 = E
∣∣∣ ∑

k>1

γk〈TkShk, x∗〉
∣∣∣2

= E
∣∣∣〈 ∑

k>1

γkTkShk, x∗
〉∣∣∣2 6 C2‖S‖2‖x∗‖2.

Taking S := hn ⊗ T ∗nx∗ with n > 1 fixed it follows that

‖T ∗nx∗‖4
H 6 C2‖T ∗nx∗‖2‖x∗‖2.

Therefore, supn>1 ‖Tn‖ 6 C. Next, by Lemma 2.3 we can find N > 1 so large that

sup
k>1

E
∥∥∥ ∞∑

n=N+1

γnTkhn

∥∥∥2

6 1.

But then,
sup
k>1

‖Tk‖γ(H,E) 6 1 + CN.

�

The next result explains our terminology ‘uniformly γ–radonifying’:

Theorem 2.10. Let T be a uniformly γ–radonifying subset of B(H,E). Then
there exists a constant C > 0 such that for all orthonormal bases h = (hk)k>1 of
H and all sequences (Tk)k>1 in T we have

E
∥∥∥ ∑

k>1

γkTkhk

∥∥∥2

6 C2.

Proof. Let
W := abs conv(T )× abs conv(T )× . . .

where abs conv(T ) denotes the absolute convex hull of T and the closure is taken
in the norm of γ(H,E). Note that W is absolutely convex. Let l(T ) denote the
vector space of all sequences T = (Tk)k>1 in γ(H,E) such that cT ∈ W for some
c > 0. In view of Propositions 2.2, 2.4, and Proposition 2.9 we may endow l(T )
with the norm

‖T‖l(T ) := inf
{1

c
: c > 0, cT ∈ W

}
+ sup

k>1
‖Tk‖γ(H,E).

It is routine to check that the normed space l(T ) is a Banach space.
We fix an orthonormal basis (hk)k>1 in H and consider the bilinear operator

β : B(H)× l(T ) → L2(Ω; E) defined by

β(S, T ) :=
∑
k>1

γkTkShk.

Note that this sum converges in L2(Ω; E) thanks to Propositions 2.2, 2.4, and 2.8.
By the closed graph theorem there is a constant c > 0 such that for all S ∈ B(H)
and T ∈ l(T ),

E
∥∥∥ ∑

k>1

γkTkShk

∥∥∥2

6 c2‖S‖2‖T‖2
l(T ).

For sequences (Tk)k>1 in T we have inf
{

1
c : c > 0, cT ∈ W

}
6 1 and consequently

‖T‖l(T ) 6 1+supk>1 ‖Tk‖γ(H,E) 6 1+M , where M := supT∈T ‖T‖γ(H,E). Hence,

E
∥∥∥ ∑

k>1

γkTkShk

∥∥∥2

6 c2(1 + M)2‖S‖2.
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Finally, if (hk)k>1 is an arbitrary orthonormal basis of H we let U be the unitary
operator defined by Uhk = hk and obtain, for all sequences (Tk)k>1 in T ,

E
∥∥∥ ∑

k>1

γkTkhk

∥∥∥2

= E
∥∥∥ ∑

k>1

γkTkUhk

∥∥∥2

6 c2(1 + M)2‖U‖2 = c2(1 + M)2.

�

For a uniformly γ–radonifying family T in γ(H,E) we define

‖T ‖2
unif-γ := sup

h
sup
T

E
∥∥∥ ∑

k>1

γkTkhk

∥∥∥2

,

where the fist supremum is taken over all orthonormal bases of H and the second
over all sequences in T . Inspection of the proofs of Propositions 2.2, 2.4, and 2.8
shows that we have

‖T ‖unif-γ = ‖T ‖unif-γ ,

where T is the strong closure of T ,
‖abs conv(T )‖unif-γ = ‖T ‖unif-γ (real scalars),

‖abs conv(T )‖unif-γ 6 2‖T ‖unif-γ (complex scalars),
(2.1)

and
‖RT S‖unif-γ 6 ‖R‖ ‖T ‖unif-γ ‖S‖. (2.2)

Using (2.1) we obtain analogous bounds for the sets discussed in the Proposi-
tions 2.5, 2.6, and 2.7.

We proceed with some applications of Theorem 2.10. The first two results clarify
the relation between uniform γ–radonification and γ–boundedness.

Corollary 2.11. If T is uniformly γ–radonifying, then:

(a) T is R–bounded with R(T ) 6
√

1
2π‖T ‖unif-γ .

(b) T is γ–bounded with γ(T ) 6 ‖T ‖unif-γ ;

Proof. We shall prove part (a). Since every R–bounded set is γ–bounded with the
same boundedness constant, the γ-boundedness assertion in (b) follows directly

from (a), but this argument produces an additional constant
√

1
2π. The sharper

constant 1 is obtained by noting that for the proof of (b), Rademacher variables can
be replaced by Gaussians and the first inequality in (2.3) can be omitted and we
may replace the role of Rademachers by Gaussians in the last step of the argument.

Fix T1, . . . , Tn ∈ T and vectors g1, . . . , gn ∈ H. Let (hk)k>1 be an orthonormal
basis of H and define S ∈ B(H) by Shk = gk for k = 1, . . . , n and Shk = 0 for
k > n + 1. If (rk)k>1 is a Rademacher sequence, then

‖Sh‖ =
∥∥∥ n∑

k=1

(h, hk)Hgk

∥∥∥
H

6
n∑

k=1

∣∣(h, hk)H

∣∣ ‖gk‖H

6 ‖h‖H

( n∑
k=1

‖gk‖2
H

) 1
2

= ‖h‖H

(
E

∥∥∥ n∑
k=1

rkgk

∥∥∥2) 1
2
.

Hence, estimating Rademachers with Gaussians and using (2.2),

E
∥∥∥ n∑

k=1

rkTkgk

∥∥∥2

6 1
2π E

∥∥∥ n∑
k=1

γkTkShk

∥∥∥2

6 1
2π‖T ‖2

unif-γ‖S‖2 6 1
2π‖T ‖2

unif-γE
∥∥∥ n∑

k=1

rkgk

∥∥∥2

.

(2.3)

�
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The next example shows that even for Hilbert spaces E, a γ–bounded family of
operators in γ(H,E) need not be uniformly γ–radonifying.

Example 2.12. Let (hk)k>1 be an orthonormal basis for an infinite-dimensional
Hilbert space H and let Pn be the orthogonal projection onto the span of the
vector hn. The family {Pn : n > 1} is uniformly bounded, hence γ–bounded, in
B(H) and fails to be uniformly γ–radonifying, as is immediate by considering the
sum

∑
k>1 γkPkhk.

The next corollary identifies γ–bounded sets as the class of ‘multipliers’ for uni-
formly γ–radonifying sets:

Corollary 2.13. For a subset S of B(E,F ) the following assertions are equiva-
lent:

(a) S is γ–bounded;
(b) S T is a uniformly γ–radonifying subset of B(H,F ) for every T ∈ γ(H,E);
(c) S T is a uniformly γ–radonifying subset of B(H,F ) for every uniformly

γ–radonifying subset T of B(H,E).

In the situation of (c) we have ‖S T ‖unif-γ 6 γ(S )‖T ‖unif-γ .

Proof. The implication (a)⇒(c) and the estimate are immediate consequences of
the definitions, and the implication (c)⇒(b) is trivial. To prove (b)⇒(a) we fix an
orthonormal basis (hk)k>1 in H and denote by S∞ = S ×S × . . . the set of all
sequences in S . By Theorem 2.10, for each T ∈ γ(H,E) we have

sup
S∈S∞

E
∥∥∥ ∑

k>1

γkSkThk

∥∥∥2

< ∞,

This induces a well-defined linear operator

U : γ(H,E) → l∞(S∞;L2(Ω; E)),

which is bounded by the closed graph theorem. This means that for some constant
C > 0 we have

sup
S∈S∞

E
∥∥∥ ∑

k>1

γkSkThk

∥∥∥2

6 C2‖T‖2
γ(H,E).

Now fix arbitrary S1, . . . , Sn ∈ S and x1, . . . , xn ∈ E, and define T ∈ γ(H,E) by
Thk = xk for k = 1, . . . , n and Thk = 0 for k > n + 1. Choosing Sk ∈ S for
k > n + 1 arbitrary, we obtain

E
∥∥∥ n∑

k=1

γkSkxk

∥∥∥2

6 E
∥∥∥ ∑

k>1

γkSkThk

∥∥∥2

6 C2‖T‖2
γ(H,E) = C2E

∥∥∥ n∑
k=1

γkxk

∥∥∥2

.

�

As an immediate consequence of the previous two results we note:

Corollary 2.14. If T is uniformly γ–radonifying in B(H̃, H) and S is uniformly
γ–radonifying in B(H,E), then S T is uniformly γ–radonifying in B(H̃, E) and

‖S T ‖unif-γ 6 ‖S ‖unif-γ‖T ‖unif-γ .

If E does not contain a closed subspace isomorphic to c0, then by a result of
Hoffmann-Jørgensen and Kwapień [16, 27], a Gaussian sum converges in L2(Ω; E)
if and only if its partial sums are bounded in L2(Ω; E). In combination with Theo-
rem 2.10 we obtain the following equivalent condition for uniform γ–radonification:
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Corollary 2.15. Let E be a Banach space not containing a copy of c0. Then a
subset T of γ(H,E) is uniformly γ–radonifying if and only if there exists a constant
C > 0 such that for all integers n > 1, all orthonormal h1, . . . , hn ∈ H, and all
T1, . . . , Tn ∈ T ,

E
∥∥∥ n∑

k=1

γkTkhk

∥∥∥2

6 C2.

In this situation, ‖T ‖unif-γ 6 C.

Here is a simple application.

Corollary 2.16 (Fatou lemma). Let E be a Banach space not containing a copy
of c0. Let (Tn)n>1 be an increasing sequence of uniformly γ–radonifying sets in
γ(H,E) satisfying supn>1 ‖Tn‖unif-γ < ∞. Then T :=

⋃
n>1 Tn is uniformly γ–

radonifying and
‖T ‖unif-γ 6 sup

n>1
‖Tn‖unif-γ .

Proof. Let (Tk)k>1 be a sequence in T . For each m > 1 choose Nm > 1 such that
T1, . . . , Tm ∈ TNm . For all orthonormal h1, . . . , hm ∈ H we have

E
∥∥∥ m∑

k=1

γkTkhk

∥∥∥2

6 ‖TNm
‖unif-γ 6 C,

where C := supn>1 ‖Tn‖unif-γ . �

The condition c0 6⊆ E cannot be omitted:

Example 2.17. Let (ek)k>1 and (uk)k>1 denote the standard unit bases of `2 and c0,
respectively. It is a classical example of Linde and Pietsch [30] that the operator
T ∈ B(`2, c0) defined by Tek = (ln(k + 1))−

1
2 uk fails to be γ–radonifying but

satisfies

sup
n>1

E
∥∥∥ n∑

k=1

γkTek

∥∥∥2

< ∞.

Let Pk be the rank one projection ek⊗ek in `2. Then the sets Tn := {TP1, . . . , TPn}
satisfy the assumptions of Corollary 2.16, but their union fails to be uniformly γ–
radonifying.

3. Uniformly γ–radonifying families and compactness in γ(H,E)

For an operator T ∈ γ(H,E) we define µT as the distribution of the random
variable

∑
k>1 γkThk, where (hk)k>1 is an arbitrary orthonormal basis of H. The

measure µT is a centred Gaussian Radon measure on E which does not depend on
the choice of the basis (hk)k>1 and whose covariance operator equals TT ∗. For more
information on Gaussian measures we refer to [3, Chapter 3], whose terminology
we follow.

The first result of this section gives a necessary and sufficient condition for rel-
ative compactness in the space γ(H,E). In a rephrasing in terms of sequential
convergence in γ(H,E), this result is due to Neidhardt [39]. For reasons of self-
containedness we shall give a different proof based on a characterisation of com-
pactness in Lebesgue-Bochner spaces.

Theorem 3.1. For a subset T of γ(H,E) the following assertions are equivalent:
(a) The set T is relatively compact in γ(H,E);
(b) The set {µT : T ∈ T } is uniformly tight, and for all x∗ ∈ E∗ the set

{T ∗x∗ : T ∈ T } is relatively compact in H.
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Proof. Let (hk)k>1 be a fixed orthonormal basis of H and define, for T ∈ T , the
random variable XT ∈ L2(Ω; E) as XT :=

∑
k>1 γkThk. Since T 7→ XT defines an

isometry from γ(H,E) onto a closed subspace of L2(Ω; E), T is relatively (weakly)
compact in γ(H,E) if and only if {XT : T ∈ T } is relatively (weakly) compact
in L2(Ω; E). With this in mind, the proof of the theorem will be based on the
following compactness result of Diaz and Mayoral [9]: for 1 6 p < ∞, a subset A of
Lp(Ω; E) is relatively weakly compact if and only if the following three conditions
are satisfied:

(i) The set A is uniformly p-integrable;
(ii) The set of distributions {µf : f ∈ A} is uniformly tight;
(iii) The set {〈f, x∗〉 : f ∈ A} is relatively weakly compact in Lp(Ω) for all

x∗ ∈ E∗.

An elementary proof of this result, valid for arbitrary Banach function spaces over
(Ω, P) with order continuous norm, may be found in [32].

(a)⇒(b): The uniform tightness of the set {µT : T ∈ T } follows from the Diaz-
Mayoral result. For every x∗ ∈ E∗ the set {T ∗x∗ : T ∈ T } is relatively compact
in H, since it is the image of the relatively compact set T under the continuous
mapping from γ(H,E) into H given by T 7→ T ∗x∗.

(b)⇒(a): The relative compactness of {T ∗x∗ : T ∈ T } in H implies the relative
compactness in L2(Ω) of the random variables {〈XT , x∗〉 : T ∈ T }. To see this,
just note that

‖〈XT1 , x
∗〉 − 〈XT2 , x

∗〉‖2
L2(Ω) = ‖〈XT1−T2 , x

∗〉‖2
L2(Ω) = ‖T ∗1 x∗ − T ∗2 x∗‖2

H .

By [3, Theorem 3.8.11], uniformly tight families of centred Gaussian E-valued ran-
dom variables are uniformly square integrable and therefore (b) implies (a) by
another application of the compactness result of Diaz and Mayoral. �

Corollary 3.2. Let T be a subset in γ(H,E) which is dominated by some fixed
element S ∈ γ(H,E), in the sense that for all x∗ ∈ E∗,

0 6 ‖T ∗x∗‖H 6 ‖S∗x∗‖H .

Then the following assertions are equivalent:

(a) T is relatively compact in γ(H,E);
(b) For all x∗ ∈ E∗ the set {T ∗x∗ : T ∈ T } is relatively compact in H.

Proof. A standard domination result for Gaussian measures (see [33, Theorem 8.8])
implies that if T is dominated, then the family {µT : T ∈ T } is uniformly tight.
The result now follows from Theorem 3.1. �

The second main result of this section is the following characterisation of relative
compactness in γ(H,E) of uniformly γ–radonifying families.

Theorem 3.3. Let T be uniformly γ–radonifying subset of γ(H,E). The following
assertions hold:

(a) T is relatively compact in γ(H,E) if and only if T h is relatively compact
in E for all h ∈ H;

(b) T is relatively weakly compact in γ(H,E) if and only if T h is relatively
weakly compact in E for all h ∈ H.

Proof. The relative (weak) compactness of T in γ(H,E) clearly implies the relative
(weak) compactness of T h in E for all h ∈ H, so we only need to prove the converse
statements. Throughout the proof we fix an orthonormal basis (hk)k>1 of H.

The proof of (a) is divided into two steps.
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Step 1 – Fix n > 1 and let Pn be the orthogonal projection in H onto the span
Hn of h1, . . . , hn. The set Tn = {TPn : T ∈ T } is relatively compact in γ(H,E)
by Corollary 3.2.

Step 2 – Assume that T is not relatively compact; we shall prove that T is not
uniformly γ–radonifying.

Since T is not totally bounded, we can find an ε > 0 such that T cannot be
covered with finitely many 3ε-balls. We shall construct an increasing sequence of
positive integers 0 = N0 < N1 < . . . and a sequence T1, T2, . . . of elements of T
such that for all m > 1 we have

E
∥∥∥ Nk∑

m=Nk−1+1

γkTmhk

∥∥∥2

> 4ε2.

The 3ε-ball with centre 0 does not cover T , and therefore we may pick T1 ∈ T
such that ‖T1‖γ(H,E) > 3ε. Choose the index N1 > 1 in such a way that

E
∥∥∥ N1∑

k=1

γkT1hk

∥∥∥2

> ε2.

We claim that for some T2 ∈ T we have

E
∥∥∥ ∞∑

k=N1+1

γkT2hk

∥∥∥2

> 4ε2.

Suppose this claim was false. Denoting by QN1 = I−PN1 the orthogonal projection
onto H⊥

N1
, this would mean that ‖TQN1‖γ(H,E) < 2ε for all T ∈ T . Then for all

T ∈ T we have
T = TPN1 + TQN1 ∈ TN1 + B(2ε),

where B(2ε) is the 2ε-ball in γ(H,E) centred at 0. By Step 1 we can cover TN1

with finitely many ε-balls, and therefore we can cover T with finitely many 3ε-
balls. This contradiction proves the claim. Now choose the index N2 > N1 + 1 in
such a way that

E
∥∥∥ N2∑

k=N1+1

γkT2hk

∥∥∥2

> ε2.

It is clear that this construction can be continued inductively.
Let Sk := Tm if Nm−1 + 1 6 k 6 Nm for some m > 1. Then (Sk)k>1 is a

sequence in T for which the sum
∑

k γkSkhk fails to converge.
Next we prove (b). We say that the sequence (yn)n>1 is a convex tail subsequence

of a sequence (xn)n>1 in E if each yn is a convex combination of elements of the
tail sequence (xk)k>n. Note that if limn→∞ xn = x strongly or weakly, then also
limn→∞ yn = x strongly or weakly. We shall use of the following weak compactness
criterium [11, Corollary 2.2]: a subset K of a Banach space X is relatively weakly
compact if and only if every sequence in K has a strongly convergent convex tail
subsequence.

After these preparations we turn to the proof of (b). Let (Tk)k>1 be a sequence
in T . By a diagonal argument we find a subsequence (Tkj )j>1 such that the
weak limit limj→∞ Tkj hn exists for every n > 1. By a standard corollary to the
Hahn-Banach theorem and a diagonal argument we find a convex tail subsequence
(Sj)j>1 of (Tkj )j>1 such that the strong limit limj→∞ Sjhn exists for every n > 1.
By the uniform boundedness of T , the strong limit Sh := limj→∞ Sjh exists for
all h ∈ H. Now part (a) implies that limj→∞ Skj = S in γ(H,E). Hence, by the
above criterium, T is relatively weakly compact. �
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The following example shows that uniformly γ–radonifying families in γ(H,E)
need not be relatively compact in γ(H,E), even in the case where E is a Hilbert
space.

Example 3.4. Let (ek)k>1 be the standard unit basis of `2 and fix an arbitrary
nonzero element h ∈ `2. We check that the family

T := {h⊗ ej : j > 1}

is a uniformly γ–radonifying subset of γ(`2) := γ(`2, `2). Taking this for granted
for the moment, noting that {Th : T ∈ T } fails to be relatively compact in `2 it
follows from Theorem 3.3 that T fails to be relatively compact in γ(`2).

If (Tk)k>1 is a sequence in T , say Tk = h⊗ ejk
, then for all 1 6 M 6 N we have

E
∥∥∥ N∑

k=M

γkTkek

∥∥∥2

= E
∥∥∥ N∑

k=M

γk(h, ek)ejk

∥∥∥2

=
N∑

k=M

‖(h, ek)ejk
‖2 =

N∑
k=M

|(h, ek)|2.

As M,N → ∞ the right-hand side tends to 0, which proves that
∑

k>1 γkTkek

converges in L2(Ω; `2).

Our next aim is to show that for every Banach space E there exists a relatively
compact T set in γ(`2, E) which fails to be uniformly γ–radonifying.

Example 3.5. Let (hk)k>1 denote the standard unit basis of `2. Define S ∈ B(`2)
to be the right shift, i.e. Shk = hk+1 for all k > 1. For T ∈ γ(`2, E) let ST :=
{TSn : n ∈ N}. This set is bounded in γ(`2, E) and for all n ∈ N we have

‖Sn∗T ∗x∗‖2
`2 6 ‖T ∗x∗‖2

`2 .

Also, for all x∗ ∈ E∗ we have limn→∞ Sn∗T ∗x∗ = 0 strongly, and therefore ST is
relatively compact by Corollary 3.2.

In what follows we take for E the scalar field K. Define M1 = 1 and, inductively,
Mn+1 := Mn + n for n > 1. Consider the operators Tn : `2 → K defined by
TnhMn+1 = 1 and Tnhk = 0 for k 6= Mn+1. Trivially, this operator is γ–radonifying
with ‖Tn‖γ(`2,K) = 1. Let mn

k := n− j for k = Mn + j, j = 1, . . . , n. Then,

(
E

∥∥∥∑
k>1

γkTnSmn
k hk

∥∥∥2) 1
2

=
(
E

∥∥∥ Mn+1∑
k=Mn+1

γkTnhMn+1

∥∥∥2) 1
2

= (Mn+1 −Mn)
1
2 = n

1
2

and similarly, (
E

∥∥∥∑
k>1

γkTn′S
mn

k hk

∥∥∥2) 1
2

= 0, n 6= n′.

Define T : `2 → K by T :=
∑

n>1
1

n2 T2n . Note that T ∈ γ(`2, K). By the contraction
principle, for all n > 1 we have(

E
∥∥∥M2n+1∑

k=1

γkTSm2n

k hk

∥∥∥2) 1
2

>
(
E

∥∥∥ M2n+1∑
k=M2n+1

γkTSm2n

k hk

∥∥∥2) 1
2

=
1
n2

(
E

∥∥∥ M2n+1∑
k=M2n+1

γkT2nSm2n

k hk

∥∥∥2) 1
2

=
1
n2

· 2n
2 .

Since n is arbitrary, this implies that the family ST = {TSm : m ∈ N} fails to be
uniformly γ–radonifying. Note that this family is bounded, hence γ-bounded, in
L (`2, K).
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4. Laplace transforms

Let I be a countable index set. A sequence (hi)i∈I in a Hilbert space H is said
to be a Hilbert sequence if there exists a constant C > 0 such that for all scalar
sequences α ∈ `2(I), ∥∥∥∑

i∈I

αihi

∥∥∥2

H
6 C2

∑
i∈I

|αi|2.

The infimum of all admissible constants C will be called the Hilbert constant of the
sequence (hi)i∈I , cf. [51, Section 1.8]. The usefulness of this notion is explained by
the following result [15, Proposition 2.1]:

Proposition 4.1. Let T ∈ γ(H,E) be given. If (hi)i∈I is a Hilbert sequence in H,
then the Gaussian sum

∑
i∈I γiThi converges in L2(Ω; E) and we have

E
∥∥∥∑

i∈I

γiThi

∥∥∥2

6 C2‖T‖2
γ(H,E),

where C is the Hilbert constant of (hi)i∈I .

Example 4.2. Let (λn)n>1 be a sequence in C+ which is properly spaced in the sense
that

inf
m6=n

∣∣∣λm − λn

Re (λn)

∣∣∣ > 0.

Then the functions
fn(t) :=

√
Re (λn)e−λnt, n > 1,

define a Riesz sequence on the closure of their span in L2(R+), i.e., there are
constants 0 < c 6 C < ∞ such that

c2
∑
n>1

|αn|2 6
∥∥∥∑

n>1

αnfn

∥∥∥2

6 C2
∑
n>1

|αn|2

for all sequences (αn)n>1 ∈ `2; see [20, Theorem 1, (3)⇔(5)]. In particular, (fn)n>1

is a Hilbert sequence in L2(R+). From this one easily deduces that for any b > 0
and ρ ∈ [0, 1) the functions

fn(t) = e−bt+2πi(n+ρ)t, n ∈ Z,

define a Hilbert sequence in L2(R+). This has been shown by direct computation
in [15, Example 2.5], where the bound 1/

√
1− e−2b was obtained for its Hilbert

constant. Note that this bound is independent of ρ.

The next proposition is well-known and shows that a sequence is a Hilbert se-
quence if it is not ‘too far’ from being orthogonal. For the reader’s convenience we
include an elementary proof.

Proposition 4.3. Let (hn)n∈Z be a sequence in H. If there exists a function
φ : N → R+ such that for all n > m ∈ Z we have

∣∣(hn, hm)H

∣∣ 6 φ(n − m) and∑
j∈N φ(j) < ∞, then (hn)n∈Z is Hilbert sequence.

Proof. Let (αn)n∈Z be scalars. Then∥∥∥ N∑
n=−N

αnhn

∥∥∥2

=
N∑

n=−N

|αn|2‖hn‖2 + 2Re
∑

−N6n<m6N

αnαm(hn, hm)H

6 φ(0)
∑
n∈Z

|αn|2 + 2
∑
n<m

|αn||αm|φ(n−m)

= φ(0)
∑
n∈Z

|αn|2 + 2
∑
j>1

φ(j)
∑
n∈Z

|αn| |αn+j |
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6
(
φ(0) + 2

∑
j>1

φ(j)
) ∑

n∈Z
|αn|2,

where the last estimate follows from the Cauchy-Schwarz inequality. �

As a special case we have the following example, which will be needed in the
proof of Theorem 4.8.

Example 4.4. Let α ∈ (0, 1
2 ], r > 0, and ϑ ∈ (−π

2 , π
2 ). Let µn = r2neiϑ, n ∈ Z, and

let
fn(s) := µα

ne−µns, s ∈ R+. (4.1)

Then (fn)n∈Z is a Hilbert sequence in L2(R+). Indeed, for n, m ∈ Z, n 6= m, we
have

|(fn, fm)| 6
∫ ∞

0

r2α2α(n+m)e−r(2n+2m)s cos ϑ ds =
r2α−12α(n+m)

(2n + 2m) cos ϑ
.

Since α ∈ (0, 1
2 ] we have

r2α−12α(n+m)

(2n + 2m) cos ϑ
6

r2α−1

cos ϑ

2α(n+m)

2max(n,m)
6

r2α−1

cos ϑ
2−α|n−m|,

and Proposition 4.3 applies. Notice that for α = 1
2 , the obtained Hilbert constant

estimate is bounded by C/ cos ϑ, where C is a universal constant.

From now on, H is again a separable infinite-dimensional Hilbert space. The
main abstract result of this section reads as follows.

For an operator Φ ∈ γ(L2(R+;H), E) and a function f ∈ L2(R+) we define the
operator f(Φ) ∈ γ(H,E) by

f(Φ)h := Φ(f ⊗ h), h ∈ H.

Below we shall apply this definition to the functions f(t) = e−λt with Re λ > 0 to
in order to define the ‘Laplace transform’ of Φ.

Theorem 4.5. Let (fi)i∈I be a Hilbert sequence in L2(R+) with Hilbert constant
C. Then for all Φ ∈ γ(L2(R+;H), E) the family

T := {fi(Φ) : i ∈ I}

is uniformy γ–radonifying and we have

‖T ‖unif-γ 6 C‖Φ‖γ(L2(R+;H),E).

Proof. Fix an orthonormal basis (hk)k>1 in H and let (ik)k>1 be an arbitrary
sequence in I. Put J := {i ∈ I : ik = i for some k ∈ K}. For each i ∈ J ,
put K(i) := {k > 1 : ik = i}. Fix a Gaussian sequence (γk)k>1 on a probability
space (Ω, P), as well as a doubly indexed Gaussian sequence (γ′ik)i∈I, k>1 on another
probability space (Ω′, P′). We have

E
∥∥∥∑

k>1

γkfik
(Φ)hk

∥∥∥2

= E′
∥∥∥∑

k>1

γ′ikkfik
(Φ)hk

∥∥∥2

= E′
∥∥∥∑

i∈J

∑
k∈K(i)

γ′ikfi(Φ)hk

∥∥∥2

6 E′
∥∥∥∑

i∈I

∑
k>1

γ′ikfi(Φ)hk

∥∥∥2

.

To prove convergence of the double sum on the right-hand side we note that that the
sequence (fi⊗hk)i∈I, k>1 is a Hilbert sequence in L2(R+;H) with Hilbert constant
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C. Indeed, this follows from∥∥∥∑
i∈I

∑
k>1

αikfi ⊗ hk

∥∥∥2

L2(R+;H)
=

∫ ∞

0

∥∥∥∑
i∈I

∑
k>1

αikfi(t)hk

∥∥∥2

H
dt

=
∫ ∞

0

∑
k>1

∣∣∣ ∑
i∈I

αikfi(t)
∣∣∣2 dt

=
∑
k>1

∥∥∥∑
i∈I

αikfi

∥∥∥2

L2(R+)

6 C2
∑
i∈I

∑
k>1

|αik|2.

Hence by Proposition 4.1,

E
∥∥∥ ∑

k>1

γkfik
(Φ)hk

∥∥∥2

6 C2‖Φ‖2
γ(L2(R+;H),E).

�

We shall present three applications of this result.
The Laplace transform of an operator Φ ∈ γ(L2(R+;H), E) is the function Φ̂ :

C+ → γ(H,E) defined by

Φ̂(λ)h := eλ(Φ)h = Φ(eλ ⊗ h), h ∈ H,

where C+ := {Re λ > 0} and eλ(t) := e−λt for t ∈ R+ and λ ∈ C+.
An operator Φ ∈ γ(L2(R+;H), E) is said to be H-strongly L1-representable if

for all h ∈ H there exists a function φh ∈ L1(R+;E) ∩ L2(R+;E) such that for all
f ∈ L2(R+) we have

Φ(f ⊗ h) =
∫ ∞

0

f(t)φh(t) dt.

Under this assumption we have

Φ̂(λ)h = φ̂h(λ), Re λ > 0.

Theorem 4.6 (γ–Riemann-Lebesgue lemma). If Φ ∈ γ(L2(R+;H), E) is H-strong-
ly L1-representable, then

lim
n→∞

‖Φ̂(λn)‖γ(H,E) = 0

for any sequence (λn)n>1 in C+ such that (eλn)n>1 is a Hilbert sequence.

Proof. Let (λn)n>1 be a sequence in C+ as stated. By Theorem 4.5, the family
{Φ̂(λn) : n > 1} is uniformly γ–radonifying. Moreover, for all h ∈ H we have

lim
|λ|→∞

Φ̂(λ)h = lim
|λ|→∞

φ̂h(λ) = 0

by the Riemann-Lebesgue lemma. Consequently, for every h ∈ H the set {Φ̂(λ)h :
λ ∈ C+} is relatively compact in E. Theorem 3.3 then shows that {Φ̂(λn) :
n > 1} is relatively compact in γ(H,E). Therefore, limn→∞ Φ̂(λn)h = 0 implies
limn→∞ Φ̂(λn) = 0 in γ(H,E). �

In particular we obtain that if Φ ∈ γ(L2(R+;H), E) is H-strongly L1-represent-
able, then for all b > 0 we have

lim
|s|→∞

‖Φ̂(b + is)‖γ(H,E) = 0.

In the next two applications of Theorem 4.5 we consider the uniform γ–radonif-
ication of Laplace transforms in right half-planes and sectors, respectively.
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Let S = {λ ∈ C : 0 < Re λ < 1}. If N : S → L (E,F ) is strongly continuous
and bounded on S and harmonic on S, then by the Poisson formula for the strip
[50], cf. also [38], we have, for λ = α + iβ with 0 < α < 1 and β ∈ R,

N(λ)x =
∑

j=0,1

∫ ∞

−∞
Pj(α, β − t)N(j + it)x dt, x ∈ E, (4.2)

where

Pj(α, s) =
1
π

eπs sin(πα)
sin2(πα) + (cos(πα)− (−1)jeπs)2

.

Theorem 4.7 (Uniform γ–radonification in half-planes). Let Φ ∈ γ(L2(R+;H), E)
be given. For all b > 0 the family

T Φ
b :=

{
Φ̂(λ) : Re λ > b

}
is uniformly γ–radonifying in γ(H,E) and

‖T Φ
b ‖unif-γ 6

C√
b
‖Φ‖γ(L2(R+;H),E),

where C is a universal constant.

Proof. By Example 4.2 and a substitution (cf. [15, Theorem 3.1]), for σ ∈ [ 12b, 3
2b]

and ρ ∈ [0, 1) fixed, the sequence (gn)n∈Z given by

gn(t) := e−σt+i(n+ρ)bt, t ∈ R+,

is a Hilbert sequence with Hilbert constant 6 C√
b
, where C =

√
2πe2π

e2π−1 . Con-

sequently, Theorem 4.5 shows the uniform γ–radonification of the set {Φ̂(σ +
i(n+ρ)b) : n ∈ Z} with constant 6 C√

b
‖Φ‖γ(L2(R+;H),E).

Let (hk)k>1 be an orthonormal basis of H and let (λk)k>1 be a sequence on the
line {Re λ = b}, say λk = b + i(nk + ρk)b with nk ∈ Z and 0 6 ρk < 1.

Fix indices 1 6 M 6 N . Following the argument of [38, Theorem 4.3], the
Poisson integral formula (4.2) can be used with N(λ) = Φ̂(( 1

2 + λ)b) to estimate

(
E

∥∥∥ N∑
k=M

γk Φ̂(λk)hk

∥∥∥) 1
2

=
∥∥∥ ∑

j=0,1

N∑
k=M

γk

∫ ∞

−∞
Pj( 1

2 , nk + ρk − t)Φ̂(( 1
2 + j)b + itb)hk dt

∥∥∥
L2(Ω;E)

6
∑

j=0,1

∫ ∞

−∞

∥∥∥ N∑
k=M

γk Pj( 1
2 , ρk − τ)Φ̂(( 1

2 + j)b + i(nk + τ)b)hk

∥∥∥
L2(Ω;E)

dτ

6
∑

j=0,1

∫ ∞

−∞
sup

ρ∈[0,1)

Pj( 1
2 , ρ− τ)

∥∥∥ N∑
k=M

γk Φ̂(( 1
2 + j)b + i(nk + τ)b)hk

∥∥∥
L2(Ω;E)

dτ.

In the last estimate we used the contraction principle. For fixed τ ∈ R we have

lim
M,N→∞

∥∥∥ N∑
k=M

γk Φ̂(( 1
2 + j)b + i(nk + τ)b)hk

∥∥∥
L2(Ω;E)

= 0
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since
{
Φ̂(( 1

2 + j)b + i(n + τ)b) : n ∈ Z
}

is uniformly γ–radonifying, and

sup
ρ∈[0,1)

Pj( 1
2 , ρ− τ)

∥∥∥ N∑
k=M

γk Φ̂(( 1
2 + j)b + i(nk + τ)b)hk

∥∥∥
L2(Ω;E)

6
C√
b

(
sup

ρ∈[0,1)

Pj( 1
2 , ρ− τ)

)
‖Φ‖γ(L2(R+;H),E).

Since the right-hand side is an integrable function of τ we may apply dominated
convergence to conclude that

lim
M,N→∞

(
E

∥∥∥ N∑
k=M

γk Φ̂(λk)hk

∥∥∥) 1
2

= 0.

This shows that {Φ̂(λ) : Re λ = b} is uniformly γ–radonifying. Moreover, taking
M = 1 and letting N →∞ in the above estimates, we obtain the bound(
E

∥∥∥∑
k>1

γk Φ̂(λk)hk

∥∥∥) 1
2

6 2 sup
j=0,1

C√
b

( ∫ ∞

−∞
sup

ρ∈[0,1)

Pj( 1
2 , ρ− τ) dτ

)
‖Φ‖γ(L2(R+;H),E).

This proves that {Φ̂(λ) : Re λ = b} is uniformly γ–radonifying with constant 6
C ′/

√
b‖Φ‖γ(L2(R+;H),E), where C ′ is universal. By Proposition 2.7, {Φ̂(λ) : Re λ >

b} is then uniformly γ–radonifying with at most twice this constant. �

Combining this theorem with Corollary 2.13 we recover [38, Theorem 3.4], which
asserts that the Laplace transform of Φ is R–bounded on {Re λ > b} for all b > 0,
with an R–bound of order O( 1√

b
) as b ↓ 0. In view of Example 3.5, Theorem 4.7

represents a genuine strengthening of this result.

Next we turn to the uniform γ–radonification of Laplace transforms in sectors.
Before we can state and prove our main result in this direction, Theorem 4.8, we
introduce some notations.

For 0 < ϑ < π and 0 < r < R we define

Sϑ := {z ∈ C : z 6= 0, | arg z| < ϑ},

where the argument is taken in (−π, π).

Theorem 4.8 (Uniform γ–radonification in sectors). Let Φ ∈ γ(L2(R+;H), E) be
given. For all 0 < ϑ < π

2 the family

T Φ
ϑ := {

√
λ Φ̂(λ) : λ ∈ Sϑ}

is uniformly γ–radonifying in γ(H,E) and

‖T Φ
ϑ ‖unif-γ 6

C ′

cos ϑ
‖Φ‖γ(L2(R+;H),E),

where C ′ is a universal constant.

Proof. The proof follows the lines of Theorem 4.7, the difference being that instead
of using Example 4.2 we now use Example 4.4.

Fix ϑ < θ < π
2 such that cos θ > 1

2 cos ϑ. One obtains that for any r > 0 fixed,
the sequences (f+

n )n∈Z and (f−n )n∈Z given by

f±n (t) =
√

µ±n e−µ±n t

with
µ±n = r2ne±iθ
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are Hilbert sequences whose Hilbert constants are bounded by C/ cos θ, where C is
a universal constant. Hence, arguing along the lines of Theorem 4.5, we obtain that
the sequence (

√
µnΦ̂(µn))n∈Z is uniformly γ–radonifying, with bound C/ cos θ.

By a Poisson transform argument (e.g., by using the logarithm to conformally
map sectors to strips and then using the argument of Theorem 4.7), we obtain that√

λΦ̂(λ) is uniformly γ–radonifying on the sector Sϑ, with a bound C ′/ cos θ 6
2C ′/ cos ϑ, where C ′ is another universal constant. �

5. The stochastic Weiss conjecture

Let A be the generator of a C0–semigroup S = (S(t))t>0 on a Banach space E
and let s(A), s0(A), and ω0(A) denote the spectral bound, the abscissa of uniform
boundedness of the resolvent, and growth bound of A, respectively:

s(A) = sup{Re λ : λ ∈ σ(A)},
s0(A) = inf{ω > σ(A) : sup

Reλ>ω
‖R(λ, A)‖ < ∞},

ω0(A) = inf
{

ω ∈ R : ‖S(t)‖ 6 Meωt for some M > 1 and all t > 0
}

.

Here, R(λ, A) := (λ−A)−1. Recall that −∞ 6 s(A) 6 s0(A) 6 ω0(A) < ∞.
It is shown in [36] that the linear stochastic Cauchy problem

(SCP)(A,B)

{
dU(t) = AU(t) dt + B dWH(t), t ∈ [0, T ],

U(0) = u0,

where (WH(t))t∈[0,T ] is an H–cylindrical Wiener process and B ∈ B(H,E) is a
bounded operator, has a solution if and only if for some (all) t > 0 the B(H,E)-
valued function S(·)B represents an element of γ(L2(0, t;H), E), in the sense that
the integral operator

f 7→
∫ t

0

S(s)Bf(s) ds, f ∈ L2(0, t;H),

belongs to γ(L2(0, t;H), E). In this situation the solution is unique up to modifica-
tion. For the precise notion of ‘solution’ as well as other unexplained terminology
we refer to [36].

As an application of Theorem 4.6 we obtain the following necessary condition
for the existence of solutions to the problem (SCP)(A,B).

Theorem 5.1. If the problem (SCP)(A,B) has a solution, then for all b > s0(A)
we have

lim
|s|→∞

‖R(b + is, A)B‖γ(H,E) = 0.

Proof. By [38, Proposition 4.5], for b > ω0(A) the integrable B(H,E)-valued func-
tion t 7→ e−btS(t)B represents an element of γ(L2(R+;H), E). Hence for b > ω0(A)
the assertion is an immediate consequence of Theorem 4.6. For b > s0(A) the result
then follows by a standard resolvent identity argument. �

Note that we did not assume that B ∈ γ(H,E). Indeed, in many examples
the problem (SCP)(A,B) admits a solution without such an assumption on B. For
operators B ∈ γ(H,E) the theorem is trivial, since then we may apply the Riemann-
Lebesgue lemma in the space L1(R+; γ(H,E)).

We recall the fact, proved in [38, Proposition 4.4], that the problem (SCP)(A,B)

admits an invariant measure if and only if the function t 7→ S(t)B represents an
element of γ(L2(R+;H), E). In this situation the mapping λ 7→ R(λ, A)B extends
to an analytic γ(H,E)-valued function on C+; this extension is given by λ 7→ Φ̂(λ),
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where Φ(t) := S(t)B. With a slight abuse of notation we shall write R(λ, A)B for
this extension, keeping in mind that this notation is formal; indeed, examples can
be given where A has spectrum in the open right-half plane.

As an application of Theorem 4.7 we obtain the following necessary conditions
for the existence of an invariant measure for the problem (SCP)(A,B).

Theorem 5.2. If the problem (SCP)(A,B) admits an invariant measure, then for
all 0 < ϑ < π

2 the family

Tϑ :=
{√

λR(λ, A)B : λ ∈ Sϑ

}
is uniformly γ–radonifying and we have

‖Tϑ‖unif-γ 6
CA,B

cos ϑ
,

where CA,B is a constant depending only on A and B.

We conjecture that the following converse of this theorem holds.

Conjecture 5.3 (Stochastic Weiss conjecture). Let E be a Banach space with finite
cotype and assume that the operator −A is injective and sectorial of angle < π

2 on
E and admits a bounded H∞–calculus. The following assertions are equivalent:

(a) the stochastic Cauchy problem (SCP)(A,B) admits an invariant measure;

(b) The operator (−A)−
1
2 B is γ–radonifying;

(c) the set
{√

λR(λ, A)B : λ ∈ Sϑ} is uniformly γ–radonifying for some/all
0 < ϑ < π

2 .

The implication (a)⇒(c) follows from Theorem 5.2, and the implication (b)⇒(a)
can be proved as follows. Since (−A)−

1
2 B ∈ γ(H,E) we may apply [8, Theorem

6.2] to obtain that for all t > 0 the function S(·)B = (−A)
1
2 S(·)((−A)−

1
2 B) belongs

to γ(L2(0, t;H), E), with a uniform bound supt>0 ‖S(·)B‖γ(L2(0,t;H),E) < ∞. Since
E has finite cotype, E does not contain a copy of c0 and the theorem of Hoffmann-
Jørgensen and Kwapień implies that S(·)B ∈ γ(L2(R+;H), E).

Thus the implication that remains to be proved is (c)⇒(b). A direct proof of
(c)⇒(a) would also be of interest, as it would show the equivalence of (a) and (c).
By standard H∞-functional methods it is easy to prove that (c) implies the weaker
result that (−A)−αS(·)B is in γ(L2(R+;H), E) for any α > 0.

Following Weiss [47, Note, page 369], we offer 100 euro for a positive or negative
resolution of these problems. A consequence of Theorem 5.2 is that the conjecture
is true for bounded and invertible operators A (although this is not of great prac-
tical value) as well as certain other cases, for instance when A and B diagonalise
simultaneously. To see the latter, suppose there is an orthonormal basis (hk)k>1 in
H and a sequence (xk)k>1 in E such that

Bhk = βkxk, Axk = −λkxk,

with λk > 0 for all k > 1. Taking tk = λk and assuming the uniform γ–
radonification of the set

{√
λR(λ, A)B : λ > 0

}
, we obtain convergence in E

of the sum

E
∥∥∥ ∞∑

k=1

γk(−A)−
1
2 Bhk

∥∥∥2

= E
∥∥∥ ∞∑

k=1

γkλ
− 1

2
k βkxk

∥∥∥2

= 4E
∥∥∥ ∞∑

k=1

γk
t

1
2
k βk

tk + λk
xk

∥∥∥2

= 4 E
∥∥∥ ∞∑

k=1

γkt
1
2
k R(tk, A)Bhk

∥∥∥2

.

Consequently, A−
1
2 B is γ–radonifying.
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Libération, 33405 Talence CEDEX, France

E-mail address: Bernhard.Haak@math.u-bordeaux1.fr

Delft Institute of Applied Mathematics, Technical University of Delft, P.O. Box
5031, 2600 GA Delft, The Netherlands

E-mail address: J.M.A.M.vanNeerven@tudelft.nl


	1.  Introduction
	2. Uniformly --radonifying families
	3. Uniformly --radonifying families and compactness in (H,E)
	4. Laplace transforms
	5. The stochastic Weiss conjecture
	References

